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GENERATORS FOR EVOLUTION SYSTEMS WITH
QUASI CONTINUOUS TRAJECTORIES

JAMES V. HEROD

With G a normed space, this paper provides conditions
on a nonlinear function A from R X G to G in order to
insure that if P is in G then there will be a (not necessarily
continuous) solution Y for

Y@)= P+ X”th(t, Y@) .

Early work in the study of the Stieltjes integral equation
M@, 2) =1+ S dFM(L 2)

was done by H.S. Wall [25] and T. H. Hildebrandt [8]. In Wall’s
paper, F' is a continuous matrix valued function which is of bounded
variation on each finite interval. Hildebrandt dropped the require-
ment of continuity and used a modified Stieltjes integral. J. S. Mac
Nerney carefully analysed these ideas in a series of papers which
led to the fundamental relationships found in [15], [16], and [17].
The papers [15] and [17] establish two classes OA and OM of
functions and a one-to-one pairing of the classes made possible
through a continuously continued sum, a continuously continued
product, and a Stieltjes integral equation. In [17],if V isin O4, M
is in OM, S is a linearly ordered set, and P is contained in a com-
plete, normed, Abelian group, then V and M are related by M(x, y)P =

1Y [14 V1P, Viw, y)P=.37" [M—1]P, and Mz, y)P=P+ V VM, y)P.

The results in [15] may be identified with analogous results in
ordinary differential equations associated with nonautonomous, con-
tinuous, linear systems and [17] may be identified with Lipschitz
systems. An indication of the nature of the generality obtained in
the Stieltjes integral equation theory is found in [16], or in David
L. Lovelady’s discussion of interface problems [11, p.184], or in a
recent paper by Robert H. Martin [20] which investigates a linear
operator equation and which identifies the linearly ordered set as
the positive integers. Additional results related to [15] were found
by B. W. Helton and Davis-Chatfield (see [2] or [3]). Also, this
author determines a characterization of subsets of the two classes
0OA and OM which give rise to invertible evolution operators M in
[4], for the linear case, and in [7] for the nonlinear (but Lipschitz)
case.
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In [9] Don Hinton and in [1] Carl Bitzer develop a theory for
Stieltjes-Volterra equations. Reneke shows in [21] and [23] that
much of the classical Volterra theory is contained in [15] or [17].

Questions concerning bounds for solutions of Stieltjes equations,
as well as perturbations of these solutions have been investigated
by Schamedeke and Sell [24], Herod [5], Martin [19], Reneke [22],
and Lovelady [10], [11], and [12]. Also, Marrah and Proctor [18]
have found results concerning periodic solutions.

In [6], this author extends the classes OA and OM by using
some of the ideas of analytic semi-group theory. In that investi-
gation, similar to Mac Nerney’s, two classes OA and OM are paired
by a continuously continued sum, a continuously continued product,
and a Riemann-Stieltjes equation. (In this setting, also, Lovelady
[14] has generalized earlier results of his involving perturbations of
the systems.) The Lipschitz condition of [17] was dropped in [6] at
the expense of requiring that M(-, y)P, in addition to being of
bounded variation on each finite interval, be continuous and that S
should be the real line. The results which follow relax these
requirements.

We suppose that S is a nondegenerate set with a linear ordering
and that {S, =} has the least upper bound property. Also, {G, +, |-|}
denotes a complete, normed Abelian group with zero element O.
Further, suppose that D is a closed subset of G and that V is a
function such that if each of 2 and vy is in S and # = y then V(z, ¥)
is a function from D into G having the following properties:

(i) If x=y=zand Pisin D then V(z, y)P+ V(y, 2)P=V(z, 2)P,

(ii) If @ > b then there is a nondecreasing, numerical valued
function B defined on S such that if ¢ > 0 and P is in D then there
is a positive number 6 having the property that if @ is in D such
that |[@ — P|<d and a =2 =y =b then |V(z, )P — Vi, Q| =
[B(x) — B(¥)]e,

(iii) If @ > b then D is contained in the range of [1 — V{(a, b)]
and if P and @ are in D then |[1 — V(a, b)]P — [1 — V(a, b)]Q| =
|P— @], and

(iv) If a >b and P is in D then there is a nondecreasing,
numerical function « such that if {s,}; is a nonincreasing sequence
with values in [b,a] and a=2x=y =b then |V(z, y) ;. [l —
V(sp—y, $2)I7'P| = a(z) — a(y).

