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COMMUTATIVITY PROPERTIES IN BANACH
*-ALGEBRAS

BERTRAM YOOD

Let A be a Banach *-algebra which has a faithful ^repre-
sentation as bounded linear operators on a Hubert space. It
follows from Fuglede's theorem concerning normal operators
on a Hubert space that x*y — yx* for all x, y in A where
#&* = χ*χ and xy — yx. Other commutativity properties in
suitable Banach *-algebras A involving elements not neces-
sarily normal are considered.

1* Introduction* Let Tlf T2, and U be bounded linear operators
on a Hubert space where Tx and T2 are normal. The well-known
theorem of Fuglede [13] asserts that if TtU = UT, then T?U= UT?.
Putnam's generalization [13] states that if TiZ7= UT2 then T?U= UT2*.
With this in view Berberian [3] defined an .FT-ring to be a ring with
an involution x —> x* such that x*y = yx* whenever x is normal and
xy — yx. Likewise a PΓ-ring is one which gives x?y — yxf for all
x19 x2 normal and xγy = yx2. The usual examples of Banach *-algebras
A [14] are FT and PΓ-algebras since they have faithful ^represen-
tations as bounded linear operators on a Hubert space.

For our purposes we must demand somewhat more of A. We
suppose that A is a semisimple hermitian *-algebra whose maximal
commutative *-subalgebras are Shilov algebras and where xx* e W, W
a minimal closed two-sided ideal implies that x e W. These require-
ments may seem special, but are actually satisfied by all J3*-algebras,
all iϊ*-algebras and all group algebras of compact groups. Suppose
that b Φ 0 in A and ba = ab — 0 for some a Φ 0 in A. We show
that there exist c φ 0, h Φ 0, h self-adjoint, with be = cb = 0 and
ch = he = 0 provided that either A has two closed two-sided ideals
I Φ (0), J Φ (0) with I n J = (0) or A has zero socle. Without such
hypotheses the conclusion can fail, as it does for the algebra of all
2 x 2 matrices over the complex field.

2* Notation and preliminaries* As is customary, a Banach
*-algebras A is called hermitian if the spectrum of each self-adjoint
element is real. Suppose that A is hermitian and semisimple. Then
so is the algebra obtained by adjoining an identity to A. Therefore,
the theory expounded in [12] for hermitian Banach *-algebras with
an identity applies here to show that A has a faithful *-representation
as bounded linear operators on a Hubert space. In particular, if x e A
and xx* = 0 then x = 0. Ptak's development [12] involves a pene-
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trating study of the function p(x) = r(x*x)112 (where r(y) is the spectral
radius of y). It turns out that ^"'(0) = 0 and p(x) is a l?*-norm (in
general incomplete) for A. If h is self-adjoint and r(h) = 0, then
p(h) = 0 and h = 0. It follows from this and [14, Theorem 4.1.3] that
each maximal commutative *-subalgebra E of A is hermitian and
semisimple. Also the involution on A is continuous [14, Theorem
4.1.15].

Next let B be a semisimple commutative Banach algebra with
space HJΐ of modular maximal ideals. As is customary we say that
B is a Shilov algebra if, given Moe 2ft and a closed set g in 3JΪ n °t
containing Mo, there exists a e δ such that x(M0) == 1 and #(M) = 0
for all Me%. Here £(M) is the Gelfand transform of x.

Our interest in this paper is confined to the study of noncom-
mutative Banach *-algebras where Shilov's concept enters in the
following way.

DEFINITION. A Banach *-algebra A is called a noncommutative
Shilov *-algebra if its maximal commutative *-subalgebras are Shilov
algebras.

Note that any such A must be semisimple. For let J be the
radical of A. J = J*. If h is self-ad joint and heJ, then r(h) = 0.
Since h lies in a commutative Shilov algebras, h = 0. Therefore
J = (0).

As in [7] we say that A is a CC algebra if the mappings x—>ax
and x—>xa are completely continuous on A.

