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COMPARISON OF DE RHAM AND DOLBEAULT
COHOMOLOGY FOR PROPER

SURJECTIVE MAPPINGS

R. 0. WELLS, JR.

In this paper it is shown that if π:X—>X is a proper
holomorphic surjection of equidimensional complex manifolds
then the induced mapping π*: Hq(X, Ω\) -» HQ(X, Ω\) on Dol-
beault groups is injective. As a consequence one obtains the
inequality hp'9(X) g hp-9(X) for the Hodge numbers of X and
X. This result is valid also in the case of vector bundle
coefficients, and can be generalized to the case of nondis-
crete fibres of the mapping π (non equidimensional case) by the
imposition of a Kahlerian condition on X. Corresponding re-
sults for differentiate mappings are formulated and proved.
Illustrative examples are provided to show the necessity of
the various assumptions made.

1* Introduction* Let π:X—>X be a sur jective proper hol-
omorphic mapping of complex manifolds1. Our main result in this
paper (Theorem 4.1) asserts that if X is a Kahler manifold, then
the mapping π induces injections

π*: Hr(X, C) > Hr(X, C)

on the Dolbeault and de Rham groups, respectively. A consequence
of this is that we have inequalities

α 2 )

hp>q(X) ^ hp>q(X)

for the Betti numbers and Hodge numbers respectively (in the case
that X and X are compact, for instance). If π: Ϋ—>Γ is a proper
sur jective diίferentiable mapping of even dimensional orientable mani-
folds and Ϋ is a symplectic manifold, then there is a natural gen-
eralization of the notion of the "degree of π". Under the hypothesis
that this degree is not zero,

(1.3) π*: Hr( Y, R) > Hr( Ϋ, R) ,

is an injection (Theorem 4.4) (cf. also Borel-Haefliger [2]).
In the case that X and X above have the same dimension, then

the conclusion (1.1) and (1.2) still holds without any Kahler assumption,

1 All manifolds considered in this paper are assumed to be paracompact.
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282 R. 0. WELLS, JR.

i.e., for arbitrary complex manifolds (Theorem 3.1). If Y and Ϋ
above have the same dimension, then the conclusions (1.3) hold without
the symplectic assumption, but it is still necessary that deg π Φ 0
(Theorem 3.2). This particular result is due to Hopf [10] (for compact
manifolds), and we give a new proof of his result in this paper.
Hopf showed that the induced mapping on integral homology was
surjective modulo torsion. Dualizing gives the assertion that the
induced map on cohomology injects. Hopf used the technique of
Lefschetz including the ring structure on homology induced by
intersection theory (this has been generalized in Borel-Haefliger [2]).
Our techniques involve differential forms and currents, currents
being de Rham's generalization of the singular chains and cycles
used by Hopf. In particular the induced mapping on currents go
in the same direction as the induced mapping on cycles, a fact we
use very strongly in the proofs.

Grauert and Riemenschneider [8] proved that if π:X—>X is a
proper modification of compact Kahler manifolds, then the induced
mapping on Dolbeault groups is an injection, a special case of Theorem
3.1, mentioned in the previous paragraph. Their proof used Hopf's
theorem along with the Hodge decomposition theorem for Kahler
manifolds. Our proof is more direct and does not use any Kahler
structure. Deligne [4] has the algebraic analogue of Grauert-Rie-
menschneider theorem for proper birational morphisms of smooth
schemes over a field k. Aeppli [1] has also studied the problem of
comparison of cohomology for proper modifications, and some of his
results were generalized by Grauert and Riemenschneider to the case
of complex spaces with singularities, which we do not consider in
this paper.

The method of proof of our results is based on using resolutions
of the sheaf C or Ωp

x by differential forms with C°° and distribution
coefficients (currents). This is similar in spirit to Serre's proof of
his duality theorem (Serre [16]).

The theorems in this paper grew out of an investigation of the
behavior of harmonic forms under proper modification, and it is in
this context we hope to make applications of the injection theorems
at a later date.

Section 2 is devoted to a discussion of the global behavior of differ-
ential forms and currents under proper sur jections and the interaction
of these concepts. In §3 we formulate and prove our results on com-
parison of cohomology for finitely sheeted ramified covering map-
pings, using some of the results from §2. In §4 the ideas of §2 and
§3 are generalized to surjection with nondiscrete fibres. In this
context the existence of a Kahler form plays a crucial role.

