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CONTINUOUS OPERATORS ON PARANORMED
SPACES AND MATRIX TRANSFORMATIONS

Ivor J. MADDOX AND MICHAEL A. L. WILLEY

The concept of a paranormed j-space is defined and some
theorems of Banach-Steinhaus type are proved for sequences
of continuous linear functionals on such a space. For example,
necessary and sufficient conditions are given for a sequence
(A.(x)) of continuous linear functionals to be in the space of
generalized entire sequences, for each 1z belonging to a
paranormed p-space. The general theorems are then used to
characterize matrix transformations between generalized [,
spaces and generalized entire sequences.

1. In 8§82 we present theorems which generalize some results in
[10]. These theorems are applied in § 3 to characterize some classes
of matrix transformations. By N, R and C we denote respectively,
the sets of natural numbers, real numbers, and complex numbers.
By a sequence (x,) we mean (x, %, ---), and by X,x, we mean
D=1 e

X will denote a nontrivial complex linear space of elements «,
with zero element 6 and with paranorm ¢, i.e. g: X — R satisfies
9(6) =0, g(=) = g(—x) on X, g is subadditive, and, for xe Cand z¢ X,
r—x, and g — 2,) — 0 imply g(x — \x,) — 0, where »eC and
e X.

Extending the definitions of Sargent in [8], we can define a
paranormed B-space as follows. Let (X,) be a sequence of subsets
of X such that 6e¢ X, and such that if #, ye X, then v +ye X, .,
for ne N; then (X,) is called an «-sequence in X. If we can write
X= U X., where (X,) is an @-sequence in X and each X, is nowhere
dense in X, then X is called an a-space; otherwise X is a B-space.
Clearly, every a-space is of the first category, whence we see that
any complete paranormed space is a G-space.

If Y= X then we denote the closure of Yin X by Y. We write,
for any e X and 6 >0, S(a,d) ={z:2e X and g(x —a) <d}. A
subset G of X is called a fundamental set in X if [. hull (G), the set
of all finite linear combinations of elements of G, is dense in X.
A sequence (b,) of elements of X is said to be a basis in X if for
each ze X there is a unique complex sequence ()\,) such that
g(@ — S \by) — 0(m — o). Thus any basis in X is also a funda-
mental set in X.

We denote the set of continuous linear functionals on X by X*.
A linear functional 4 on X is an element of X* if and only if
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— . 1
| Allx = sup {|A(x)¢. 9() < '1171} < o for some M > 1.

If X is a space of complex sequences » = (,), then we denote the
generalized Kothe-Toeplitz dual of X by X', i.e.

X" = {(a): 2, converges for every z€ X} .

We now list some sets of complex sequences due to Maddox [4].
If »p = (p,) is a sequence of strictly positive real numbers, then

la(p) = {w:sup, |, [PF < ==},
co(p) = {w: lim, | %, |+ = 0},

¢(p) = {a: lim,, |, — 1| = 0 for some leC},
Up) = {w: 3y [, "% < oo}

We write ¢ = (0,0, --+,1,0,0, ---), the 1 occurring in the k™ place,
foreach ke N,ande = (1,1, 1, ---), and we write [, = l.(e), ¢, = ci(e),
¢ = c(e), and I, = l(e).

The case p = (1/k) of c¢(p) is of particular interest, since the
function defined by X7, a,2*, ze C, is an entire function if and only
if (a,)ec(l/k). Work on the space of entire functions has been
carried out, by V. Ganapathy Iyer in [2] and in other papers, and
by other authors, using this correspondence with ¢(1/k). It is shown
in [2] that cy(1/k)" = I (1/k).

Now we collect some known results which will be useful in what
follows.

LEMMA 1. U(p) is a linear space if and only if » is bounded.
(See [4], Theorem 1, and [7], Theorem 1.)

LEMMA 2. If p is bounded with H = max (sup pi, 1), then
9(x) = (& | 2 [P defines a paranorm on l(p), l(p) is complete under
g, and () is a basis in (p). (See [5], Theorem 1 and Corollary 1,
and [7].)

LemMA 3. (i) If1<p,<H and pi' + s;i' =1 for each ke N,
then
Up)' = {(au): Ty |y |- M~k < oo for some M >1}.

(i) If 0 < p, <1 for all ke N then I(p)' = l.(p).
(See [6], Theorem 1, and [9], Theorem 7.)