PROPOSITION 2.1. Leί A be a semisimple CC Banach *-algebra
where x — 0 if xx* = 0. Then A is a hermitian noncommutative
Shilov *-algebra. If W is a minimal closed two-sided ideal in A
containing xx* then x e W.

Proof. A result of Barnes [2, Theorem 7.2] asserts that A is a
modular annihilator algebra. It follows from the arguments of [5,
Theorem 3.8] that the involution is hermitian.

Let E be a maximal commutative *-subalgebra with 2K as its
space of modular maximal ideals. In this situation, as noted above,
E is semisimple. Again using [2, Theorem 7.2] we see that if Mo e 2Jΐ
there exists x Φ 0, x e E, such that xM0 — (0). Then x(M0) Φ 0 while
x(M) = 0, M Φ MQ. Therefore B is a Shilov algebra.

Take a minimal closed two-sided ideal W in A. By [7, Theorem
14], TΓ is finite-dimensional. Let x—*a(x) be a faithful ^represen-
tation of A as a subalgebra of B{H), all the bounded linear operators
on a Hubert space H. Since TΓ is finite-dimensional, a(W) is a closed
two-sided ideal in K, the closure of a{A) in -B(ίί). If xx* e TΓ then
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a{x){a(x))* e a(W). From this we see that a(x) e a(W) via [14, Corollary
4.9.3] so that xeW.

Examples of algebras satisfying the hypotheses of Proposition 2.1
include the group algebra of a compact group G and, in addition,
C(G) with convolution multiplication, the sup norm and the involution
/*(*) = /(έ"1)- See [7]. These algebras have the following more
specific property (P) than that given for the minimal closed two-sided
ideals by Proposition 2.1.

(P) Let xe A and / be a closed two-sided ideal in A. If xx* e I
then x e I.

To show this for C(G) we use the natural inner product for
C(G) given by

9 o) = \ f(t)g{t)dt

where the integration is taken with respect to normalized Haar
measure. We call on the following properties of A = C(G): (a) A 2 c
I® I1, (b) x e xA Π Ax and (c) 1= I11. Suppose that xx* e I and z e A.
Then (zx)(zx)* e I. Let zx = u + v, u e I, v e I 1 and let we I1. Then

0 = (2#x*2*, w) = (w*, tι;) .

Therefore, vv* e IΠ I1 = (0) so that t; = 0 and ̂ ^ G /. By (b) we see
that xe I.

That L{G), G compact, has property (P) follows from the theory
of closed two-sided ideals in L(G) developed in [6, Chapter IX]. We
refer, in particular, to [6, Theorem 3.8.7] (see also [6, Theorem 28.40])
but do not give details here.

PROPOSITION 2.2. B*-algebras and H*-algebras are hermitian
noncommutative Shilov*-algebras with property (P).

Proof. For j?*-algebras see [14, Chapter IV]. That a maximal
commutative*-subalgebra E of an iϊ*-algebra A is a Shilov algebra
follows from the fact that E is a commutative if*-algebra and [1,
Corollary 4.1]. That A has property (P) follows from the same
analysis used for C(G) above.

PROPOSITION 2.3. If A is a noncommutative Shilov *-algebra so
is every closed two-sided "ideal I in A.

Proof. Let B be a maximal commutative *-subalgebra of I.
Certainly B is contained in a maximal commutative *-subalgebra E
of A. We show that B is an ideal in E. For y e B and z e E we
have yz normal and permuting with each xe B. Moreover yze I.
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Then by the maxίmality of B, yz e B. Since E is a Shilov algebra,
so is B by [10, Proposition 9.2].

For a self-ad joint element h, we write h ^ 0 in case its spectrum
is contained in the set of nonnegative real numbers. By a minimal
idempotent we mean an idempotent generator of a minimal one-sided
ideal.

3* Two-sided annihilation in Banach *-algebras* We write
x # y if xy = yx — 0. The involution x —* x* in a ring is called proper
if x*# = 0 implies that a; = 0. The JTT-property gives information
on annihilation properties of normal elements which we put in the
following form to point up what must be faced in the discussion
below for nonnormal elements.