I would like to thank Reese Harvey, John Hempel, John Polking,
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and Oswald Riemenschneider for their useful comments in various
discussions concerning this work.

2* Differential forms and currents* Let X be a complex mani-
fold of complex dimension n, let &p'q(X) be the (C°°) differential forms
on X of type (p, q), and let £2fPtq(X) be the compactly supported
differential forms in &p'q(X), equipped with their usual topologies.
We define the vector space 3ΓPΛ{X) of currents of type (p, q) on X
as the dual space of the topological vector space ^rn~Pt<Λ~9(X) (cf. de
Rham [5]). Moreover, if E —>Xis a holomorphic vector bundle on X,
then we let &P-9(X, E) be the E-valued differential forms on Xof type
(p, q) and by 2&PΛ(X, E), the unvalued forms of compact support as
above. We let 3ίΓVΛ{X, E) denote ^/-valued currents on X of type
(p, q), defined to be the dual of the topological vector space ^rn~p'%'9(X,
E*) equipped with its natural topology where E* is the dual bundle
to E (cf. e.g., Serre [16]). More generally, we let Wr{Y) be the real-
valued differential forms of total degree r on an orientable differen-
t iate manifold of real dimension m, and by SίΓr{Y) the (real) currents
of degree r on X defined as the dual of S3?m~r(Y), where once again
^fm~r{ Y) denotes the compactly supported differential forms of degree
m — r on Y. In general we will denote the duality pairing of a
current Te^Γr(Y) with an element φe£&m~r(Y) by the notation
<3P, φ) (cf. de Rham [5]).

We now consider a proper surjective holomorphic mapping π: X—>
X where X and X are complex manifolds of the same complex
dimension n. Then we have a homomorphism of complexes induced
by π.

(2.1) jπ* _ jπ*
> &P'\X) - ^ ξ?p'q

Similarly we have a homomorphism of complexes

(2.2)

<

which induces by duality a homomorphism π* of the dual complexes

—

(2.3)
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where 9* is the dual to 9 in the duality 3ίT™{X) = &p'q(X)'. Here
we use strongly the fact that π is proper so that the support of
the pullback of a form with compact support is still compact. We
observe that 9* = ± 9, depending on the degree of the forms being
acted on (integration by parts, cf. Serre [16]). Thus if we replace
3* by 9 in (2.3) we have

(2.4) L

where each square is either commutative or anticommutative. Now
consider the diagram

(2.5) j * *

where % and i are the natural injections.
We want to study the obstruction to commutativity of the

diagram (2.5). To do this we introduce a geometric invariant of the
mapping π, the degree of π. We want to do this in general for
differentiable manifolds. Suppose π:Ϋ—>Y is a proper surjective
differentiate mapping of orientable differentiable manifolds of the
same real dimension m, then π induces a mapping

induced by duality from

Then we define μ = π*(l), where the constant 1 is considered as
a current on Ϋ. Then since dπ*(l) = π*(d(l)) = 0, it follows from
the regularity theorem for currents that 7^(1) is a function on Y
which is constant on each component of Y. We call μ the degree
of the mapping π. Moreover, if π has maximal rank on Ϋ, and
yoe Yy then

μ = Σ s^n (det (dπ)(y))

where we mean by det (dπ)(y) the determinant of the Jacobian matrix
dπ at y expressed in terms of oriented local coordinates at both y
and yQ. In other words,
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dπ:Ty(Ϋ) >Tyo(Y)

is either orientation preserving or not and μ is the algebraic sum
of the number of points in π~\y) counting a point positively or
negatively depending on the preservation of orientation or not. This
result is proved in Federer [6], and is a special case of our results
in §4 where we generalize the notion of degree for symplectic
manifolds. If π is orientation preserving (as in the case of a complex-
analytic map, for instance) then μ is the number of points in π " 1 ^ ) ,
for any yoe Y.

We now have the following basic lemma concerning the commu-
tativity of the linear mappings in diagram (2.5), which we will use
in the next section for the comparison of cohomology.

