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ORTHOGONAL GROUPS OF DYADIC UNIMODULAR
QUADRATIC FORMS II

D. G. JAMES

Let O(M) be the orthogonal group of a unimodular quad-
ratic form over the integers in a dyadic local field. The
subgroups of O(M) normalized by the commutator subgroup
are classified when the rank r(M) Ξ> 9, or when r(M) ^ 7 and
the residue class field has at least 8 elements.

Classifications of the subgroups of an orthogonal group normalized
by the commutator subgroup have been given by many authors. For
isotropic nonsingular quadratic forms over fields there is the funda-
mental result of Dickson [3] and Dieudonne [4]: The projective com-
mutator subgroup is simple when the form has dimension at least
5. Other proofs of this, which allow the field to have characteristic
two, have been given by Eichler [5] and Tamagawa [17]. In [12],
Klingenberg generalized this result to nondegenerate quadratic forms
over local rings, provided the residue class field is not of characteristic
two, and classified the subgroups normalized by the commutator
subgroup by using congruence subgroups and mixed commutator
subgroups. Klingenberg's work has been further extended in [1, 2,
7-10,13,16,18,19] by relaxing the restrictions either on the form or
on the ring. In particular, I studied this problem for unimodular
quadratic forms over the ring of integers in a dyadic local field
with 2 an unramified prime and the residue class field having at
least 8 elements [9, 10], These last two restrictions will now be
removed, that is, 2 may ramify and there is no restriction on the
residue class field (except only that it is perfect).

An outline of the paper follows. Denote by o the ring of integers
in a dyadic local field F and by M a free o-module of finite rank
r(M) ^ 3 endowed with an isotropic symmetric bilinear form B: M x
M—>o with determinant a unit in o. After introducing some basic
isometries, the commutator subgroup Ω(M) of the orthogonal group
0(M) is determined. Apart for a few exceptional modules M with
small rank, Ω(M) is equal to the spinorial kernel of 0(M) and is
generated by the Siegel transformations. Next, the "primitive"
submodules Mξ, ξ e Ξ(Ξ a suitable indexing set), invariant under the
action of the commutator subgroup are determined. For each ideal
α in o, the submodules aMξ are still invariant and are used to define
the subgroups ^(aMζ) and ^(aMζ). The main result is:

If r(M) ^ 9, a subgroup ^V of the orthogonal group 0(M) is
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normalized by the commutator subgroup Ω(M) if and only if it
satisfies a ladder relation of the form

for some ideal a in o and some ξ e Ξ.

The restriction r(M) ^ 9 can be weakened to r(M) ^ 7 if the
residue class field has at least 8 elements. If aq(Mξ) £ o, the sub-
groups S?(αAff).can be characterized as mixed commutator subgroups
with the help of congruence subgroups obtained from aMξ. In a
subsequent paper we shall indicate how the local structure obtained
here can be injected into orthogonal groups over Dedekind domains.
In particular, some of the structure of ^"(aMξ)/^(aMξ) that transfers
to the global situation will be given.

The notation for subgroups in [9, 10] has been slightly modified
in the present paper. In particular, &*(ά) will now be written as
gf (αikf*) and the subgroups g?(α, ζ) are now included amongst those
denoted &(aMξ). Similarly, ^"*(α) becomes ^(aM*) and correspond-
ing changes will be made for the congruence subgroups.

1* Preliminaries* Let V be a finite dimensional vector space
over the dyadic local field F of characteristic zero and q:V-+F a,
quadratic form on V, that is, q(αx) — α2q(x) for α e F, x e V and the
symmetric mapping B: V x V—+ F defined by

B(x, y) = g(x + y) - q(x) - q(y)

is bilinear. Denote by o the ring of integers in F, by p the maximal
ideal in o and by u the group of units. Assume Vsupports a unimodular
lattice M; thus M is a free o-module spanning V over F with B(M,
M) = o and detB(M) a unit. Unimodular lattices are discussed in
[14; §93D]; we summarize below the main results required.

Fix a prime π in o and a normalized valuation ord on F. Thus
ord π = 1 and ord 2 = e ^ 1. In

choose q(w) = (l/2)α such that ord α is minimal. O'Meara calls α a
norm generator of M. The norm group is

QM = 2(q(M) + o) .