LEMMA 4. If either 1 <p, < H for all k, or 0<p, £ 1 for all
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k, then every Ael(p)* may be written as A®®) = X, a,x, on U(p) for
some (a;) € U(p)', and conversely A(x) = 2,0, defines an element of
l(p)* for each (a;)e l(p)'. (See [6], Theorem 2, and [9], Theorem 7.)

Given sets Y and Z of sequences and a matrix A = (a,,;) of
complex numbers (n, k =1, 2, --.) we say that Ae (Y, Z) if and only
if ¥,a,,.Y, converges for every y = (y,) € Yand ne N, and (2,a,:¥:) € Z
for every ye Y.

We shall frequently use the following inequalities. Take %, y € C;
if 0 <p <=1 then

lzP =yl =sle+ylP =2+ |yl7,
and if p>1 and p™* + s7' =1 then
ley| < |a]” + ]y .

2. For the remainder of this paper, ¢ = (q,) will denote a
sequence of strictly positive real numbers. If ¢ is bounded with
H = max (sup q,, 1) then it follows by Lemma 1 of [4] that ¢(g) =
c(H™q); similarly 1.(q) = l.(H'q) and ¢(q) = ¢(H™'q).

THEOREM 1. Let X be a paranormed space and let (A4,) be a
sequence of elements of X*, and suppose q ts bounded. Then

(1) sup, (]| A, ||x)™ < o for some M > 1
smplies
(2) (4, (2))el.(q) for every xc X,

and the converse is true if X is a B-space.

Proof. In view of the remarks at the beginning of this section,
we may without loss of generality assume that ¢, < 1 fore all ne N.

First let (1) hold, and choose any € X. By the continuity of scalar
multiplication in a paranormed space, there is a K =1 such that
9(K'x) £ 1/M, where the M is that of (1). Then we have for any
n, since ¢, < 1,
| Ay(@) |*» = | KA(K™'®) |" = K™(|| A, |[x)™
= Ksup, (|| A, [[x)™ ,

so that (2) holds.

Now let (2) hold, with X a pB-space, and define for any me N,

X, ={r:xec X and | 4,(z)|» < 2 for all ne N}.

Then (X,) is an a-sequence in X, for obviously ¢ X,, and if for
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some m =1, x, y € X,, then, since q, = 1 for every =,
(A (@ £ y) | = [AL2) ™ + [ A (y) | = 2"

for any ne N. Also X = Ug-, X,., so since X is a [B-space there
exists a Be N such that X, is not nowhere dense. Using the conti-
nuity of the A,, it is not difficult to show that X, = X,, for every
m, whence there is a sphere S(a, 0) © X;. Thus if gz — a) < d we
have | A,(x)[|"» < 2% for all n, so if g(z) < 0 we have

[A(z) | < |A(z + a)|" + | A ()| < 257 for all n.
Taking M > 67" we obtain (1).

THEOREM 2. Let X be a paranormed space and let (A,) be a

sequence of elements of X*.
(i) If X has fundamental set G and if q 1s bounded, then the
following propositions

(3) (A,(0) € clq) for every be G,
(4) lim,, lim sup, (|| 4, [l:)™ =0,
together imply

(5) (A.(x)) € c(q) for every xe X .

(ii) If q,— 0(n — o) then (4) tmplies (5).
(ili) Let X be a B-space; then (5) implies (4) even if q 1is
unbounded.

Proof. (i) Again, we may without loss of generality assume
that ¢, <1 for every ne N. Let X have fundamental set G, and
suppose (3) and (4) hold. Choose any ze€ X and any ¢ > 0. There
exist M > 1 and #n, such that (]| 4, |[x)™ < ¢/2 for all » = n,, by (4).
Since [-hull (G) is dense in X there exist Ay, N\, +¢+, A,€C and
by, by, -+, b€ G such that gz — D\, M) < 1/M, and we write L =
max (x|, -+, | A, 1). Then by (3) there is an u, = n, such that
| A,(0b,) | < e/2Lwm), k=1,2, -+-, m, if w =mn, whence if # = n,
we have

| Au(@) | =

m m dp
Ao = b ) + 3 0A0)
k=1 k=1

Az = Subf" + L3 14,001
= (T4 )™ + mL - ef2Lm) < e ;

=

thus (5) holds.
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(ii) Suppose (4) holds and g€ ¢, and choose any z€ X and any
€>0. There is an M >1 and an =u, such that (|| 4,||x)™ <e¢&/2 if
n = n, and since scalar multiplication is continuous on X there is a
K =1 such that g(K'2) < 1/M. Then we can choose 7, = n, such
that K% < 2 if w = n, whence if n = n,

[ Au(@) [ = K| A(KT0) | <,

so that (5) is true.