LEMMA 2.1. In the diagram (2.5)

(2.6) μi = π*ϊπ* ,

where μ is the degree of the mapping π.

REMARK. In other words, the diagram (2.5) is commutative up
to a fixed constant multiple, which would not affect the passage to
cohomology later on.

Proof. Outside of a proper analytic subset S c l , the mapping
7Γ is a finitely sheeted covering mapping of sheeting number μ. Let
π(S) = S, and thus we have that π: X — S-^ X — S is a locally
biholomorphic covering mapping. By the Remmert proper mapping
theorem S is a proper analytic subset of X, and hence S is of
measure zero in X (cf. Gunning and Rossi [9]). If φ e &P'9(X),
then the current i(φ) is defined by its action on smooth forms with
compact support, i.e., by

(2.7) <i(9>), ψ}

Similarly, on X,

and π*iπ*φ is the restriction of the current iπ*φ to π*&n~p n~q(X) c
). in other words,

(2.8) <M**?>, f> = \jc*<P Λ π*ψ, f e 2f*-**-

= \jc*(<P Λ Ψ) .
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But we see that for φe &p-q(X), ψe &n-p>n

(2.9) \jc*(φ A f) = L jπ*(<P A ψ) = μ\ φ Af = μ[ Ψ A ψ .
jx jx-s Jx-s jx

The middle equality in (2.9) follows easily by covering X — S (in a
locally finite manner) with open sets {Ua} so that π~\ Ua) = !7« U
— U C7Ϊ, where TΓĴ J: Ϊ7j—> Z7β is a biholomorphic mapping. Then
letting {ρa} be a partition of unity for {Ua}9 we see that for η e g"w n(X)

L ^*? = Σ ί 1 π*PaV = Σμ\ ρ«v = μΣ*\ P*V = μ\ v,
JX-S a Jπ-l(Ua) a JUa a JUa JX-S

since

! sπ*PaV= \ P«V f i = 1, •••,/*.

Thus (2.6) follows easily from (2.7), (2.8), and (2.9).

We want to generalize the above results to differential forms
with vector bundle coefficients. Suppose, as before π:X—+X is a
proper sur jective mapping of complex manifolds of the same complex
dimension n. Let E~> J be a holomorphic vector bundle over X,
and let E — π*E be the pullback of E by the mapping π. Letting
<g?p g(Xf E) be the differential forms on X of type (p, q) with coeffi-
cients in E, we have the diagram

> i?p>«(X, E) -L+ gf * «+1(jζ E) >

(2.10) jπ* _ ΐπ*

> ϊ?p q(X, E) - ^ &*-q+1(X, E) >

generalizing (2.1), where the 3 operator extends naturally to vector-
valued forms. Similarly, letting £7* be the dual bundle to E, we
have

< &rn-p'n-g(X, E*) <r^— ̂ rn-P'n-^(Xf E*) <

(2.11) j

where E* = TΓ*^*. By dualizing we obtain, in analogy to (2.5),

(x E)

(2.12) J T Γ * _ \π*

(x, E) - ^ srp>q+ί(x, E)
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where 3ίr™(X, E) is by definition the dual space to &n-p>n-q{X, E*).
Moreover, <?* = ± d depending on the degree of the forms being
acted on (cf. Serre [16]). Thus we have

(2.13) J
X, E) -^-> J?Tp'q+1(X, E)

where each square is commutative or anticommutative. Note that
locally, an element of jyΓp'q(Xf E) can be written in the form

Σ T, ® es ,

where Tj is a current of type (p, q), and e5 is a holomorphic section
of E, and the action of 3 is given by 3(2y®ey) = dTj0ejf as in
the case of C°° forms. As before we consider the diagram

gf ™{X, E) -ί-> ^TP Q(X9 E)

(2.14) |π* Jπ»

&P'*(X, E) —?-> STp'q{X9 E) ,

where i and i are the natural injections.

LEMMA 2.2. // the mapping π has degree μ, then

μi — π*iπ* .