Let m l denote the largest ideal of o in QM and define the weight
by the equation

ΪΌM = pmM + 2o .
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Then b e o is called a weight generator of M if bo — ΪΌM.
If r(M) ^ 5 , or if r(M) :> 3 and ord (αδ) is even, ikf is split by

a hyperbolic plane. Thus

M= H JL K

where H = on + ov with q(u) = q{v) = 0 and J3(%, v) = 1. In this
manner we can reduce the general unimodular lattice to the form

M=H±N ±L

where r(L) ^ 4 and q(N) s o. Here N will be an orthogonal sum
of hyperbolic planes plus, possibly, the anisotropic binary plane <A(2,
2p)} In general, (A(a, /S)> denotes a binary unimodular lattice ox +
oy where 2g(a) = 5(α;, x) = α, 2g(τ/) = £(2/, 2/) = /3 and B(x, y) = 1. For
α 6 it, denote by <α:> a lattice ox where B(x, x) = 6t. If r(L) ^ 1,
the lattice L obtained above in the splitting of M can be taken as
one of the forms given in the following table. Here a and b are norm
and weight generators, ord c ^ ord b and ζ e o (see [14; 93:17-18]).
Moreover, when r(L) = 2 and ord (α&) is even, we may take 6 = 2.
It will be apparent later that the subgroup structure of the ortho-
gonal group O(ikf) is determined mainly by L.

TABLE I

r(L)

1

2

3

4 {ow + o,

w _L (oa?

2) ± {ox

ow

) 4- 02;

+ 02/)

+ oy)

L

=

=

=

<A{a, φ

<A{a, φ
(6, 2ζ)>

± <A(δ, 2ζ)>

Denote by M* t h e sublattice of M consisting of all reM with
q(r) in 0. Let p and r in ikf* be such t h a t q(p) = 5(ί9, r) = 0. Then
i7(p, r ) denotes t h e Siegel transformation defined for s e M by

#(P, ^)(δ) = s - B(p, s)r + JB(r, s)p - q(r)B{p, s)p.
Now assume that ilί is split by a hyperbolic plane H—ouΛ-ov =

<A(0, 0)>. In future H denotes this fixed hyperbolic plane. Then
M - H _L K with Jί unimodular. Denote by g7 the subgroup of O(M)
generated by the Siegel transformations E(u, r) and E(v, r) with r
ranging over K* = JSTfl Λί* The isometries z/ and Φ(ε), where ε is
a unit, are defined by

A: u 1 > v, v 1 > u, s , > s for s e K

and

Φ(ε): u 1 • εu, v 1 > ε"1^, s 1 • s for se K .
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Finally, if re M is such that q(r)$ p, denote by Ψ{r) the symmetry
about r defined by

Ψ(r)(s) = s - q{r)"ιB{r, s)r .

PROPOSITION 1.1. The following relations hold.

ΔΦ(ε)Δ~1 = Φ(ε-χ) .

For Θ e O(M\ q(p) = B(p, r) = 0 and r e ikf*

θE(p, r)θ-^ = E(θ(p), θ{r)) .

In particular,

ΔE(u, r)Δ~ι = E(v, r)

Φ(ε)E(u, rWε-1) = E(u, εr)

Φ(ε)E(v, rWε-1) = E(v9 ε"V) .

Also, for r, se M* with B(p, r) = B(pf s) = 0,

E(pf r)E(pf s) - E(p, r + s) .

Proof. These are well-known and easy to verify.

Perhaps less well-known are the following two identities.

PROPOSITION 1.2. Let M = H ± K. Let reK* and βeobe such
that '6 = 1 — βq(r) is a unit. Then

E(v, βr)E{u, r) = E(u, ε~ιr)E{v, βεr)Φ(ε~2) .

Let se K have q(s) a unit. Then

ΔΨ(s) - Φ(-q(8))E(v, s)E(uf q(s)-ι8)E(v, s) .

Proof. These can be verified by checking the images of u, v
and teK. Alternatively (see [10]), they can be established by making
suitable calculations in the Clifford algebra of V.

COROLLARY 1.3. Let M = H ± K and q(K) contain a unit. Then
for all units ε in u, Φ(ε2) e gf. In particular, the hypothesis is
satisfied if r{M) ̂  5.

Proof. Take reK with q(r) a unit and put β = q(r)~^ — 1).
The result now follows from the first identity in Proposition 1.2.
If r(K) ̂  3 and ord (ab) is even, then K is split by a hyperbolic
plane and consequently represents units. If ord(αί>) is odd, either
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ord (2a"1) or ord (26"1) is even, and K clearly represents units.

The characteristic set ^£{s) of a primitive element s in M is
defined by

^T(β) = {teM\B{s, t) = 1} .

Since Mis unimodular, ^f(s) is not empty. For any isometry φe
O(M),

q{^(φ{s))) = q{^t(s)) mod o .

This relation controls the equivalence of elements of M under the
action of the orthogonal group (see Hsia [6]).