(iili) Let X be a B-space and suppose (5) is true. We define
sequences (B,), (C,) of elements of X* and sequences r = (r,), s = (8,)
of strictly positive real numbers as follows. If ¢, = 1 then define
B,=A4,C,=0,r, =q,,and s, =1; if ¢, <1 write B, =0, C, = A,,
r,=1, and s,=q,. Then (B,@))ecc(r) and (C,(x))€c(s) on X;
sup,s, <1, and 7, =1 for all ne N. Also, (|| A, |lx)™ = (|| B.|l:)™ +

(1 C, llx)» for all large enough M, n =1, 2, ..., whence

lim,, lim sup, (|| 4, ||x)? < lim, lim sup, (|| B, ||x)™
+ limy, lim sup, (|| C, ||x)** .

Choose any ¢ > 0, and define for each me N
X, = {z:xe X and |2-"C,(2) | < % for all n = m} .

Clearly 6¢ X, and if for some me N we have , ye X,, then for
n=m-+1

|27 G, = ) v < (127 C,@)| + 270G, )
< (2 max (|27 C,(@)], |2 C,w) D)

= max (| 27"C,(®) |, | 27 "C\(y) |*) < g;

thus (X,) is an a-sequence in X. Also X = Ugs-, X, and X, = X,,
for all me N whence, since X is a 8-space, some X, contains a sphere
S(a, 6). Then if g(x) <6 we deduce that [272C,(x)|*» < ¢ for n = B.
Write o = 2756 and choose M > p~'; then by the subadditivity of g
we have g(2%x) < ¢ if g(x) < p. Hence if g(x) < 1/M we have

|Co@)|*» = |272C (%) | < ¢ if n= B,

and since € > 0 was arbitrary we obtain lim, lim sup, (|| C, |lx)™ = 0.
Now (B.(®)) € c(r) on X implies (B,(x))ec, on X. For suppose
if possible that for some sequence (n(¢)) of integers and some z€ X
inf | B,,(x)| = @« > 0; then | B, (a '2) | =1 for all 4, contrary to
hypothesis. By the argument used above we deduce that

limy lim sup, || B, ||lx = 0,
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whence since 7, =1 for all n, lim, lim sup, (|| B,||lx)™ = 0. By our
earlier remarks, (4) now follows.

THEOREM 3. Let X be a paranormed space and let (4,) be a
sequence of element of X* and suppose q is bounded.

(i) If X has fundamental set G, and if there is an le X* such
that (A,(0) — L(b)) € ci(q) for all be G and

(6) lim, lim sup, (|| 4, — U]]x)™ =0,
then
(7) (A, (@) eclg) on X .

(i) If q,—0(n— ) and if there is an le X* such that (6)
holds, then (7) is true.

(iii) If X is a B-space and if (T) is true, then there is an e X*
such that (6) holds.

Proof. (i) If the hypotheses hold, then 4, — le X* for every
n e N whence by part (i) of Theorem 2 ((4, — I)(x)) € c(g) on X; thus
(7) is true.

(ii) Follows similarly from Theorem 2(ii).

(iii) Suppose (7) holds; then for some ! we have |A,(x) —
I(z) | — 0(n — =) on X. We deduce that l(z) = lim, 4,(®) on X and
sup, | A.(x)| < e on X. Then by Theorem 1 we have sup, || 4, [|x < =
for some M >1, whence |[l]|, < . Clearly ! must be linear, so
that le¢ X*. Thus A, —le X* for each nc N, and by hypothesis
(A, — D(x))eclg) on X, so by Theorem 2(iii), (6) must be true.

3. We now apply the theorems above in characterizing the
classes ({(p), 1..(9)), (L(p), ¢(q)), and (I(p), c(¢)) in the case when both
» and ¢ are bounded. Throughout, A = (a, ) will denote an infinite
matrix of complex numbers. As a preliminary, we state Theorem 1
of [3]:

THEOREM 4. (i) Let 1<p, EH< o and p;*+s;'=1 for
every k. Then Ac (l(p),l.) ©f and only if there exists an integer
B > 1 such that sup, X, | @, ;| B~ < oo,

(ii) Let 0 < p, =1 for every k. Then Ac (I(p),l.) of and only
o SUDy g | @i [P < oo,

In the proofs of the following results, as in earlier ones, we
may without loss of generality assume that ¢, <1 for all ne N,
and we shall do so when convenient.

