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RECONSTRUCTING INFINITE GRAPHS

J. A. BONDY AND R. L. HEMMINGER

It is a well-known conjecture of S. M. Ulam that any
finite graph of order at least three can be reconstructed from
its maximal vertex-deleted subgraphs. Formally (writing Gυ

for G — v) Ulam's Conjecture states: if G and H are finite
graphs of order at least three such that there is a bijection
σ: V(G) -> V(H) with the property

(1) GΌ s* HaM for all v e V(G) ,

then G = H. This conjecture has not been proved in general,
although it was shown by P. J. Kelly to be true for discon-
nected graphs and trees and has also been verified for several
other classes of graphs. The purpose of this paper is to ex-
amine Ulam's Conjecture for infinite graphs. (It is trivial to
determine, from any Gv, whether or not a graph G is infinite.)
Results are obtained which can loosely be viewed as extensions
of Kelly's work on disconnected graphs and trees.

In §2 it is shown that infinite graphs G and H satisfying (1)
must have the same finite components, occurring with the same
multiplicity. Corollaries of this are that if G either has only finite
components, or has some finitely occurring finite component, then
G ~ H. In § 3 the conjecture is proved for m-coherent locally finite
trees, where m is finite and greater than one. This furnishes a
partial solution to the reconstruction problem for infinite trees, raised
by C. St. J. A. Nash-Williams.

We have used the language of reconstruction in our proofs.
However, it should be noted that the results are existential in nature
and not algorithmic. Throughout the paper G and H will denote
infinite graphs satisfying condition (1) of Ulam's Conjecture. Any
notation and terminology not defined can be found in Harary [3].

2* Disconnected graphs* We denote by c(G) the number of
components of G, and by c(G; K) the number of components of G
that are isomorphic to K. A finite connected graph J is called a
K-producer if c(Jv; K) > 0 for all ve V(J). (Since J has a non-cut-
vertex, J must be regular and of order one more than the order of
K; hence K determines / up to isomorphism.) An endvertex of G is
a vertex of degree one.

LEMMA 2.1. If L is infinite and connected and K is finite, then
there is an infinite set S £ V(L) such that c(Lv; K) = 0 for all ve S.
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Proof. Let T be a spanning tree of L. If T has an infinite
number of endvertices, let S be the set of endvertices of T. If T
has no endvertices, any infinite subset S of L has the required prop-
erty. If Γhas a finite positive number of endvertices let wι be one
of these and let (wlf w2, w3, ) be a one-way infinite path in T from
wλ. Since T has a finite number of endvertices there is an N such
that, for n > N, the components of T — wn all have order greater
than the order of K. The set S ~ {Wti i > N} has the required
property.

LEMMA 2.2. G has a component of cardinality at least #v if and
only if some Gv has a component of cardinality at least ^ . .

Proof If G has a component of cardinality at least y v̂, then
either there is a vertex v whose degree has cardinality less than ^ v ,
in which case some component of Gv has cardinality at least ^ v , or
else the degree of every vertex of G is of cardinality at least ^
and then every component of every Gv has cardinality at least \ξu.
The converse is obvious.

LEMMA 2.3. The component orders of G have a finite upper bound
if and only if the component orders of every Gv have a finite upper
bound.

Proof By Lemma 2.2 we can assume that G has only compo-
nents of finite order. The result is then clear.

LEMMA 2.4. For K finite, c(G; K) — co if and only ifc(Gυ; K) =
oo for all ve V(G).

Proof The condition is obviously necessary. Conversely, suppose
c(G; K) < oo. For any finite component C of G, clearly c(Cv; K) < oo.
Therefore, if G has only finite components, c(Gv; K) < oo. If G has
an infinite component L then, by Lemma 2.1, c(Gv; K) - c(G; K) < oo
for some ve V(G).

The next lemma shows that we can distinguish whether or not
c(G; K) is positive when K is finite.

LEMMA 2.5. Let K be a finite connected graph. Then
(a) if the component orders of G have no finite upper bound,

c(G; K) > 0 if and only if c(Gv; K) > 0 for all but finitely many v;
(b) if the component orders of G have a finite upper bound and

every infinitely occurring component is a K-producer, c(G; K) > 0 if
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and only if c(Gv; K) > 1 for infinitely many v;
(c) if the component orders of G have a finite upper bound and

not every infinitely occurring component is a K-producer, c(G; K) >
0 if and only if c(Gv; K) = 0 for at most \ V(K) | vertices v.