Proof. Suppose φ e &p'q(X, E) and ψ e &*-* n-q(X, E*), then one
can give a meaning to and interpret φ A ψ as a scalar-valued diffe-
rential form on X of type (n, n) (cf. Serre [7]). We do this locally,
namely, if (elf •••, er) is a local holomorphic frame for E over an
open set U (i.e., {elf , er} is a basis for Ex for each point in U) and
(ef, •••, ef) is the dual frame for E*, then we can express

ψ = Σfj ® ef, ψj e gf

and we let

φ Aψ = Σφά A ψj e

One can check that this definition of φ A ψ is independent of the
local frame used, and does give a globally defined scalar-valued
differential form. Using this we are able to interpret, for φe
ϊ?p q(X, E)
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<i<P, Ψ> = f φ A ψ, ψ e &n-» n-\X, E*) .

Then the proof of this lemma follows in the same manner as the
proof of Lemma 2.1.

Turning now to differentiate manifolds we want to prove the
analogue of Lemmas 2.1 and 2.2. Suppose π:Ϋ-+Yis a surjective
proper diίEerentiable mapping of orientable differentiable manifolds
of the same dimension. Then we have the diagrams

(2.15)

and

( Ϋ) — ^rr+1( Ϋ)

(2.16) J ^ J
r( Y) —

derived in the same manner as (2.1) and (2.4). Once again (2.15) is
commutative, and (2.6) is commutative up to sign. Consider now
the inclusion diagram

ίf(?) —

u*(2.17)

LEMMA 2.3. In the diagram (2.17)

fin — *rr %ΎΓ

where μ is the degree of the mapping π.

Proof. We have to proceed somewhat differently in this case
since the set of critical points S (points where π has less than
maximal rank) of π is not necessarily of measure zero. Let π(S) =
S. Then it follows from Sard's lemma that S has measure zero in
Y (cf. e.g., Sternberg [17], Chapter II). As in the proof of Lemma
2.1, it suffices to show that for ηe&m{Y), where m = dimΓ,
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But

Moreover, if x e S, η e &m( Y)f then it follows that π*η(x) = 0. Namely
in local coordinates (ylf , ym) near π(x), we have η(y) = f{y)dy1 A
• Λ dym. Thus

π*η(χ) = ffr(x))d^(x) Λ Λ eZτrm(a;) - 0 ,

since π is not maximal rank at xeS. Thus we have

J F-S

and we are reduced to showing that

JF-S JF~5

for the finitely sheeted covering mapping π: Ϋ — S = Y — S. This
follows from the same arguments used in the proof of Lemma 2.1,
but taking into account the orientations in the integrals over the
local inverse images of a point yoe Y.

REMARK. We could have proved Lemma 2.1 in the same way
using Sard's lemma instead of the fact that the set of points where
a holomorphic mapping has less than maximal rank is a proper
analytic subset.

3* Comparison of cohomology for ramified covering mappings*
In this section we formulate and prove our results on injection of
cohomology for ramified finitely-sheeted covering mappings, using
the results from §2.

THEOREM 3.1. Let π: X—>X be a proper surjective holomorphic
mapping of complex manifolds of the same complex dimension^ then
π induces injections for all p, q, and r:

(a) π*:H*(XfΩi)-+H<(X,ΩZ),
(b) π*:H'(X,C)-*H'(Z,C),
(c) 7Γ*: H*(X, Ω*Z(E)) - H\X, Ω\(π*E)),

for any holomorphic vector bundle E—*X.

Let X be a compact differentiable manifold, then let br(X) —
dim* Hr(X, R), r — 0, , dim X, be the Betti numbers of X. If X is
in addition a complex manifold we let hpq(X) = dimcH

q(X, Ωp) be the
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Hodge numbers of X2. Then we have the following corollary to
Theorem 3.1.

COROLLARY 3.2. Let π: X-+ X be a surjective holomorphic map-
ping of compact complex manifolds of the same dimension, then

br(X) £ br(X) ,

^ hv'q{X) .

More generally, we can generalize part (b) of the above Theorem
3.1 to the differentiable category. For simplicity we restrict our
attention to orientable manifolds, since this avoids introducing differ-
ential forms of odd type (de Rham [5]). Analogous results can be
obtained for unorientable manifolds by making suitable assumptions
on the mapping π.