If M = M1 ± M2, denote by 0(71̂ ) the subgroup of isometries in
0(M) that act identically on M2. Let %{M) denote the Witt index
of M.

PROPOSITION 1.4. Let M = H _L K and q{K) contain a unit. If
card o/p = 2, assume also r(M) :> 7, or i(M) = 1, or M = H 1 H' _L K'
and q{Kf) contains a unit. Then for each φeO(M) there exists an
isometry ψe g* such that

~ι = E(u, x)E{v, y)Φ(e)θ

where x, y e K*, ε is a unit and θ e 0{K).

Proof. The proof of Lemma 3.6 (3), (4) in [9] is modified as
follows.

(3) Assume a, β 6 p. Then s is primitive in K. The charac-
teristic set of v is

v) = {ze M\B(v, z) = 1} - u + (K 1 ov) .

Since φ(^(v)) = ^t{φ{v)), there exists tx e ^€{φ{v)) such that
is a unit. Let t be the component of tx in K. Then g(£) e o. Also,
since B(ix, >̂(v)) = 1 and a, βep, it follows that B(s, t) is a unit.
Hence B(s, t) + aq(i) is a unit.

( 4) Finally assume a is a unit and βep. If card o/ψ ̂  4, the
earlier version still holds. There remains the case card o/£ = 2 and
B{s, t) a unit. Then K = (os + ot) l iί'. If q(s) is a unit, replace
t by s. Otherwise os + ot is a hyperbolic plane Hr. Now choose a
new £ e K' with g(ί) a unit and B{s, t) — 0. This completes the proof.

2* Generators for O(ikf)* In this section we obtain generators
for the orthogonal group O(M) (see also O'Meara and Pollak [15]).
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PROPOSITION 2.1. Let M = H _L N l L where q(N)So. Then
the orthogonal group O(M) is generated by g7 and O(H 1 L).

Proof. The proof of Theorem 2.1(1) in [9] or of the lemma in
[10; IV] generalizes without significant change.

REMARK 2.2. Let w, ze L be such that B(w, z) = 1 and q(z)eo
(but not necessarily q(w)eo). The argument in [9; Theorem 2.1(1)]
also shows that φ e O(H _]_ L) can be changed by isometries in g7,
and Δ, to an isometry fixing w. This fact will be used later.

It is clear that O(H) is generated by Δ and the isometries Φ(ε).
We now obtain generators for O(H ± L) where L is as in Table I.

2.3. Let L — ow — <α>. Then O(M) is generated by O(H) and
g7, together with Ψ(w) if 2 is tamely ramified (ord 2 odd).

Proof. By Proposition 2.1 it suffices to consider O(H 1 ow). Let
φ e O(H _L ow) and

φ{w) = βu + ΎV + δw

where δ is a unit. Then

(oφ(w)Y — o(aδv — βw) + o(aδu — Ίw) ~ H.

It follows that q(βw) and q(yw) are in o. Assume 2 e o(l — δ) (a
similar argument will hold if instead 2eo(l + δ)). Using

βΎ = \a(l - δ2) ,
Li

it follows that

E(u, Ί~\l + δ)w)φ(w) = ΊV — w .

Then

Ψ{w)E(v, a~ιΊw){Ίv — w) — w ,

and we have reduced φ to an isometry in O(H). When 2 is wildly
ramified, Ψ(w) can be expressed in terms of the isometries in O(H)
and g" using the second identity in Proposition 1.2.

2.4. Let L = ow + oz = (A(a, c)>. Then O(M) is generated by
O(H) and g7, together with Ψ(w — az) if ord (2α) is odd, and with
Ψ(z) if ord (2c"1) is odd and positive.

Proof. We first change φ e O(M) by the given isometries to an
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isometry fixing w. If q(z) = (l/2)c e o, Remark 2.2 gives this immedia-
tely. We therefore assume ord (ac) is odd (otherwise, change z and
increase ordc). Again, by Proposition 1.4, since q(L) now contains
a unit, assume ψ e O(L).

Let ord (2c"1) = g ^ 1 and h = [(g + l)/2] (integral part). Then
q(πhz) e o and E(u, πhz)(w) = πhu + w. Let

φ(πhu + w) = πhu + w + Xw + μz .

If x = π~h(Xw + μz) is in L*, replacing φ by

^ = 2?(M, —πhz)E(v, x)φE(u, πhz)

gives the desired reduction since ψ(w) = w.
From q(w) = q(φ(πhu + w)), it follows that

i-αλ2 + -ίcj«2 = - α λ - (λ + l)μ e o
Δ Δ

and hence, since ord (ac) is odd, I = ord λ ^ (1/2) ord (2a"1) and m =
ord μ^h^ (l/2)g. Let / be the minimum order of the four terms
in this equation, that is

/ = min {21 — ord (2a"1), 2m — g, I + ord a, m) .