Proof. By Lemmas 2.3 and 2.4 we can distinguish between cases
(a), (b), and (c). (By Lemma 2.4 we can determine, from the Gv9 the
infinitely occurring finite components—one examines these for iί-pro-
ducers.)

(a) If c(G; K) > 0 then c(Gv; K) > 0 for all v i V(K). Conversely
suppose that c(G; K) = 0. By Lemma 2.2 we can distinguish between

(i) G has a component L of infinite order; or
(ii) every component of G has finite order.
(i) By Lemma 2.1, c(Lυ; K) = 0 for infinitely many ve V{L), and

hence c(Gv; K) = 0 for infinitely many v e V(G).
(ii) For each non-cut-vertex v of a component of G of order

greater than | V(K) \ + 1, c(Gv; K) = 0. There are infinitely many
such components and each of them contains at least two non-cut-
vertices.

(b) Since, for each if-producer J and each v e V(J), c(Jv; K) = 1,
c(G; K) > 0 implies c(Gυ; K) > 1 for infinitely many v. Conversely
suppose that c(G; K) = 0. Since the component orders of G have a
finite upper bound, there are finitely many isomorphism types of
components of G. It follows that there are finitely many components
which are not infinitely occurring. Since c(Gv; K) = 1 when v is in a
iΓ-producer, c(Gv; K) can be greater than one only for finitely many v.

(c) If c(G; K) > 0 and if C is a component of G with C ~ K,
then c(Gv; K) > 0 for all v g V(C), and so c(Gυ; K) = 0 for at most
1 V(K) I vertices v. Conversely suppose that c(G; K) = 0 and let C19

C2f be components of G with C< = J for all i, where J is not a
if-produeer. Then there exist vertices ^ e F(C0, v2e V(C2), ••• such
that c(GH; K) = 0 for all i. That is, c(Gυ; K) = 0 for infinitely many
vertices v.

LEMMA 2.6. Lβί K be a finite connected graph such that c(G; K) >
0. Then

c(G; K) = 1 + min {c(Gv; K)} .
V

Proof If v e V{Kf) where K' is a component of G with iΓ ^ iΓ,
then c(Gv; K) = c(G, K) - 1. Otherwise c(Gv; K) ^ c(G; K).

THEOREM 1. Let G and H be infinite graphs satisfying (1). If
G is disconnected and either
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(a) every component of G has finite order, or
(b) G has a finite component K which is isomorphic to only

finitely many components of G, then G — H.

Proof. By Lemmas 2.5 and 2.6, G and H have the same finite
components for any disconnected graph G. Note that Lemma 2.6
holds even when c(G; K) = ©o.

To show that G and H have the same infinite components in case
(b) we note that if c(Gυ; K) = c(G; K) - 1, then ve V(K') for some
component Kf of G, with K! ~ K. For such a v, the infinite com-
ponents of G are the same as the infinite components of Gv.

The finiteness conditions in the theorem suggest that one might
hope to prove G = H if 1 < c(G) < oo. However, a counterexample
due to J. Fisher, R. L. Graham, F. Harary, and J. A. B. Zonker [2]
shows that this is not possible. Let T be a tree in which each vertex
has degree y$0, and let G and H be forests in which each component
is isomorphic to T. If G has k such components and H has I sudh
components, where 1 <£ A; < I <g y$0> then G and i ϊ satisfy the hypo-
theses of Ulam's Conjecture, but clearly G £ H.

3* Locally finite trees* Since G is not a cycle (it is infinite) G
is a forest if and only if Gv is a forest for all i e V(G). Theorem 1
shows that we can reconstruct many types of forest. However, since
G and H are forests in the counterexample mentioned at the end of
§2, we can not always reconstruct a forest; moreover, the counter-
example shows that we can not even determine the number of com-
ponents of G. Thus some restrictions are needed if we are to make
further progress. In light of the counterexample, and since G is
locally finite if and only if Gυ is locally finite for all ve V(G), the
property of being locally finite is a natural restriction to impose. In
the remainder of this section G will always denote a locally finite
graph. Consequently we have

LEMMA 3.1. c(G) = y t if and only if c(Gv) = #vfor alive V(G).

Denote by d(v) the degree of vertex v in G and by δ(G) the mini-
mum vertex degree in G. By Lemma 2.5 we can distinguish whether
or not d(G) — 0, and by Lemma 3.1 whether or not c(G) is finite.