We first consider the case when 0 < p, <1 for all ke N.
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THEOREM 5. Suppose 0 < p, <1 for all ke N, and q = (¢,) s
bounded. Then,

(i) Ae(Up), l.(9) if and only if

(8) SUp,, (SUpy | @, | MY7K)n < oo for some M > 1.
(ii) Ael(p), clq)) if and only if
(9) | @i | — O(n — o) for every ke N
and
(10) lim, lim sup, (sup; | @, .| M 7%)%» =0 .,
(iil) Ae (l(p), (@) if and only if sup,sup;|a, | M 1" < o for
some M > 1 and there exist ay, «,, --- such that
(11) | @pe — &y | — O(n — o) for each ke N
and
(12) lim,, lim sup, (sup, | @, — a; | M~4#6)= = 0,

Proof. Write, for each zcl(p) and each ne N
(13) A (%) = 2400178 -

(i) Let Ae(i(p), l.(q)); then for each n, (@, Qns --+)ElD) =
l.(p), by Lemma 3(ii). Also, by Lemma 4, 4, < l(p)* for each ne N.
We show that for each =, || A, ||y = sup, | @, | M "* for all M such
that || 4, ||y is defined. Choose any ne N. First, if M is such that,
for some sequence (k(7)) of integers, |a, .| M /7@ =4 for each
1€ N, then by defining ") = (M~'/?:6 sgn a,, ,u;))e*™, 1=1,2, ---,
we see that || 4, ]|y is undefined. Since (@,1, Aus -+ +) € l.(p) there is
an M, =1 such that |a,,|?”* < M, for all k. Choose M = M,. We
have if g(») = 3, | @, |?* < 1/M, since M*** |x,| =1 for all k and since
sup, o, = 1,

[ A (@) | < 24| @ | M7 MIPE | 35, |
=il an | M M|, |7
= My(x) sup; | @y, .| M7,

whence || A4, ||y < supi|a,.| M 7. Given ¢ >0 we can choose an
m such that |a,.,| M " > sup,|a,,| M " —e¢e. Defining =
(Mresgn @, ,)e'™ we have g(x) <1/M and A,(x) > sup, | a, .| M %% —¢,
whence || A4, ||y = sup, |a, .| M ** as required. By Lemma 2, I(p) is
complete, so it is a B-space; thus by Theorem 1 we must have (8).

Conversely let (8) hold. Then as above it follows that for each
n, A, €l(p)* with || A4,|ly = sup,|a,,| M for all M such that
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|| A, |l is defined. Then using Theorem 1 we obtain (4.())e!l.(q)
on U(p), i.e. A€ (I(p), 1..(9))-

We remark that (8) reduces to sup, ;| @, ;| < «if 0 < infgq, <
sup ¢, < oo, corresponding to the condition given for A€ (I(p), l.) in
Theorem 4(ii).

(ii) If Ae(U(p), cl9)) < (Up), l..(q)) then as above we have 4, X*
and || 4, ||, = sup,|a,, | M whenever || A4,||, is defined, for each
ne€ N. Then, by Theorem 2(iii), (10) must hold. Also taking = =
ePel(p)(k=1,2 --.) we obtain (9). Conversely if (9) and (10) hold
we can show that A, € l(p)* with || 4, ||x = sup, | @, | M /" whenever
|| A, |l is defined, for each me N; also (e*) is a basis in I(p) by
Lemma 2. Then by Theorem 2(7) we can deduce that A € (I(p), c(q))-

(iii) Let Ae (I(p), c(q)); then as in (i) and (ii) above we have for
each n that A,e X*. By Theorem 3(iii) there is an [ ¢ X* such that
lim, lim sup, (|| 4, — 1||x)™ = 0, and by Lemmas 3(iij) and 4 we can
write l(z) = X,a,x, on l(p) for some (a,)€l.(p). We deduce that
| A, — 1|y = sup, | @, — e | M"*¢ for large enough M, n =1, 2..-,
whence (12) is true, and (11) must hold since (4, — I)(e*) = @, — a;
for each n and k. Also c¢(q) =l.. whence (I(p), (c(q)) < (i(p), L..); thus
by (i) we must have sup, |a,, | M/?* < « for some M > 1.