PROPOSITION 3.1. Let A be an FT-ring with proper involution.
Suppose be A is normal, b Φ 0 and there exists a Φ 0 in A where
b$a. Then

(1) there exists a self-adjoint element h Φ 0 such that b%h and
( 2 ) there exist c Φ 0 and h Φ 0, h self-adjoint, where b$c and

Proof. Since ab = ba we get, from the FΓ-property that δα* =
α*δ. Therefore 0 = baa* = αα*δ. Then δ#αα* and αα* ̂  0.

Note also that δ*α = αδ*. Then αδ*δ = δ*δα = 0 and (2) is also
verified.

Now we start to examine what can happen when δ is not normal
but otherwise satisfies all the hypotheses of Proposition 3.1. Let A
be the algebra of all 2 x 2 matrices over the complex field and set

One readily verified that b # b and that, for a e A, b # a if and only
if a is a scalar multiple of b. Therefore, both of the conclusions (1)
and (2) of Proposition 3.1 fail to hold for the element b.

Next consider the case of the algebra A of all 3 x 3 matrices
over the complex field. Consider

b =

1 0 2

1 0 1

2 0 3

One verifies that 6#α, for aeA, if and only if a is a scalar multiple
of
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0 0 0"

1 1 - 1

.0 0 0.

Therefore, b fails to satisfy the conclusion (1) of Proposition 3.1.
Easy computations show that (2) is satisfied by b. Thus we can have
(2) without (1).

Our treatment below of these questions makes essential use of
ideas and techniques from Ono's interesting paper [11]. The next
lemma is a modification to fit our needs of work in [11, pp. 155-156],

LEMMA 3.2. Let A be a hermίtian noncommutative Shilov
*-algebra. Suppose that h Φ 0 is self-adjoint in A, h ̂  0 and h not
a scalar multiple of a minimal idempotent. Then there exist non-
zero self-adjoint elements u ^ 0, v >̂ 0 in A such that h, u, v commute
pairwise, hu Φ 0, hv φ 0, and uv — 0.

Proof. Suppose first that h as at least two nonzero numbers in
its spectrum. Let E be a maximal commutative *-subalgebra of A
containing h with space 3ft of modular maximal ideals. There exist
Mo and Mx in 3ft such that 0 < h{M,) < h(M0) = r(h). We choose
positive numbers rlf r2, and r3 such that

0 < r x < K(M0) < r 2 < r 3 < h(M0) .

Next we consider the open sets in 3ft defined by

U(M0) = {Me 3ft: h(M) > r3} and V(M^ = {Me 2ft: n < h(M) < r2} .

Since E is a Shilov algebra there exist ulf vx e E where U^MQ) — 1,
%iM) = 0, Mi U(M0), ̂ (Λfi) = 1 and vjM) = 0, Mi V(M0). Since E
is a hermitian *-algebra, x*{M) = x(M), x e E, Me 3ft. Then u = u^u*,
v — v^* have the desired properties.

Next suppose that the spectrum of h contains exactly one non-
zero element (which we may take to be the number one without loss
of generality). Then h(M) is either 0 or 1 for each Me 3ft. As E
is semisimple, h is a self-adjoint idempotent. By hypothesis, h is not
a minimal idempotent so that there exist we A where hwh is not a
scalar multiple of h. We can certainly, and so do, select w to be
self-adjoint.

For x e hAh, the nonzero spectrum of x is the same whether
computed A or in hAh by [9, Lemma 3]. Then hAh is an hermitian
Banach algebra with identity h. Moreover, as zero is the only self-
adjoint element in hAh with spectrum solely zero, we see that hAh
is semisimple. Next we can select λ > 0 so large that sp (z \ hAh),
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the spectrum of z = Xh + hwh computed in hAh, is contained in the
open set (0, oo). Therefore, z~γ exists in hAh. We rule out the
possibility that sp (z \ hAh) consists of just one number a. For in
that case, ar^z would be a invertible idempotent in hAh and therefore
a~ιz = h. From this we see that hwh = (a — x)h, contrary to the
choice of w.