LEMMA 3.2. Let G be a forest with c(G) finite. Then
(a) if δ(G) = 0, then c(G) =1 + min, {c(Gυ)};
(b) if δ(G) > 0, then c(G) = min, {c(Gv)} - min, {d(G J},

and in either case d(v) = c(Gv) — c(G) + 1.
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Proof. Since G is a locally finite forest

c{Gυ) = c(G) + d(v) - 1 < oo .

This proves the final assertion. It also follows that

min {c(Gv)} = c(G) + δ(G) - 1 .
V

Putting δ(G) = 0 gives (a). To see (b) note that when δ(G) > 0,
δ(G) = 1 + minw {δ(Gw)}.

NOTE. It is not possible in general to determine d(v) for a
particular v; for example, let G — ooKx U °°K2.

By Lemma 3.2, we know c((?) and hence whether or not G is a
tree. Hereafter, we further restrict G to be a locally finite tree.
In this connection, we note that Harary, Schwenk, and Scott [4] have
given counterexamples in which G and H are locally finite forests.

A tree is m-coherent if there are precisely m distinct one-way
infinite paths emanating from each ve V(G). A vertex v is a base
vertex of G if Gv has at least three components of infinite order, at
least one of which is 1-coherent. B is a branch of G if B is a 1-
coherent component of Gv for some base vertex v; v is a branch
vertex if i; e F(i?) for some branch B.

LEMMA 3.3. An m-coherent tree, m finite, has at most m base
vertices.

Proof. Let B be a branch of G associated with the base
vertex v (that is, B is a 1-coherent component of (?v). Thus if
ue V(B), we V(G) - V(B), and (%, w)eE{G) then w = <y. It follows
that a branch is associated with a unique base vertex. Moreover,
for u e V(B), Gu has at most two components of infinite order. Thus
branch vertices are not base vertices and it follows that branches of
G are vertex disjoint, since otherwise some vertex on two branches
would be both a base vertex and a branch vertex. Thus an m-co-
herent tree, m finite, has m branches and therefore at most m base
vertices.

It can, in fact, be shown that, for m > 1, an m-coherent tree
has at most m — 2 base vertices, but this stronger result is not
needed here.

The cores of the proofs of Theorems 2 and 3 (to follow) rely on
ones ability to identify (from the G/s) a specific subgraph of the
tree G. We shall in each case refer to this subgraph as the centre
of G even though the definition of the centre will vary, depending
on the case being considered.
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Let G be an m-coherent tree, 2 < m < oo. Then, for use in
Lemma 3.4 and Theorem 2, we define the centre of G to be the
subgraph of G induced by the set of all nonbranch vertices of G;
consequently the centre of G is the subgraph of G that is the union
of all paths between base vertices of G and all maximal trees rooted
at vertices of these paths that contain no other vertices of these
paths and no branch vertices. One easily sees that these maximal
trees are finite.

LEMMA 3.4. If G is an m-coherent tree, 2 < m < oo, then the
centre of G is finite and nonempty.

Proof By Lemma 3.3, G has at most m base vertices. Thus,
there are a finite number of paths between base vertices and each
path is of finite length. Therefore, by the above observation, the
centre of G is finite.

LEMMA 3.5. Let G be a tree and let the components of some Gv

be {Gi}ιeI where Gt is mrcoherent. Let m = Σ 2 e / m,. Then G is in-
coherent.

THEOREM 2. Let G and H be infinite graphs satisfying (1). If
G is an m-coherent locally finite tree, 2 < m < °°, then G ~ H.

Proof. Lemma 3.5 ensures that we can determine the value of
m for which G is m-coherent and hence whether or not G is m-co-
herent for some finite m > 2.

By Lemma 3.2 we can distinguish between three cases:
(a) G has no endvertices;
(b) G has a positive finite number of endvertices; or
(c) G has infinitely many endvertices.
(a) In this case the branches of G are paths and since, by

Lemma 3.4, the centre of G is finite there is a ve V(G) such that Gv

has two components each with exactly one end vertex. G is obtained
from Gv by adding a vertex and joining it to these two endvertices.

(b) There is a u e V(G) such that Gu has exactly two components,
one of which is a one-way infinite path (implying that u is a branch
vertex). Let d be the maximum distance of an end vertex in Gu to
a vertex of degree three or more in Gu.