If f is a function from S with values in G and v is in S then
f(y™) is 2 member g of G having the property that if ¢ > 0 then
there is 2 member ¢ of S such that * <y and if < ¢ <y then
lg — f(t)| <e. In a similar manner, f(y*) may be defined.

The following theorems are established:
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THEOREM I. If a > b, B 1s as in (ii), Pis in D, and € > 0 then
there is a subdivision s of {a, b} such that if t is a refinement of s
then

L[ = V]I7P—1I.[1 — VI"'P| < {4 + 2[8(a) — BO)])e .

Let M be a function defined as follows: If # =y and P isin D then
M(x, y)P = JI*[1 — V]'P.

THEOREM II. If a > b then M(a, b) ts a function from D to D
and

(1) If each of P and Q s in D then | M(a, b)P — M(a, b) Q| <
]P - Q ly

(2) Ifx=y=z and P is tn D then M(x, y)M(y, 2)P = M(x, )P,

(3) IfPisin D, and a =x =y =b then | M(z, b)P — M(y, b)P| <
a(x) - a(y)r

(4) If a=b, €>0, and P 1is in D then there is a positive
number 6 having the property that if @ is in D such that |Q — P| <o
ond a zx =y =b then |[M(z, y) — 11P — [M(z, y) — 1]1Q| = [B(®) —
BW)le.

THEOREM III. If P is im D and b is a member of S then the
only function g which is of bounded variation on each finite interval

b
of S and which satisfies the integral equation g(x) = P + (L) g Vgl
for each ® = b is given by g(x) = M(zx, b)P for x = b.

Proof of Theorem I.

LEMMA 1. If a>b, Pis in D, and a is as in (iv), then

(1) lim,,,([1 — V(z, b)]'P) exists and s [1L — V(b™, b)]"'P and

(2) If t is a subdivision of {a, b} then |II.[1— V]'P —
[ — V(b7 b]7'P| = a(a) — a(b®),

(3) lim,;, ([t — V(a, x)]"'P) exists and is [1 — V(a, a”)]™'P and

(4) If t is a subdivision of {a, b} then |II,[1— V]'P —
[1— V(a, a)]'P| < a(a™) — a(d).

Indication of proof. Suppose that =y > b. Then

[[1 — V(z, b)]'P — [1 — V(y, )] 'P|
= |[V(=, D)[1 — V(y, O)]7'P — V(y, b)[1 — V(y, b)]'P]|
= a@) — a(y) .

The existence of lim,,, a(x), together with the fact that D is closed,
implies the existence of lim,,, ([l — V(z, b)]"'P) in D. Let @ be this
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limit. Then [[1— V(z, 8)]Q — P| =< |Q —[1 — V(=z, b)]'P| + | V(z, b)Q —
V(z, b)[1 — V(z, b)]'P|. Consequently, P = lim,,,[1— V(z, b)]Q =
[1 — V(b", b)]Q. That is, @ = [1 — V(b", b)]'P so that (1) is estab-
lished. In order to establish (2), suppose that {¢,}r is a subdivision
of {a, b}. With @ as above,

pli[l [1 - V(tp—l, tp)]_IP - Q

=

Ijl [1— V(tooy, t)]7'P — [ — Vb, t)]'P| + a(t,—) — a(d*)

= 5 Vit B = Vitary, 6P| + alt,) — a(b?)
< a(a) — a(b) .

In a similar manner, one can establish (3) and (4).

LemmaA 2. Suppose that a > b, B is as in (i), € 1s a positive
number, and P is in D. There is a subdivision {s,}i of {a, b} such
that if {t,}y s a refinement of s and k 1is a sequence such that
tky) =80, p=0,1, --- m, then

3 3 (Ve t) I = Vo, 017 T1 [L = Visi, s)17°P
13

= Vit ) T L= Vit D17 T [ = Visi, )P

z:lTkp_l

<[4+ 2(8(a) — BB))]e .