Assume / < g. If / = m, then 2m — g ^> m leads to a contradiction.
Similarly, / = I + ord α gives a contradiction with 2ί — ord (2a"1) ^
/ . Since there must be at least two terms with the minimum order,
this leaves

/ = 2 m - g = 21 - ord (2a"1)

which contradicts the hypothesis that ord (ac) is odd. Hence f ^ g.
This will now be strengthened to / ^ 2h, which ensures that xe L*
as required.

If g is even, 2h = g. Assume, therefore, g = 2h — 1 and f = g.
Considering again the definition of /, both f = I + ord α and / =
21 — ord (2a"1) (which is even) lead to contradictions. Hence / =
m = 2m — g = g and (l/2)cμ + λ + l = 0 mod π. Replace φ by Ψ(z)φ
and the new coefficient of z lies in π9+1o. Repeating the previous
calculations now gives / ^ g + 1 = 2h.

We may now assume φ(w) = w. Modifying the argument in 2.3,
we now reduce φ to an isometry in O(H). Let r = w — az so that
B(r, w) = 0. Since J5(φ(z), w) = 1,

φ(z) = au + βv + 7r + 2

for some α, /9, 7 6 0. Computing characteristic sets gives
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^(z) — W + H 1 θ(z — cw)

and

2q(^z(φ(z))) = 2q(^(z)) ΞΞ {α + ρ2c(l + ae)\peo]mod2o .

Since v + (1 — a)w e ^?(φ(z))y and either ce2o or ord (ac) is odd, it
follows that aa2e 2o. Similarly, α/32e 2o. Let σ = -5(r, z) - τg(r).
Then q(z) = q(φ(z)) gives ayσ = αα/3 G 2o. But ord (7g(r)) = ord (l/2)(ατ)
and hence σ e o. If σ is a unit,

E(u, aσ~ιr)φ(z) = βv + z .

Similarly, the coefficient of v can be made zero and we obtain an
isometry fixing both w and z. If, however, σ is not a unit, then
7g(r) is a unit (since B(r, z) is a unit). In ̂ (rMz) t^ e n e w coefficient
of r becomes σq(r)~\ Now proceed as before. Note that if ord (2a)
is even, Ψ(r) can be expressed in terms of the elements of g7 and
0{H). This completes the reduction.

2.5. Let L = ow 1 (ox + oy) = <α> _L <A(6, 2ζ)> wiίλ ord b odd.
Then O(M) is generated by O(H) and if, together with one symmetry
Ψ(r) where ord (q(r)) is odd.

Proof. Let φeO(M). Since B(w + x, y) = 1 and q(y)eo, by
Remark 2.2, 9 can be assumed to have the property 9>(w + x) =
w + a?. But

L = o(tί; + a?) ± (o(ατ/ — w) + o(αα; — bw)) .

The result now follows from 2.4 since J5(α2/ — w, ax — bw) is a unit,
— w) = α(l + 2αζ) and 2q(ax — bw) = α6(α + 6).

2.6. Lβί L = (ow + 0̂ ;) 1 (oa + o?/) = <A(α, c)> 1 <A(&, 2ζ)> with
ord (αδ) odd. ΓΛe^ O(M) is generated by O(H) and g7, together with
one symmetry Ψ(r) where oτά(q(r)) is odd.

Proof. Let φ e 0(M). By Remark 2.2, we may assume φ(x) =
α?. If it can also be arranged that φ(y) — y, invoking 2.4 will com-
plete the proof. Changing z if necessary, we may assume that either
ce2o or ord (ac) is odd.

If c G 2o, using 2.2 again, we also have φ(w) = w. When c e 2o,
let g = oτά(2b~1) and fc = [(g + l)/2] Now put s = πΛ(ί» - δy) so
that g(s) G 0. If, however, c 0 2o so that ord (αc) Ξ= ord (αδ) mod 2,
let 2Λ = ordίcδ"1) ^ 0. Since ord(αc) is odd, there exists reow+oz
such that

s == r + 7Γλ(α; — δt/)
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is in M*. Moreover, B(s, w) is a unit, and by Remark 2.2 we can
change φ so that again φ(w) = w.