THEOREM 3.3. Let π: X ~* X be a proper surjective mapping of
orientable differentiable manifolds of the same dimension. Suppose
μ = deg π Φ 0, then π induces an injection on the de Rham groups:

7Γ*: Hr(X, R) > Hr(X, R) .

REMARK. (1) Such a result is definitely false for integral
coefficients as the simple example of the covering mapping

π: S2 > P2(R)

shows since ir(S2, Z) = 0, and Hι(P2(R), Z) = Z2.
(2) As mentioned in the introduction Hopf [10] proved that

π*: Hr(Xf Z)/torsion Hr{X, Z)/torsion is surjective (he assumed X is
compact), which implies Theorem 3.1 in this case.

(3) Any mapping π:S1-+S1 of degree zero will not induce an
injection π*: iΓ^S1, R)-+Hι(S\ R).

In preparation for the proof of Theorems 3.1 and 3.2 we have
to introduce various resolutions of the sheaves whose cohomology
we are interested in. Let X be a complex manifold, let 1£>Y be
the sheaf of germs of C~ (p, g)-forms on X, let ^Tpχq be the sheaf
of germs of currents of type (p, q), and let Ω\ be the sheaf of germs
of holomorphic p-forms on X. It is well known that there are
resolutions

0 > Ω\ > gfi'° - ^ U gf J'1 ~-^> gf£>2 -i-> . . .

\id \i \i(3.1) \id \i __ \i
__

0 Ω p 3 T γ
Cf. e.g., Weil [18] or Wells [19].
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where the vertical maps i in (3.1) are the natural injections of
smooth (p, q)-f orms into currents of type (p, q) (see Serre [16]). Let

H r _ Ker (& ^

( 3 2 ) ' im (&

be the Dolbeault groups on X with smooth and distribution coef-
ficients, respectively. It follows that the injections i in (3.1) induce
an isomorphism

(3.3)
V

since the resolutions in (3.1) are fine resolutions.
Similarly if X is a real differentiate manifold, we let g'J be

the sheaf of real-valued differential forms of degree r, and let 5tfx

be the sheaf of currents on X of degree r. Then we have the (de
Rham) resolutions

0 > R > g,Oχ J_> c^χ JL+ ^ X >...

(3.4) \id |<

0 >R

Consequently, if we let

Hi(X) -

Ker

Im

then we have the diagram

(3-6) %

ίίr(X, Λ),

in analogy with (3.3), since (3.4) is a fine resolution of the constant
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sheaf R. Note that the mappings i in (3.1) and (3.4) are injections,
whereas ΐ* in (3.3) and (3.6) are isomorphisms at the cohomology level.

Proof of Theorem 3.1. We consider first part (a). Using (2.5)
and (3.3) we obtain the diagram

(3.7) j** j*,,

using the fact that ττ*9 = dπ* and by duality π*d — ±dπ*, depend-
ing on the degree. By Lemma 2.1 we have that μi = π*iπ*, where
μ is the degree of the mapping π. Moreover, ?* and ί* are iso-
morphisms by (3.3). From this it follows immediately that TΓ* is an
injection. Namely, if ττ*f = 0, then π*i*π*ζ = μi*ξ = 0, and since
μ Φ 0, and i* is injective, it follows that ξ = 0.

To prove (b) we proceed in exactly the same manner using
Lemma 2.2 and (3.6), noting that π*d == cfa*, and dπ* — ±π*d as
before.

To prove part (c) we tensor the resolutions (3.1) with έ7x(E),
the sheaf of holomorphic sections of the given holomorphic vector
bundle, obtaining

0 > Ω\ ®vx <?

(3.7) lid

0 > Ωx <g)^χ x

where we note that

ΩX{E) = έ?x(Λp T*(X) ®E) = Ωx

Thus (3.7) gives both C°° and current resolutions of the sheaf ΩP(E)
of ^/-valued holomorphic p-forms. By writing down the JS'-valued
analogue of (3.3) and using Lemma 2.2 as in the proof of part (a)
above, part (c) follows immediately. We omit further details.