Finally, if sup,|@,,| M™% < oo for some M > 1 then A, cl(p)*
for all . If in addition (11) and (12) hold then for any k& we have,
if » and M are large enough,

]ak | Mirk < 'ak — G ] M-tre 4 la%k| Mok
<1 + sup, (sup; | @, | M ") = B say ;

hence |a,|?* < B*-M < BM for all k, i.e. (a;)€l.(p) = Up). By
Lemma 4, l(x) = Y,a,x, defines an element of I(p)*, and the result
now follows if we employ the methods used above together with
Theorem 3(i).

THEOREM 6. Suppose 0 < p, <1 for all ke N and ¢,— 0(n — ).
Then A€ l(p), c(q) if and only if (12) is true.

Proof. This follows from Theorem 2, parts (ii) and (iii), on using
the methods of Theorem 5.

COROLLARY. (i) Ae(l, cl/n)) if and only if @, ['" — 0 uni-
formly in k as n— oo.
(ii) Ae(, l.(1/n)) if and only if SUp, | @, |"" < .

Proof. These characterizations were given in Theorems 1 and
2 of [1], and follow readily on taking » = ¢ and ¢ = (1/n) in Theorems
5@1) and 6.
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Now we consider the case when 1 < p, < H < « for all k.

THEOREM 7. Let 1 <9p,< H and pz* + s;* =1 for each ke N,
and let q be bounded. Then Ae (I(p), 1..Q) if and only if

(14) T(B) =sup,Zf;|a,,|* - B~ < o for some B>1.

Proof. Define A, by (13) on I(p), for each ne N. For the suf-
ficiency, let (14) hold. Then if xz € l(p) we have for each n, assuming
¢, =1 for all n,

| A,@) | = (34 | @i )™ = (Zh | @p | BT Bl |3, [)n
g (Zk 'a”‘k lsk . B"‘k/qn + Zk Bpk/q'n ' @y lpk)q'n

= (T(B))y™ + B*(g"(x))™
< T(B) + 1 + B*(g"(x) + 1)

which implies A4 € (I(p), ..(9)).

Now let Ae (I(p), ..(q)); then (a,., @n, ---)€l(p) for each » and
50, by Lemmas 3(i) and 4, A,cl(p) for all n. By Theorem 1 there
exist M >1 and G =1 such that |A4,()|» <G for all n and all
zel(p) with g(x) <1/M. Then |2, G Y q, x| <1, n=12 ---,if
g(x) < 1/M. Write I' = (G™"*a, ), and choose any x€l(p). By the
continuity of scalar multiplication on I(p) there is a K =1 such that
9(K'2) < 1/M, whence | Y, G " .a, x| £ K for all n. Thus we see
that I"e (I(p), l..) and so by Theorem 4(i) there is a D > 1 such that
sup, 3, |G M. q, |- D™t < o, Writing B = GD and using the
fact that D*» < D for all n, we obtain (14).

Looking at Theorem 4, one might except the necessary and
sufficient condition for A4 e (I(p), l..(q)) to be

(15) SUpP, (X | @y |- M%) < oo for some M > 1.

Using the method above we can show that (15) implies Ae
(U(p), 1.()). In fact it can be shown that (15) implies (14) directly.
For let (15) hold; then for some B > 1, (X, |a, |- B~ < H for all
n, and we may suppose that H > 1. If ¢, < @ for all » then

(16) (54| @y | B« H-anymie < 1 for all n .

Put M= HB% then M = H*-B% > H. B, whence M/ > H""™. B
for all k¥ and . Thus by (16) we obtain

Zk la,n/k |8k Mokl < Z'k l Aot Isk « B~k . 4
S (Eilani|*-B k- HYm)wi¢ <1 for all n,

whence T(M) =1, i.e. (14) holds.
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Clearly, (14) implies (15) if inf,q, > 0 or if inf,p, > 1. How-
ever, (15) is not necessary for Ae (I(p), l.(¢)) if inf,q, =0 and
inf, p, = 1. For choose bounded p and ¢, with p, > 1 for all %, and
suppose there exist sequence (n(), (k(5)) of integers such that
G S1/3,0=1,2--+, and ppj =1+ 1/5,7=1,2 --+; then s, =
J + 1for each j. Define apuy 1y =% %3=12, -+, and a,, = 0 for
all other n and k. Then 4 = (a..) < ((p), l..(¢)) since for all 1¢ N.