Proof. With the supposition of the lemma, let @ be as in (iv).
Define functions 4, 6, and d as follows:

If R is in D then 4(R) is the largest number ¢ not exceeding 1
and having the property that if Q isin D, |Q — R|<e, and a =
¥ =y = b then |V(z, v)Q — Viz, y)R| = [B(x) — B¥)le,

Ifb<z<a, Risin D, and @ = lim,, [1 — V(z, 2)] 'R then i(z, R)
is defined as follows: If there is no point y such that z <y <a
then d(z, R) = a and, otherwise, d(z, R) is the least upper bound of
all v such that 2 <o <a and such that if z2<y <=z and ¢t is a
subdivision of {y, z} then |T[,[1 — V]'R — Q| < 4(Q), and

If <2<y =<a and ¢ is a positive number then let = be the
greatest lower-bound of all w such that z < w and such that if
w=u <y then a(y™) — a(u) < ¢. If there is no point of S between
x and y let d(y, 2, ¢) be . If there is, let d(y, 2, ¢) be such a point.
Note that if w is in S and d(y, #, ¢) = u< y then a(y™) — a(u) <ec.

Define the sequence wu as follows: u, = b, u, = o(u, P), u, =
d(u,, u,, €), and, if n is a positive integer,
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2n
Ugn e = 3<u2m 4:1[;[1 [1 - V(uznvqﬂy uzfn—-q)]—IP)

and Uyt = Q(Uanrs, Usmy €/2"). Assume that w is an infinite sequence.
Since % is nondecreasing and bounded, let u.. be lim u, and, for each
positive integer j, let R; = ITi_,[1 — V(Uj_guy, ;)] P. If m>mn
then, as in [6, p. 250] | R,, — R, | < a(u,) — a(%,). Because lim,;,_ a(x)
exists, {R,}3, converges. For each integer =, let @, = lim,,, [1 —
V(z, »,)]'R,. The sequence {Q,}., converges for suppose that 7 is
a positive number. Let R_ = lim R, and let v be a member of S
such that if u, > & = v then a(z*) — a(x) < 7/2. Let N be a positive
integer such that if n > N then |R, — R,| < 7/2 and 4. > %, = v.
Then lim@, =R, for |R.— Q,| < a(u)) — a(u,) + /2. By [6,
Lemma 2.1] there is a positive number & such that if = is a positive
integer then 4(Q,) > &. Again, using the fact that lim,,;, a(x)
exists, there is an integer N such that if m > n > N then a(w,) —
a(u,) < ¢ and, in this case, if ¢ is a subdivision of {w,, u,} then
[TL[1- VIR, — Q.| < a(u,) — a(u;}) < &< 4Q.,). Hence, 6(u,, B,) = tn.
Because this holds for each integer m > n, d(«,, R,) = %.,. This is
a contradiction to the assumption that u is an infinite sequence.

Let m be the least integer such that u,, = a, and define s, to
be Uym_p for p=1,2 ... 2m. Let {t})’-, be a refinement of s and k
be an increasing sequence such that %k, =0, k,. = n, and (k) = s,
for p=0,1, ..., 2m. If pis an integer in [1, m] and ¢ is an integer
in [14 kwp_y, kap] then g, piy = 0(Usm_p), Rom—n). Hence

k2p
'zl;Iq 1= V(o t)] ' Roimr) — Qum—r) | < 4(Qsim—n)

and

kzp
IV(tq—iy tq) EI [1 - V(ti—ly ti)]~1R2(m~—m - V(tq—ly tq)Qz(m—P)
= [B(t-) — B)le
If p is an integer in [1, m] and ¢ is an integer in [1 + kyp_s, Kop_i]

then

k2p—1 2m
V(tq—ly tq) l;[ [1 - V(ti—ly ti)]_l I_I [1 - V(Sa'—u SJ')]—IP

k2p—l 2m
= Vltgy t) I [ — Vi, 8D IT [1 — Visioy, 8)]7'P
i=l+kop—o J=2p

is zero if ¢ =1+ ky,_, and does not exceed 2[a(t,.,) — a(t,)] if
1+ Ky <q= ky.. Furthermore, a(t., ) — a(t,_,) = A(s;)—-) —
A(Sp—1) = CUsim—p)+2) — A(Uspimpin) < &/2™7. It follows that
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5 { kzk_ Vitgs t,) f:[ [t = Vet 1 I1 [ = Visi, 5917 P
— Vit t) iq_ L= Vet 17 01 1= Vi 5P}
=3 kzk__ Vit t) knq’ [L = Vit )17 I [ = Visio, )P
= Vitas ) _irkf_ [t = Vit D)7 11 [L = Vissoy )P
+ kyt Vit,, tq)ﬁ[l — WVt )1 Rutuy

|

< 306277 4 3% 20B(s,—) — Bl < 1+ 206 ~ BB

~ Vst I L= V(b £)]7 Bansy)