4* Kahler and symplectic manifolds* Let Y be an even dimen-
sional differentiate manifold of dimension 2n. If there is a differen-
tial form ωe i?2(F) satisfying

(a) dω = 0
(b) ω A Λ ω Φ 0 on Y

n factors
then we say that Y is a symplectic manifold and ω is called the
symplectic form on Y. Note that a symplectic manifold is necessarily
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even dimensional (per definition) and orientable. For simplicity we let

ωk = ω A Λ o) ,

k factors

and thus ωn is a volume element on Y. Suppose now that X is a
Kahler manifold with Kahler form ω. Then the pair (X, ω) is a
symplectic manifold (ignoring the complex structure). Recall that
ω is a cϋ-closed form of type (1, 1) on X such that in local coordinates

co = -%- Σ gaβ(z)dzadzβ
Δ aβ

where the coefficient matrix (gaβ) is a Hermitian symmetric positive
definite matrix. Moreover ω is real, i.e., co = co, and it is the imag-
inary part of an Hermitian metric on X (cf. [18], [19]).

We would like to generalize the results in § 3 to proper sur jective
mappings of complex or differentiable manifolds where the fibres are
no longer discrete, but are (generically) submanif olds of higher dimen-
sion. As we shall see by simple examples later on this is not always
possible, but by restricting our attention to mappings of Kahler or
symplectic manifolds, we get the same class of results.

THEOREM 4.1. Let π: X —> X be a proper sur jective mapping of
complex manifolds. Assume that X is Kahler, then the following
induced mappings on cohomology are injections:

(a) π*:H<(X,Ω>z)->H<&Ω$),
(b) π*:H'(X9O-+H'(X,C),
(c) 7Γ*: H*(X, Ωi{E))-+H<& Ω\{π*E)),

for a holomorphic vector bundle E —>X.

Since every protective algebraic manifold is Kahler we have as
a consequence.

COROLLARY 4.2. Let π:X-+X be a sur jective holomorphic map-
ping of {compact) projective algebraic manifolds; then the conclusions
of Theorem 4.1 hold, in particular

br(X) £ br(X) ,

hp-q(X) ^ hp-«(X) .

REMARK. At the end of this section we give an example of a
proper sur jective holomorphic mapping π:X~+X where X is not
Kahler and such that π*: Hq(X, Ωp

x)->Hq(X, ί2f) is not in jective.
This shows that some hypothesis such as the Kahler assumption used
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above is necessary to get such a strong conclusion.

To prove these theorems we need an appropriate analogue of
Lemma 2.1 in conjunction with the resolutions used before. However,
note that in diagram (2.5) the mapping π* does not carry currents
of type (p, q) to currents of type (p, q) if X and X do not have the
same dimension. This is the problem when dim X > dim X, and it
is at precisely this point that the Kahler (or symplectic) form will
play a role. Since there is no difference in general between the
Kahler and symplectic cases we will consider the Kahler case in
detail first, and later on consider the modification necessary for the
proof of Theorem 4.3.

Proof of Theorem 4.1. Suppose π: X-+X is a proper surjective
holomorphic mapping and ω is a Kahler form on X. Suppose dimc X =
m = n + d, where n = dimcX, and suppose that d > 0. Then it is
easy to check that the induced mapping on currents (induced by
duality from the mapping TΓ* on forms) is of the form

Moreover, πj) = ±dπ*, depending on degree. We want to define
a mapping

(4.1) τ: 3Tp q(X) » JΓP-'(X)

to play the role of π* in (2.5). We first note that one can form
the wedge product of a smooth form and a current, obtaining a new
current, (cf. de Rham [5]). In particular, we can form the product
Γ Λ < for Tejrp'9(%),i.e., the action of TΛ ω* on forms with
compact support is given by

(T Λ ωd, ψ) = (T, ωd Λ Ψ>, ψe

In particular T A ωd e ^Tp+d'Q+d(X). Thus we let

τ(T) = π*(TΛ ωd)

and the mapping (4.1) is well defined. We now have the diagram

(4.2)

and the following lemma concerning the commutativity of (4.2).

LEMMA 4.4. There exists a constant μ > 0 such that
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μi = τiπ* .

We will prove this lemma below. To complete the proof of Theorem
4.1(a) we note first that π* and τ commute (up to sign depending
on the degree) with 3. Namely for τ we have

Aωd)) = ±π*(d(T A ωd))

ωd) = ±τφT),

since dω = dω = 0. Thus we have the induced diagram on cohomology

and by Lemma 4.4 we see that μi* = πH^τ. Thus it follows as
before that π* is injective.