Therefore sp (z), computed in A, contains at least two nonzero
numbers. By the first part of the proof of this lemma, working in
a maximal commutative *-subalgebra E of A containing h and z, we
see that there exist self-adjoint u ^ 0, v >̂ 0, u Φ 0, v Φ 0 in E such
that zu Φ 0, zv Φ 0, and uv = 0. Then (Xh + hwh)u Φ 0 so that
hu Φ 0. Likewise hv Φ 0. Therefore, u and v have the desired
properties.

The next lemma is also a modification and extension of work in
[11].

As a preliminary we show that, in the algebra A under consider-
ation, xx* is a nonzero scalar multiple of a minimal idempotent if and
only if x*x also enjoys this property. For let xx* = Xe where X Φ 0,
e = e2 Φ 0. Now xx* ^ 0 by the Shirali-Ford theorem [12, Theorem
5.9] and sp (e) consists of the numbers 0 and 1. Therefore λ > 0.
Then setting z = λ~1/2α;, we get zz* = e. By [16, Proposition 3] we
see that z*z is also a minimal idempotent. Note that e must be
self-ad joint.

LEMMA 3.3. Let A be a hermitίan noncommutatίve Shilov
*-algebra. Let b Φ 0 in A where b%a for some aΦ®. Then either

(a) δ*δ(c*c)2δ*δ is a nonzero scalar multiple of a minimal idem-
potent, for each c Φ 0 in A where b%c
or

(β) there exist c Φ 0, h Φ 0, h = h* in A such that b%c and c%h.

Proof. Suppose c Φ 0, b # c and b*b(c*cfb*b = 0. Then b*bc*c =
0 = c*cb*(c*cb*)*. As the involution is proper, c*cb* = 0. But this
gives b(c*c) = 0 = (c*c)b. We then have b%c*c and c*c%b*b.

We therefore may suppose that we have a Φ 0, b # α with
b*b(a*afb*b Φ 0 and not a scalar multiple of a minimal idempotent.
This entails the fact that y = α*α(6*6)2α*α is not a nonzero scalar
multiple of a minimal idempotent and y Φ 0. The Shirali-Ford
theorem [12, Theorem 5.9] tells us that y ^ 0. Lemma 3.2 provides
u ^ 0, v ^ 0, different from zero, permuting with each other and y
such that uv = 0 but yu Φ 0, yv Φ 0. In particular

(1) α*αu ^ 0 , (b*b)2a*av Φ 0 .

On the basis of (1), we shall show
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(2) αuα*α Φ 0 .

Consider the faithful ^-representation x-+τ(x) of A as bounded linear
operators on the Hubert space H. In the algebra B(H) of all bounded
linear operators on H the element τ(u) has a positive self-adjoint
square root W. If (2) is not valid then a*aua*a = 0 and

[τ(a)]*τ(a)W2[τ(a)]*τ(a) = 0 ,

from which we derive a*au — 0 contrary to (1).
We set

z = (δ*δ)2α*αw*αδ*5 .

Clearly zb*b is self-adjoint. Moreover zb*b Φ 0. For suppose zb*b = 0.
Now r(v) has the form TΓ2, TΓ self-adjoint, in B(H). For convenience,
set x = (δ*δ)2α*α. Then r(α?)TΓ2φ*) = 0. This makes φ)W* = 0 and
therefore xv = 0 contrary to (1).

Next observe that b%aua*a and the latter is nonzero by (2).
We complete the proof by showing that aua*a$zb*b. Clearly
(zb*b)(aua*a) = 0. On the other hand,

(aua*a)zb*b = auyva*a(b*bf — 0

since u permutes with 7/ and uv = 0.
In view of Lemma 3.3 we find it convenient to introduce the

following notation. We set, for the algebra A,

Q = {b Φ 0 in A\b%a for some a Φ 0 in A}

R = {bφO in A: b#c, c%h where c Φ0, h Φ 0, h = Λ* in A} .

Clearly Q* = Q and 12* = J2.