§=1tkyp_y

Indication of proof for Theorem 1. The inequalities in the
proof of Theorem 2.1 on pages 251 and 252 of [6] carry over almost
without change by using the above Lemma 2.

The techniques above also provide the following

COROLLARY. If a > b, B is as in (ii), P is in D, and ¢ > 0 then
there is a subdivision s of {a, b} such that if {t,}; is a refinement
of s and p ts an integer in [0, n] then |M(t, b)P — I1i,. [1 —
V(t,_, t)]'P| < e.

Proof of Theorem II. Parts (1) and (2) follow from the cor-
responding inequalities for the approximations to M; further details
are indicated in Theorem 2.2 of [6]. To establish part 3 of Theorem
II, suppose that « = =y =b and P is in D. Let a be as in (iv),
and ¢ and s be a subdivision of {x, ¥} and {y, b} respectively. Then

| M(=, b)P — M(y, b)P| = [ M(z, b)P — II.[1 — V] [I.[1 — V]"'P|
+ {IL[ = V]" =1 IL[ - V7P|
+ L[ = VI7'P — M(y, b)P| .

Also,

L= VI" =1L [ - VP
= IZZH V(tp—ly tp) H;{;p[l - V(ti—ly tz’)]_1 Hs [1 - V]—lPI
= a(t) — a(t,) .

For part (4) of Theorem II, suppose that a > b, 8 is as in (iv),
¢>0,and Pis in D. Since M(-, b)P is quasi continuous, M([b, a], b)P
is compact. Hence, there is a positive number § such that if @ is
in M({b, a], b)P, R is in D such that |Q — R|<d,anda=za=y =b
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then | V(z, ¥)Q — Viz, v)R| < [B(x) — B(y)]-¢/3. Suppose that Q is in
D such that |Q — P| < 4, {t,}r is a subdivision of {z, y} such that
if Ris P or @ and p is an integer in [1, n] then

H 1 — V(s 8)I7'R — M(t,—, D)E| <0 .

Then

HIL.I1— VI = 1P — {ILIL — V] — 1}Q|
= 33 Vltsos, t) I [ — Vitioss 8P = Vitaoss t) I [1 = Vit 1]7Q
ép{ﬁ(w) — BW)le .

Proof of Theorem III. This theorem established that the evolu-
tion operator M which was found in Theorem II provides a solution
to the initial value problem indicated in Theorem III. Note that
the integral used is the Cauchy-left integral: If f is a function

from [b, ] with values in D then (L)Sb VIf] is approximated by
vey V(to_y, tp)f(t,—,) where ¢ is a subdivision of {a, b}.

LEMMA 3. Suppose that a > b and f is a function from [b, a]
b
to D which 1is of bounded wariation. It follows that (L)S VIf]
exists; tn fact, if € > 0 then there is a subdivision s of {a, b} such
that if {t,}r-0 is @ refinement of s then

n

>

p=1

Vits-, t2F(to) = (D) | VIS <<

LEMMA 4. Suppose that b 1s in S, P is in D, each of f and g
b
18 of bounded variation, and, for each x = b, f(x) =P + LS VIf] and

9@z) = P + (L) Sb Vigl. It follows that if » = b then f(z) = g().
Proof. With the supposition of the lemma, let 2 be in S such

that « = b, ¢ be a positive number, and {¢,}7-, be a subdivision of
{z, b} such that

2

P

| VI = Vi, )5t

tp—1

+

Sip_l Vgl — Vito—, t)9(ts-) l} <e.