Examining the proof of Proposition 1.4(1), we find that either
φ or Δψ can be expressed in the form E(u, p^)E{v, p2)Φ(e)θ where
θ e O(L) and B(pif x) = B(pίf w) = 0 f or i = 1, 2 (since the conditions
<p(x) — x and φ{w) = w ensure that the component of 9(v) in H is
primitive). To prove 2.6 it now suffices to show that any φeO(L)
with φ(x) — x and φ(w) = w can be expressed in terms of the given
generators.

We still have h and s available as constructed. In both cases,

E(u, s)(y) = au + y

where a — B(s, y) = πh(l — 2δζ). Note that E(u, s) leaves x fixed. Let

φ(au + y) = au + /S(w — az) + 7(# ~ by) + y

where /3, 7 € o. Since g(τ/) = q(φ(au + T/)), it follows that aβ2 + 672 e
2o + aco, and hence ord β ^ h and ord 7 ^ h (in fact, ord /9 ̂  fe + 1
if c£2o). Thus

<£>(α% + y) — αu + 7rΛί + y

where ί e L and S(έ, a?) = 0. Suppose that q(t) e o. Then

, s)(y) = y

and changing φ by elements in O(£Γ) and g* we have obtained an
isometry acting identically on x and y. This, by 2.4, would complete
the proof. If c g 2o we need one symmetry in 2.4; this is also true
if c e 2o and ord (2α) is odd. When c e 2o and ord (2α) is even, the
symmetry will appear below.

It remains to show q(t)eo. Since

π*hq{t) = -πhB{t, y) = 7(1 - 26ζ) ,

it suffices to show ord 7 ^ 2λ. Again, from q(y) = q(φ(au + y))9

(0modδτr4A if cg2o
aβ2 + δ72 + 27 =

(0mod2τr2A if ce2o.

Except when c e 2o, ord (26"1) = 2h - 1 = ord 7 and 2 + 67 = 0 mod 2ττ,
we can conclude that ord 7 ^ 2fc. In the exceptional case, replace
φ by Ψ(x — by)φ and the new coefficient of x (the new 7) is divisible
by π2h. This completes the proof.

THEOREM 2.7. Lei M be a unimodular o-lattice split by a hyper-
bolic plane H. Then the orthogonal group O(M) is generated by
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and if, together with at most one symmetry Ψ(r). The symmetry
Ψ(r) is required if and only if M contains an element r with

ord (tf(r)-1) ^ 1

and odd.

Proof. This merely summarizes the results 2.3-2.6.

COROLLARY 2.8. Any element φ e 0(M) can be expressed in the
form

φ = JcΦ(ε)Ψ(r)dθ

where c, de {0, 1}, ε is a unit and θ e £?. In particular, d = 0 if M
does not contain an element r with ord (q(r)~ι) ̂  1 and odd.

Proof. This follows immediately from Theorem 2.7 and Proposi-
tion 1.1.

Let θ denote the spinor norm on the special orthogonal group
SO(V) and Sk(M) the spinorial kernel in O(M),

Sk(M) = {φe SO(M)\θ(φ) = 1} .

THEOREM 2.9. Let M = H _L K and assume q(K) contains a unit
of o. Then

Sk(M) = if .

Proof. It is well-known that the isometry E(p, s) has spinor
norm 1. Hence g* £ Sk(M) always. Conversely, let

φ = AcΦ{ε)Ψ(r)dθ

have spinor norm 1. Then det φ = 1 gives c = d. Now Θ(φ) =
(—g(r))cε, since J = F ^ — v) and Φ(ε) = ΔΨ{u — εv). If r exists,
ord (q(r)) is odd, and hence c = 0 and ε — η2 for some unit 37. Corol-
lary 1.3 now gives Sk(M) g 8".

3* ^-invariant sublattices* We now study the g'-invariant
sublattices of Λί, that is, sublattices of M that are invariant under
the action of gf. For O(ikf)-invariant sublattices, see [11].

Clearly, M* = {s e M \ q(s) e 0} is invariant under the action of both
O(M) and gf. Let ikf* be the dual lattice of M*, that is,
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Then 2ifcP £ M and 2Λf* is invariant under the action of O(M). Let
P be a sublattice of M. Define

reP

Then B(P, ΛQ £ α(P) and α(P) is an ideal in o, since each jB(r, M*) is.

THEOREM 3.1. Let M = H _ι_ K where q{K) contains a unit. If
card o/p = 2, assume also r{M) ̂  7. 27&ew a sublattice P of M is
^-invariant if and only if

M* s a(PyιP g Λf* .