THEOREM 3.4. Let A be a hermitian noncommutative Shilov
*-algebra with zero socle. Let I be any two-sided closed *-ideal in
A. Then, in the algebra I, Q c 12.

Proof. By [14, Theorem 4.1.9] / is a hermitian *-algebra. That
I has zero socle follows from [15, Lemma 3.10]. Proposition 2.3 and
Lemma 3.3 give the desired result.

Consider a semisimple topological ring a algebra A. Let e be a
minimal idempotent in A. It is readily shown that I = AeA is a
minimal two-sided ideal in A and that the closure of / is a minimal
closed two-sided ideal in A. We say that I is generated by the minimal
idempotent e. In our situation where A has an involution we need
to consider the following property. The example of § 2 give ample
motivation here.
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DEFINITION. A has property M if, given a minimal closed two-
sided ideal / generated by a minimal idempotent, x e I whenever
xx* e I.

As usual A is considered to have property M if there are no such
ideals I. Also note that, under property M, I* = I.

THEOREM 3.5. Let A be a hermitian noncommutative Shilov
*-algebra with property M. If there exist closed two-sided ideals
I, Φ (0), I2 Φ (0) in A with I1Γ)Ii = (0) then QczR.

Proof. Let b e Q where 6 % a for a Φ 0. We show beR. By
Lemma 3.3 we may suppose that δ*δ(α*α)2δ*δ Φ 0 is a positive scalar
multiple of a minimal idempotent e, for otherwise beR. Let Wdenote
the closure of AeA. Then W is a minimal closed ideal. Therefore,
W Π Ij = Ij or W Π /, = (0), j = 1, 2. For at least one of j = 1, 2 we
must have TFlΊ I,- = (0). Then, for that j , WI5 = i;TF= (0). By [4,
Theorem 7] the left and right annihilators of W in A coincide. Call
this two-sided ideal K. Moreover, since W= W*, it follows that
K= K* Φ (0). Thus there exists a self-ad joint fc^Oso that hW =
TF/2, = (0).

By the definition of e we have δ*6α*α ̂  0. Moreover

δ*δα*α(δ*δα*α)* 6 TΓ.

This tells us that δ*6α*α e TΓ. It follows that α6*δα*α ^ 0. For
otherwise α*αδ*(α*αδ*)* = 0 and α*αδ*δ = 0 = δ*δα*α. But clearly
b$ab*ba*a. Inasmuch as h$ab*ba*a we see that δei2.

THEOREM 3.6. Let A be a hermitian noncommutative Shilov
*-algebra with property M. Either Q c R or there exists a unique
minimal closed two-sided ideal W and W is generated by a minimal
idempotent. If beQ and δ£ R then b%c for some c Φ 0 in W. Also
ba* and α*δ are different nonzero elements of W for all a Φ 0 such
that b%a.

Proof. Suppose Q (£ R. Lemma 3.3 and Theorem 3.5 show there
exists a unique W as asserted. The arguments of Theorem 3.4 provide
us with the desired c = αδ*δα*α (where δ#α and a Φ 0).

We continue discussing the setup δ % a, a Φ 0, using all the no-
tation of the proof of Theorem 3.5. As in that proof b*ba*ae W
and, obviously, δα* Φ 0. We have α*αδ*(α*αδ*)* e W and therefore
α*αδ* e W. Since W = W* we have ba*a e W. Then δα*(δα*)* e W
so that δα* e W.

It remains to see that α*δ Φ 0, α*δ e W, and α*δ Φ ba*. Note that
δ* e Q, δ* g iϋ, and δ* #α*. Via the uniqueness of the minimal closed
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ideal W we see, from the above proof, that δ*α Φ 0 and δ*α e W. If
δα* = α*δ then δ#α*α and α*α#δ*δ. This would put δ in R.

In case A is an ATF*-algebra [8] we can obtain more. For if
c Φ h where c Φ 0, h Φ 0 and h is self-adjoint there is a nonzero
projection p with c # p. To see this consider a maximal commutative
*-subalgebra E of A containing h. By [8, Lemma 2.1] there exists
2/ 6 E such that % = p is a nonzero projection. It is easy to see
that c%p.