The proof of parts (b) and (c) are similar to the proof of parts
(b) and (c) for Theorem 3.1, with the same modification used here
given by the Kahler form and will be omitted.

Proof of Lemma 4.4. To prove Lemma 4.4 it suffices to show
that there exists a constant μ > 0 so that

\π*(η) A ωd = μ \ η ,
J x }χ

for any ηe £grn n(X) (cf. the proof of Lemma 2.1). Once again we
let S be the set of points where π has less than maximal rank, and
let π(S) = S. By using Sard's lemma again it suffices to show that
(cf. the proof of Lemma 2.3)

L Jt*(V) A ωd = μ 1
JX-S JX~S

rj .

Now it is well known that π: X — S —+ X — S is a differentiable
fibre bundle (cf. Kodaira-Spencer [13-ΠI], Wells [19]), which is
proven by introducing a Riemannian metric on X — S and integrating
an appropriate system of ordinary differential equations. Let Y =
X — S and Y — X — S. Suppose for simplicity Ϋ is a product manifold
(locally it is since it is a fibre bundle), i.e., Ϋ — Y x M, and π:Y x
M—> Y is projection on the first factor, where M is a compact
differentiable manifold of real dimension 2d. Then we see that we
have to compute

\ π*V(y) A ωd(y, m) ,
JYxM
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where we let (y, m) denote the dependence on the two factors Y x
M. Of course π*{yj){y) does not depend on the second factor. Then
by Fubini's theorem we see that

(4.3) ί π*η(y) A ωd{y, m) = ί Γί ω\y, m)Ίπ*7}(y) .
JYXM JYLJM J

Now in the general case when Y is not necessarily a product we
let {Ua} be a locally finite covering of Y so that π~ι(Ua) is diffeo-
morphic to Ua x M, where M = 7Γ\y0) for some fixed y0 e Y. (We
may assume without loss of generality that Y is connected.) Let
{pa} be a partition of unity subordinate to {Ua}, and then we may
write

I jt*η A ωd = ΣΛ\ π*paV Λ ωd

JY a Jπ-Hua)

(4.4) = Σ J [( ,

(4.5)

where (4.4) follows as an application of (4.3), using the fibre pre-
serving diffeomorphism π~ι{Ua) = Ua x M. Thus the lemma will
follow if we can show that

(4.6) ί ω* = f(y)
Jff~"1(y)

is a constant positive function on Y. Clearly f(y) > 0 for all y since
f(y) is the volume of π~ι{y) with respect to the volume element
φd|jr-i<irt Now ωd is a current of type {d, d) on F, and thus π*ωd is
a current of type (0, 0) on Y, moreover since (far* = π*d, and dωd =
0, we see that dπ*ωd = 0, which implies by the regularity theorem
for currents (cf. the resolution of R given by (3.4)) that π*ωd is a
constant. We claim now that π*ωd is simply the function f(y),
gives by (4.6), considered as a current, and this will finish the proof
of the lemma. If ψ e &n n(Y), then

(π*ωd, α/r) = \ ωd A π*ψ ,

= \ f(y)f(v),

as we saw above in (4.5) and therefore π*ωd as a current agrees
with the function f(y). Thus f(y) must be constant.

We can generalize Theorem 4.1 to the differentiate category.



COMPARISON OF DE RHAM AND DOLBEAULT 297

Let π: Ϋ—+ Y be a proper surjective differentiable mapping of orien-
table even dimensional manifolds, where we assume that Ϋ is sym-
plectic with symplectic form ω. Suppose that 2d = dim Ϋ — άimY >
0, and then consider μ = π*(ωd) e J%^(Y). Then as before, μ will
be constant on the components of Y, and we call μ the symplectic
degree of the mapping π (which depends on the choice of symplectic
form ω).

THEOREM 4.3. Let π: Ϋ—> Y be a proper surjective differentiable
mapping, where Ϋ and Y are even dimensional orientable manifolds,
and π has nonzero symplectic degree. Then the induced mapping
on de Rham cohomology

π*: Hr(Y, R) > Hr(Ϋ, R)

is an injection. In particular, if Y and Ϋ are compact, then
b(Y)b(Ϋ)

The proof of Theorem 4.3 now follows in exactly the same
manner as the proof of Theorem 4.1 using the symplectic form
instead of the Kahler form. We omit further details.