Then there i s a v e V(G) such that Gv has exactly two components,
one of which is a one-way infinite path and the other containing an
endvertex at a distance greater than d from any vertex of degree
three or more. G is obtained from Gv by adding a vertex and join-
ing it to the two endvertices.
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(c) If L is an m-coherent locally finite tree, 2 < m < °o, let Lk

denote the subgraph of L that is the union of the centre of L and
all paths of length at most k emanating from base vertices of L.
Clearly, for each endvertex v of G, (Gv)

k £ Gk, and since G has in-
finitely many end vertices, for each k ^ 1, there is a, vke V(G) such
that (GV])

k has the same order as Gk. Therefore Gk = (GVJ)
k, and

similarly Hk = (Hσ{VJc))
k. Also, since GVJc ~ Hσ{Vk), there is an isomorphism

of (GVk)
k onto (Hσ{Vk))

k which maps the centre of GVJc onto the centre
of H0{V]c). I t follows that, for k = 1, 2, 3, , there exists an isomor-
phism of Gk onto Hk which maps the centre of G onto the centre
of H. Let Sk denote the set of all such isomorphisms. If y^Sk

and x e Sk+19 and if x restricted to Gk is y, we write y < x. Since
Si, S2, S3, is an infinite sequence of disjoint nonempty finite sets,
it follows from Konig's Lemma (see, for example, [6], p. 288) that
there exists an infinite sequence xl9 x2, x3, such that xk eSk (k —
1, 2, 3, ) and x1 < x2 < x3 < . This sequence defines an isomor-
phism of G onto H.

THEOREM 3. Let G and H be infinite graphs satisfying (1). If
G is a 2-coherent locally finite tree, then G ~ H.

Proof. Lemmas 3.2 and 3.5 ensure that we can determine wheth-
er or not G is a 2-coherent locally finite tree. By Lemma 3.2, v is
an endvertex in G if and only if Gv is connected.

(a) G has finitely many endvertices.
If G has no endvertex, G is a two-way infinite path and so G ~

H. Otherwise, we now define the centre of G to be the subgraph
of G that is the union of all paths between endvertices of G. Since
G has only finitely many endvertices this centre is finite. The proof
in this case is analogous to that used for case (b) of Theorem 2.

(b) G has infinitely many endvertices.
Let K be a 2-coherent graph with two-way infinite path (•••,

— 2, — 1, 0, 1, 2, •••)• The maximal connected subgraph of K rooted
at m that does not contain m — 1 or m + 1 is called the tree growth
ofG at m. Let u and v be endvertices of G, let ( , u_2, u_lf uQ, uu

uSf •) and ( , v_2, v-l9 v0, vl9 v2, •) be the two-way infinite paths
in Gu and Gv respectively, and let Bu>i and Bυ>i be the tree growths
in Gu and Gv at ut and vt respectively. We say that Gu and Gv are
properly paired if either

(1) Bu>i^BVfi f o r iΦj,k,

1 ^ 1 = 1 5 ^ 1 - 1 and 15^1 = 1 ^ 1 - 1

or
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( 2 ) BUti~Bv>ί f o r i φ j = k, a n d | Bu,k | = | BvΛ \ .

Clearly Gu and Gv have at least one proper pairing since G induces
one in the natural way.

Since G has infinitely many endvertices, there are endvertices
u, v e V(G) such that the naturally induced proper pairing of Gu and
Gv is as in (1). Thus we can label the two-way infinite path in G as
( , - 2 , - 1 , 0, 1, 2, •) so that, denoting by B% the tree growth of
G at vertex i, Bt ~ BυΛ for i Φ k and | Bv>k | = | Bk \ - 1. Therefore,
G can be obtained in either of two ways: from Gv by replacing BVtk

by BUtk or from Gu by replacing BuJ by BV)j. If this is the only
proper pairing of Gu and Gυf then the {Gw}weviG) determine G uniquely,
up to isomorphism, and we have G = H.

So suppose there is another proper pairing of Gu and Gv. There
are two possibilities:

(A) Gu was reflected with respect to Gv9 that is, there is an r >
0 such that either

(i) BVtr_i = Bu,r+i+1 for all but at most two values of i (these
values correspond to the vertices at which corresponding tree growths
might not be isomorphic), or

(ii) BV}r_i ^ Bu>r+Z for all but at most two values of i. (Case (i)
corresponds to the reflection taking place about the "midpoint" of
the edge (ur, ur+1) while case (ii) corresponds to the reflection taking
place about the vertex ur.), or

(B) Gu was translated with respect to Gv, that is, there is a d Φ
0 such that

BU)ί ~ Bu,ι+d for all but at most two values of i .

Without loss of generality we may assume that d > 0.