Zi | @uiay gy [H0) » 27D < F(3/27)H L 1,
but for any M > 1 we have if 1 = M,
(25 | @nior gy |08 M) = (F; | ¢/ MPH)me

which diverges.

THEOREM 8. Let g be bounded, and let 1 < p, £ H and pi*+
sit=1 for all ke N. Then Aec (l(p), c(q)) if and only if (9) holds
and, for every D =1,

(17) limB 11m sup.,, (Zk [ an,klﬂc ._D sp/qy . B—sk)q,n =0.

Proof. Again, define A, on I(p) by (13). First we prove the
necessity: let Ae (I(p), ¢(q)). Obviously we must have (9), and as
in Theorem 7 we see that A,cl(p)* for all n. If Ae (I(p), ci(q)) then
(DY . a, ) e (D), e(q)) for all D> 1, so it is enough to show that
(17) holds for D = 1. Since ¢i(q) Cl.. and using Theorem 4(i) there
is a B>1 such that T, =2,|a,,|*- B %+ <1 for every nec N.
Choose any 7, and define z{® = B #%|q, ,|**'sgna,, for each k;
then

g7 (@™) = 2, B a, , |* < BT, < B

and A,(x™) = T,, whence || A, ||z = T, for each n. By Theorem 2(iii)
we must have lim, limsup, (|| 4.[z)» = 0, whence (17) holds with
D=1.

For the sufficiency, let (9) be true and let (17) hold for all
D >=1. It follows that A,ecl(p)* for all ne N. Since (¢*) is a
basis in I(p) and using Theorem 2(i) it is enough to show that
lim, lim sup, (|| 4.]/5)™ = 0. Choose ¢, 0 < ¢ <1, and D > 2/s. There
exist B> 1 and m such that (3, |a, ,[* - D*%. B%)% < &/2 if n = m.
Then if g(z) £ 1/B and if n» = m we have

| Au(@) |'» < (2| @p | DY B™ BD7H0 | g, [)
< (Ek{l G IskD « %l . B=%k 4+ [)~Pk/%n . BPk ] x, ka})qn
< &2 + (DMi». BEgH(x))™ < €,
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and this completes the proof.

One may show that if (9) is true and if (17) holds for D =1,
and if either inf, g, > 0 or inf, p, > 1, then A e (I(p), ci(qg)), but that
these conditions are not sufficient for A € ({(p), ¢i(@)) if inf, ¢, = 0 and
inf, p, = 1.

THEOREM 9. Let q be bounded, and let 1 < p, < H and p;* +
sp' =1 for all ke N. Then Ac (l(p), c(q)) if arnd only if sup, 2, X
@, |"*B™* < oo for some B>1 and there ewist a,, a,, --- such that
(11) holds and lim,lim sup, (2, |a, ., — a,|®* - D% . B=*%)? = 0 for all
D=>=1.

Proof. As usual, define 4, on I(p) by (13) for each ne N. First
let Ae (I(p)), ¢c(g) < (I(p), I..); then sup, X, |a, |- B¢ < co for some
B> 1. Also by Theorem 3 there is an [ € l(p)* such that | 4,(e®) —
l(e®)|» — 0 (n — ) for each k¥ and such that limlim sup, (|| 4, —
lllz)» = 0. By Lemma 4 we can write l(z) = Y,a,x, on I(p) for some
sequence («;) € l(p)!, and the necessity now follows using the method
of Theorem 8.

For the sufficiency, we show that the conditions of this theorem
imply %, |a, |**- M~ < o for some M > 1; then l(z) = I, «a,x, defines
an element of l(p)*. We have for suitably large B and =

Syl M2B) ™ = Xy ay — @i + Q|- (2B) 7%
= Yimax (@, — ail, [ @, [)*- B~
<23 \au,— .- B+ 3, |a, | B
S1l+sup, Xi|G, il B %< oo,

Then by Theorem 8, (a., , — «,) € (I(p), ¢(q)) whenece | 4,(x) — l(x)|*»— 0
(n — ) on I(p), and the proof is complete.

We note that (I(p), ¢) was characterized, for bounded p, in the
corollary to Theorem 1 of [3].

The conditions for A e (I(p), l..(q), (I(p), ci(q)) or [(I(p), ¢(q)) in the
general case 0 < p, < sup p, < « and ¢ bounded may be obtained by
combining the separate cases 0 < p, <1 and 1 < p, < H above.
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