REMARK. Theorem 4.3 is clearly false without an additional
assumption (such as Ϋ is symplectic) as the Hopf fibration π: S3 —> S2

clearly does not induce an injection on de Rham cohomology.
We would now like to give an example of a proper surjective

holomorphic mapping of complex manifolds π:X~+X, where the
conclusion of Theorem 4.1 is not valid. This will show that an
additional assumption (such as X being Kahler in Theorem 4.1) is
necessary to conclude injection for the induced cohomology groups.
Our example will be a Hopf surface X which is mapped surjectively
onto Pι(C).

Explicitly, consider C2 — {0}, and let Γ be the discrete group of
automorphisms of C2 — {0} defined by y(zlf z2) = (emzlf emz2), me Z.
Thus Γ ~ Z, and if we let X = (C2 - {0})/Γ be the quotient space,
and πγ: C

2 — {0} —> X be the quotient mapping, then I is a compact
complex manifold which is diffeomorphic to S1 x S3. This is one of
the simplest examples of a compact complex manifold which is not
Kahler (since bx{X) = 1) and is due to Hopf (cf. [12], [19]). Consider
the diagram

C2 - {0} — Pγ

V /
X
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where πx is the usual projection of C2 — {0} onto Pι(=P1(C)). Then
the action of the group Γ commutes with π2 and thus π2 induces the
mapping π:X—>PL. Now hll(P^ = 1, and we will have our desired
example if we can show that h1Λ(X) = 0. This we will do now in
several steps. First we will compute the other Hodge numbers for
X (following Kodaira [11]). We note first that h20(X) ^ b2(X) for
any compact (complex) surface, and since b2(X) = 0, we have h2>0(X)
(= pg(X), the geometric genus) = 0. Thus X is an elliptic surface
in Kodaira's class VΠ0 (Kodaira [11]). Noether's formula for a com-
pact surface is3

12(h0'2 - h0Λ + 1) = ( cϊ

where cx and c2 are the Chern classes of X (considered as differential
forms in the de Rham group, for instance). Since H2(X, C) = 0, we
have c\ = 0. Since X s S1 x S3 it follows that ( c2 = χ(X) = 0 (the
Euler characteristic). Consequently, we obtain that h0>1 = 1. Then
we have the Hodge numbers for X (using Serre duality)

tf ° = h° 2 - h1'0 = h1'2 - 0
(4 7)
V } h0-1 = h 2 Λ = h°>° = h 2 ' 2 = 1 .

We remark that any elliptic surface in Kodaira's class VΠ0 has the
same Hodge numbers as in (4.7).

Frδhlicher proved in [7] that for any compact complex manifold X

(4.8) Σ(-ir+ fΛ' f(-y) = χ(-ϊ).

Using the Hodge numbers from (4.7), along with the fact that the
χ(X) = 0 vanishes, we obtain easily from (4.8) that hlί(X) = 0 (cf.
Kodaira-Spencer [13-Π]).

Thus, in summary, we have that

π:X >P1(C)

is a surjective holomorphic mapping of compact complex manifolds
which does not induce an injection on the induced mapping

π^: H\Pίt Ω^) > H\X, Ω\) ,

since h1Λ(X) = 0, and fΐ^P,) = 1.

REMARK. We want to mention one reason why the need for a

3 Cf. Kodaira ]11]; this is a consequence of the Atiyah-Singer-Hirzebruch-Rieman-
Roch Theorem.
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Kahler metric disappears in Theorem 4.1 as soon as the fibre dimension
becomes zero. Namely, the crucial ingredient in the proof of Theorem
4.1 is the fibre integral (4.6)

f(v) = ( ω* .
Hy)

The function f(y) is the volume of the fibre π'\y) with respect to
the metric ω given on X. The Kahler assumption do) = 0 insures
that the fibres all have the same volume. In the case of zero dimen-
sional fibres, the volume f(y) is merely the number of points in the
inverse image (the degree of the mapping) which is also constant
and independent of any metric on X.
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