Proo/. Write α = α(P). Since BisrxP, Λf*) S o, it follows that
cr'P £ Λf*. Now let x e K* and ye P. Since J5(P, Λf*) £ α,

J^ί^, a;)(7/) = y mod αΛf* ,

and P is if-invariant if αM* S P. It remains to show that if r e P
and 5(r, Λf*) = 6, then BΛf* S P if P is g^-invariant.

Write r = βu + ΊV + s where s e iΓ. Then b = βo + 70 + P(s,
i Q . We may assume b = βo (otherwise replace r by E(u, ί)(r) where
j?(s, £) generates b, or interchange u and v). Take yeK* such that
#(2/) is a unit and, when card o/p — 2, also B(s, y) — 0. For a suitable
unit ε, (E(v, εy) — I)(r) gives rise to an element v + 2 in b~\P with
is e if and q(z) a unit. Then, for any unit η,

{E(u, Ύ]z) - I)(v + z) = -37s + J?(2 - y)q(z)u

is in b""\P. If card o/J) ̂  4, it follows that w 6 b~'P and it is now
easy to show that Λf* £ b~ιP. If card o/ί> = 2, put ^ = 1 so that
1; + q{z)u is in b - 1P. Take p e K primitive and isotropic. Then E(u,
p)(v + q(z)u) is in h^P. Hence p e b~ιP and consequently Λf* £ b-1P.
This completes the proof.

COROLLARY 3.2. Let re M and B(r, ΛQ = α. Under the hypo-
theses of the theorem, aM* + or is the smallest ^-invariant sublattice
in M containing r.

Proof. Clear.

Introduce an indexing set Ξ so that the lattices Mξi ξ e Ξ, are
all the distinct lattices on V satisfying

Λf* £ Λf* £ Λf* .

If o/p is finite, then Ξ is also finite. Let α be an ideal such that aMξ £
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M. Then aMζ is an g^-invariant lattice.

4* The subgroups ξ?(aMζ) and ^(aMζ). For f e Ξ, let α be an
ideal such that aMζ £ M*. Define ^(aMζ) to be the subgroup of
O(Λί) generated by isometries of the form ψE(u, z)f~x and ψE(v, z)ψ~1

where f e g 7 and ze K f] aMξ. The subgroups W(aMξ) are obviously
normalized by g*. Also, let

JT(aMξ) = {φeO(M)\[φ, gf] £ gf(αMe)} .

Then any subgroup Λ" of O(ikf) satisfying

for some aMξ g M* is normalized by g" since

7 if J £

For aMξ £ ikf̂  define the congruence subgroup O(aMζ) by O(aMζ) =
O(M) |9>(α?) Ξ a? mod αM"f for all x e M*} x {±1}. These subgroups

are normalized by g" since M* and aMζ are g'-invariant. If aMζ =
M*, then OίM*) = O(M). Now let α £ p. If ε = 1 mod α, then Φ(ε) e
0{aMζ). Also, for ^ e ί n aMξf both .&(%, «) and E(v, z) are in O(αlfe)
provided aq(Mζ) £ o. Hence g*(αΛfe) £ O(αikfe), provided αg(Me) £ o.

LEMMA 4.1. Lβέ α g $> απc? αg(Λfe) £ o. 77κm φ e O(αilί̂ ) cα^ 6β

expressed in the form

φ = ±E(u, x)E(v, y)Φ(ε)θ

where x and y are in K n cιikff, ε = 1 mod α απd 5 e O(K) Π O(αikff).

Proof. Let 9>(v) = α ^ + βv + s where s e K n αΛfe and

/9 Ξ ± l m o d α .

If β ΞΞ — 1 mod α, replace <£> by — <p. Now put φt = Φ(β)E(u, β~1s)φ e
O(aMζ) so that ^1(

/y) — v. Let ^(tft) = u — g(ί)v + ί where ί e ^ Π &Mξ.
Put β — £r(/v, t ) ^ ! e OCαikί̂ ). Then θ e O(K) and φ can be rewritten in
the desired form.

THEOREM 4.2. Let M — H ± K where q{K) contains a unit. If
card o/t> = 2, assume that r(M) ^ 9. Tftew, i/ αg(lfe) £ o,

= [O(aMζ),

and hence

ξ?(aMξ) £ O(aMe) £
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Proof. We first show that [O(aMξ), gf ] £ ϊf(aMζ). If aMξ = M*,
then g^M*) = if and [O(M), g7] S g* by Corollary 2.8. Now assume
αgj). Consider first [φ, E(u, t)] where φeO(aMζ) and teM*. By
Lemma 4.1,

ςp = ±E(u, x)E{v, y)Φ(έ)θ

with E(u, x) and 2£(i;, 2/) in &(aM$). From Proposition 1.1,

[φ, E(u, t)\ = £7(u, e0(£) - ί) mod

But [φ9 E(u, t)] is in O(aMζ) and hence

E(u, εθ{t) - t)(v) = v mod

so that eθ(t) — te aMζ. Hence [φ, E(u, t)] e ^(aMζ). From the pro-
perties of commutators, it follows that

[O(aMξ), gf ] s &(aMξ) .