4* On the FT and PΓ-ρroρerties* Let A be a Banach *-algebra.
For a maximal commutative subalgebra W let N(W) denote the set
of normal elements of A lying in W. These notions are intimately
related to the .FΎ-property.

PROPOSITION 4.1. A Banach ""-algebra is an FT~Banach algebra
if and only if N(W) = [N(W)]* for each maximal commutative sub-
algebra W of A. In that case N(W) = Wf] W* and N(W) is a closed
^-subalgebra of A.

Proof. Suppose that N(W) = [N(W)]* for each maximal com-
mutative subalgebra W of A. Let x be normal in A, ye A and
xy = yx. Let W be a maximal commutative subalgebra of A con-
taining x and y. Since x* e W, we get x*y — yx*. Thus A has the
JFT-property.

Suppose, conversely, that A is an ίΎ-algebra. Let IF be a
maximal commutative subalgebra. We have x*y = yx* for all xeN(W)
and yeW. From the maximality of W we see that x* e N(W).
Suppose also that y e N(W). Then (x + y)*(x + y) = (x + y)(x + y)*
and xy e N(W). Clearly N(W) c W Π TF*. If s e T7 n TΓ*, z is normal
and so lie in N(W). Finally, inasmuch as W and W* are maximal
commutative subalgebras, we see that they are closed in A and,
therefore, N(W) is closed. Note that this does not require the invo-
lution to be continuous.

PROPOSITION 4.2. Let W be a maximal commutative subalgebra
of a B*-algebra A with unit. Then N(W) separates the maximal
ideals of W if and only if W = N( W) 0 R where R is the radical
of W.

Proof. By [14, Theorem 4.8.11], A is an i^Γ-algebra. Let SK be
the space of maximal ideals of W and suppose that N(W) separates
every M1 Φ M2 in SW. For x 6 Wf the spectrum, sp (x) of x is, by
[14, p. 35] the same as the set {x(M):MeTt} where τ:x—>x(M)
denotes the Gelf and transform of W into C(3Jΐ). If x e N(W), \\x\\ =
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sup (I x(M) |: Me 3W). Therefore, τ is an isometry on N{W). Since the
spectrum of a self-adjoint element is real we see that x*(M) = x(M)
for xe N(W) and Me 2ft. By Proposition 4.1, N(W) is a JS*-algebra.
The Stone-Weierstrass theorem insures that τ(N(W)) — C(Wΐ). There-
fore τ(A) — C(3ft). The desired conclusion now follows from the
semisimplicity of N(W).

Maximal commutative subalgebra of this sort exist. Let A be
the £*-direct sum of B = C[0, 1] and M2 the J5*-algebra of all 2 x 2
matrices over the complex field. Let I be the identity 2 x 2 matrix
and let T be the matrix

Ό

P
One checks that W = 5 0 {λl + μT\ λ, μ complex} is a maximal com-
mutative subalgebra of A, that N(W) = W Π IF* = 5 0 {λJ: λ complex}
and that N(W) separates the maximal ideals of W.

THEOREM 4.3. A noncommutative Shilov *-algebra is a FT-
algebra if and only if it is hermitian.

Proof. Suppose that A is an PΓ-algebra. Let h be a self-adjoint
element, h Φ 0 and J5 be a maximal commutative *-subalgebra con-
taining h, with Sft as its space of modular maximal ideals. By [5,
Theorem 2.2] there exists a homeomorphism σ of ΈSl onto 3ft of period
two such that ί*(Λf) = x(σ(M)) for all x e B, Me SJί. Our task is to
see that σ is the identity mapping. Suppose otherwise that Mo Φ
σ(MQ) for some Mo e 2ft. Let U and V be disjoint open sets with
MoeU and σ(M0) e V. We select x, y e B such that x(M0) = 1, x(M) = 0,
Mi U, y(σ(M0)) = 1 and y(M) = 0, ikΓg F. Then xy = 0. The PΓ-
property yields xy* = 0. Then x(M0)y(σ(M0) = 0 which is impossible.
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