Case (A). Since subcases (i), (ii) are similar we shall consider
only (ii). If n — r — i, then i — r — n and so r + i — 2r — n. Hence,
combining the proper pairings of Gu and Gu as in (1) and (A)-(ii) we
have

Bn ~ Bu,n = J3v,2r-n = B2r_n for all but a finite number of values of n .

A pivot of G is a vertex t of the two-way infinite path of G
such that Bn ~ B2t_n for all but a finite number of values of n.
Therefore, r is a pivot of G and there is no loss of generality in
taking r — 0. Thus we have

Bn ~ B_n for all but a finite number of values of n .

If G has two pivots then we clearly have case (B) (to follow),
so we can assume that the vertex 0 is the only pivot of G. It fol-
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lows that each Gv, v an endvertex of G, has a unique pivot, identical
to the pivot of G. A non-reflecting pair is a pair {n, —n) with Bn 3=
B_n. Let

p(G) = max {number of non-reflecting pairs in Gv} .
V

Any Gv with p(G) non-reflecting pairs must contain all non-re-
flecting pairs of G. Choose two such, Gv and Gwf where Gw, say, has
a non-reflecting pair (n, —n) such that n > k for all non-reflecting
pairs (ft, —ft) of Gv. G is obtained from Gw by replacing the smaller
of BWin and BWy_n by the larger. Hence G ~ H.

Case (B). Combining the proper pairings of Gu and Gυ as they
occur in (1) and (B) we have Bn ^ Bv,n ~ Bv>n+d ~ Bn+d for all but a
finite number of values of n, that is,

Bn ~ Bn+d for all but a finite number of values of n .

Since G has an infinite number of endvertices, Bn ~ Bn+d for all
n if and only if, for each endvertex v, Bυ,n_d & Bv>n £ Bv,n+d for ex-
actly one value of n. This situation can be recognized and G is ob-
tained from any such Gv on replacing Bv,n by Bv,n+d. Hence in this
case G ~ H.

In all other cases we can define

I = l(G) = min {n: Bn £ Bn_d) ,

r = r(G) - max {n: Bn £ Bn+d} .

This time we define the centre of G to be the subgraph of G that
is the union of the path between l(G) and r(G) and all tree growths
rooted at vertices of this path. The length of the centre is | l(G) —
r(G)\. There are three possibilities: (i) l(G) < r(G); (ii) l(G) > r(G);
or (iii) l(G) - r(G).

Since G has an infinite number of endvertices, G has three end-
vertices v19 v2, vz such that GVl, GV2, and GV3 have different, finite, centre
lengths. Let er — max,- {centre length of Gv.} and let e — max {ef, d}.
We claim that the centre length of G is at most e.

In case (i), Gv has centre length at least as great as G if v g Bt

or v $ Br. Also there is a constant cι such that, for each vertex
veBi, the centre length of Gv is either cz or the centre length of G.
Likewise there is a constant cr such that for each endvertex veBr,
the centre length of Gv is either cr or the centre length of G. Thus,
since the GVi'& have different centre lengths, the centre length of G
is at most e'.

In case (ii) the centre length of G is at most d; for otherwise
d + r < I and so Br ~ Br+d, contradicting the definition of r(G).
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In case (iii) the centre length of G is zero.
Since there are only a finite number of isomorphism types of

branch we see that, for any endvertex v,

max {order of Bk} ^ 1 + max {order of BVιk} — / < oo .
k k

Let us call an endvertex uγ of a 1-coherent graph C a possible
end of C if the tree growths (Bk at uk) on the (unique) one-way
infinite path {uu u2, us, ) starting at ux all have order at most /.
Now let v be a cut-vertex of G such that Gv has a 1-coherent com-
ponent C with the property that for each possible end ux of C the
largest i(= k say) for which B\ £ B'i+d (in the above notation) is at
least 2d + e + /. (Such a v, far enough away from the centre, cer-
tainly exists.) Suppose that wι e V(C) is adjacent to v in G and that
(wlf wif ) is the one-way infinite path in C starting at wι (and
hence a section of the two-way infinite path ( , — 2, — 1, 0, 1, 2, •)
of G). Then clearly, for some integer t, uf = wt. It follows that
(uf, uf+1, ) is a section of the two-way infinite path of G, that uk

is either l(G) or r(G), say r(G), and that l(G) = u5 for some j , k — e ^
j ^k + e. Since j -f^2d, G is obtained from C by continuing
indefinitely the pattern identifiable between l(G) = % and %. Hence
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