For the converse inclusion we must show E(u, z) and E(v, z) are
in [O(aMξ), &] for all z e K n αΛfe. If card o/ί> ̂  4, there exists a unit
ζ such that ^ — ζ2 — 1 is also a unit. Then

S(uf z) = [Φ(ζ2), £7(u, ^ ) ] e [g-, O(αikΓ,)] .

Finally, let cardo/^) = 2. Since now r(M) ^ 9 , M = H l_ H' A. K'
where ze K' and iΓ = ou' + ov' is a second hyperbolic plane. Then

[E(u\ z\ E(v\ u)\ - E(E(u', z)(v'), u)E(v', -u)

= E(u, -E{u\ z)(v'))E{u, v')

= E(u, z + q(z)u')

is in [O(aMξ], cg\. Since aq(Mξ) S o, we have q(z)u'e aMζ. A similar
argument shows that E(u, q{z)ur) is also in [O(aMξ), c£\. The result
now follows immediately.

THEOREM 4.3. Let M = H ± K where q{K) contains a unit. If
cardυ/ p = 2, assume that r(M) [> 9. Then

g7 = Ω(M) .

Proo/. Take aMξ = M* in Theorem 4.2. Then

g7 = if (Λf*) = [O(M), g7] S Ω(M) S g3 ,

the final inclusion following from Theorem 2.9.

REMARK 4.4. With greater effort, a stronger result may be
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obtained when card o/p = 2 (see, for example, [9; Theorem 2.6]).
Also, when aq(Mς) §£ o, anormalous behaviour may occur (see [10;
Table II]).

5* Subgroups normalized by Ω(M). Let ̂ V* denote a subgroup
of 0(M) normalized by g7. We now prove, under suitable hypotheses,
that there exists a sublattice aMζ invariant under g7 such that

The method is as follows. Assume φ e ̂ K and choose ψ e g7 as
in Proposition 1.4 such that

ψφψ-1 = E(u, x)E(y, y)Φ{ε)θ

is also in Λr. We shall show that E{u, x), E(v, y) and Φ(ε)θ are all
in Λ" and use these isometries (varying ψ in ̂ V) to obtain a maximal
subgroup of the form &(aMζ) in ΛΊ It then remains to prove ^ £

We prepare for this theorem with a number of lemmas.

LEMMA 5.1. Let M = H _ί_ K where q(K) contains a unit. Then
if card ojp i> 8 and

Ψ = E(u, x)E(v, y)Φ(e)θ

is in a subgroup *yK normalized by g7, there exist units ζ and rj
(independent of φ) such that E{uy ζx) and E(v, Ύ]y) are also in ̂ V\

Proof. Modify Lemma 3.8 in [9].

LEMMA 5.2. Assume r(M) ̂  7 and E(u, x) is in <yK Then
E(u, ax) is in Λ" for all aeo.

Proof, xe K can be embedded in a binary (or unary) sublattice
B of K with K= B ±C. Then r(C) ̂  3. From [14; 93: 20], Θ(SO(C))
contains all units. Let ε be any unit and take θ e SO(C) such that
θ(θ) = ε. Then Φ(ε)θ e Sk(M) = gr. Conjugating E(u, x) in ^Γ with
Φ(ε)θ gives E(u, εθ(x)) = E(u, εx) is in ^Γ for all units ε. If α e o
is not a unit, then a — 1 + ε with ε unit and now E(u, ax) is also
in i^K This proves the lemma.

The previous two lemmas show that for r(M) ;> 7 and card o/p ̂
8 that if E(u, x)E(v, y)Φ(ε)θ lies in a subgroup Λ* normalized by g7,
then so do E(u, x), E(v, y) and Φ(ε)θ. We show now that this is still
true for card o/p = 2 or 4 provided the rank of M is at least 9.

LEMMA 5.3. Let M = Hi K with r(M) ̂  9 and φ = E(u, x)E(v,
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y)Φ{e)θ e ̂  where x,yeK* and θ e 0{K). Then E{u, x), E(v, y) and
Φ(ε)θ are all in

Proof. Since r{M) ̂  9, we have M = H l Hf _L K' where H' =
ov! + ovf is a hyperbolic plane and y e K\ Then

E(u, -x)[<p, E{u, u')]E(u, x) = E(v, y)E(u, εθ{uf))E{v, -y)E(u, -u')

is in ^V. Hence

E(u, εθ(v,'))E(E(v, -y)(u), -u')

= E(u, εθ{u'))E{u + y - q{y)v, -u')

= E(u, εθ(u') - u')E(u', y - q(y)v)

is also in ΛZ Let t = εθ{uf) — u\ Take s e K' with q(s) a unit and
B(8, y) = 0. Then [E(u, s), E(u, t)E{u\ y — q(y)v], and hence also
E{u\ q(y)(s + q(s)u)), are in Λ^. But ov + o(s + q(s)u) is a hyperbolic
plane, so that both E{u\ q(y)v) and E(u, t)E{u\ y) are in *ΛZ This
already completes the proof in the special case where ε = 1 and θ
is the identity map, since then t = 0. Returning to the general case,
since r{Kr) ̂  5, there exists ψ e 0{Kr) such that ψ(y) — y and Aψ e
if. Conjugating E(u, t)E{u\ y) with Δψ, shows that E{v, ψ(t))E(u', y)
is in <yK Hence E(u, t)E(v, -ψ{t))e<yΓ and, by the special case
noted above, it follows that E(u, t) is in ^K Finally, E(ur, y) e Λ"
and the result now follows.

LEMMA 5.4. Let M= H ± K with r{M) ̂  7. // cardo/£ £ 4,
assume also r(M) ^ 9. Let E(u, x) e ^/K* where x e K* and B(x, M*) =
α. Then

Proof. Take z e K* such that B(x, z) = a where oa = α. We
may assume g(#) is a unit, for if not, take z1 e K* with B(z, z^) = 0
and q(z^) a unit; if !?(#, zλ) e an, replace z by zlf otherwise, replace
z by z + «!• Moreover, there exists yeK* with i?(#, #) = 0 and g(̂ /)
a unit. Let ε = q(z)q(y). Conjugating E(u, x) 6 ̂ V with Φ(ε)Ψ(z)W(y)
from iSA (Λί) = i? gives £7(ε̂ , α; — aq{zYxz) e .sK From Lemma 5.2 it
follows that E(u, az) is in .̂ K: If weK* and card o/j> ^ 8, there is
a unit Ύ) such that g(^ + ηw) e u and !?(#, » + ̂ w) e an. A similar
argument shows E(u, a(z + ̂ w)), and hence also E(u, aw), are in ^K
Conjugating with AΦ( — q{z))Ψ{z)e g? gives now ξ?(aM*) S^K

Now assume cardo/p ^ 4 so that r(M) ^ 9. Then M= HlH'lK'
with # 6 iΓ'. Conjugating E(u, x) with JS'ί̂ ', z) leads to .#(%, ct^') e

Similarly, E{u,av')e^V: Take teK*. Finally, conjugating
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E(u, au') with E(v', £) e i? shows that E(u, at) is in ^K and hence
again, i?(αΛQ £

THEOREM 5.5. Let M be a unimodular lattice with r(M) i> 7,
and r(M) ^ 9 if card o/p — 2,4. Then a subgroup ^V of the orthog-
onal group O(M) is normalized by the commutator subgroup Ω{M)
if and only if it satisfies

for some ideal a in o and an invariant sublattice Mξ with aMζ £ M#.

Proof. We have already observed that subgroups satisfying these
ladder relations are normalized by g7 = Ω(M). Now assume Λ" is a
subgroup normalized by Ω(M) and choose αilί̂  £ M* maximal such
that ^(aMζ) £ ^K Clearly, at least {/} = gf ({0}ikQ £ ^ moreover,
if both ^(αiikf^) and i?(α2Mf2) are contained in Λ\ these two sub-
groups generate &(azMξ) £ ^<^ where α3 = αx + α2 (see §4).

Now let φ e ^V*', we must prove φ e ^^(αikίf). By Proposition 1.4
there exists ψ e Ω(M) such that

where θe 0{K). By Lemmas 5.1-5.3 we know that E(u, x) and E(v,
y) are in ^V and hence by Lemma 5.4 and §4 they are even in
%f(aMξ). It therefore suffices to prove that Φ(έ)θ is in ^(aMξ). For

[Φ(e)θ, E(u, s)] = E(u, eθ(s) - s)

is in ^K Again, from Lemma 5.4 and §4, it follows that [Φ(s)θ,
E(u, s)] is in ^{aMξ). Hence

[Φ(e)θ, &] S

and, therefore, Φ(ε)θ e ^~(aMξ). This proves the theorem.
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