Then
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|f(@) ~ 9@)| S 1 £@) — 9@) | + 3 (1 [L = Vltoms, 170
- [1 - V(tp—x, tp)]g(tp—l)l - lf(tp—L) - g(tp—l) I}
= 3 {=1£(ts) — 9(tn) | + |1 — Vtres, )] f(Ers)

p=1

—[1 = Voo, t)olto) I} < g{

7 VI = Vs 150

+ l _S:p_l V19l + Vitoos, t)9(ts—s) ’} <e.
Thus ’
(@) = g(x) .

Indication of proof for Theorem III. Suppose that ¢ > b, P is
in D, and s is a subdivision of {a, b}. Then

111 = V(5o )P = P — 33 Vispsy 5)M(s,, HP|
= | £ Vs ) ILIL = Vioimy s)I7P = Voo, s)MGs,-, DP|

Using the fact that M([b, a], b)P is compact, together with the above
b
corollary, we get that M(a, b)P — P — (L)S VM(-, b)P = 0. Lemma

4 shows that this is the only solution ttz) the Stieltjes integral
equation.

ExamMpLE. Suppose that g is an increasing, number valued func-
tion, A is a function with values in a Banach space G, and that A
has the following properties: (Compare [6, p.258].)

(a) If tis a number then A(¢, -) has domain all of G,

(b) If Pis in G then A(-, P) is continuous,

(c¢) If a>b, Pis in G, and ¢ > 0 then there is a positive
number 0 having the property that if a =4 =5 and @ is in G such
that |Q — P| < ¢ then | A(u, Q) — A(u, P)| <,

(d) If @ > b and B is a bounded subset of G then A is bounded
on [b, a] X B, and

(e) If tis a number, P and Q are in G, and ¢ > 0 then

[[P — cA(t, P)] — [Q@ — cA(t, Q]| = | P —Q].
Also, as in [6, p. 258] let V(z, ¥)P = (L)SzdgA( , P) for x = y and
P in G. !

Then V is in OA and if ¢ is a number and P is in G then the
preceeding provides the only function f such that

f@) =P - )| dea( 5.



GENERATORS FOR EVOLUTION SYSTEMS 161

REFERENCES

1. Carl W. Bitzer, Stieltjes-Volterra integral equations, Illinois J. Math., 14 (1970),
434-451.

2. W. P. Davis and J. A. Chatfield, Concerning product integrals and exponentials,
Proc. Amer. Math. Soc., 25 (1970), 743-747.

8. Burrell W. Helton, Integral equations and product integrals, Pacific J. Math.,
16 (1966), 297-322,

4. James V. Herod, Multiplicative inverses of solutions for Volterra-Stieltjes integral
equations, Proc. Amer. Math. Soc., 22 (1969), 650-656.

5. ———, A Gronwall inequality for Linear Stieltjes integrals, Proc. Amer. Math.
Soe., 23 (1969), 34-36.

6. ———, A pairing of a class of evolution systems with a class of generators,
Trans. Amer. Math. Soc., 157 (1971), 247-260.

7. ————, Coalescence of solutioms for nonlinear Stieltjes equations, J. Reine
Angew. Mathematik, 238 (1972), 100-104.

8. T. H. Hildebrandt, On systems of linear differentio-Stieltjes-integral equations,
Illinois J. Math., 3 (1959), 352-373.

9. D. B. Hinton, A Stieltjes-Volterra integral equation theory, Canad. J. Math., 18
(1966), 314-331.

10. David Lowell Lovelady, 4 variation-of-parameters inequality, Proc. Amer. Math.
Soc., 26 (1970), 598-602.

11. ———, Perturbations of solutions of Stieltjes integral equations, Trans. Amer.
Math. Soc., 155 (1971), 175-187.

12. —————, Bounded solutions of Stieltjes integral equations, Proc. Amer. Math.
Soe., 28 (1971), 127-133.
13, ———, Multiplicative integration of infinite products, Canad. J. Math., 23

(1971), 692-698.

14, ————, Addition in a class of nonlinear Stieltjes integrators, Israel J. Math.,
10 (1971), 391-396.

15. J. S. Mac Nerney, Integral equations and semigroups, Illinois J. Math., 7 (1963),
148-173.

16. ———, A linear initial-value problem, Bull. Amer. Math. Soc., 69 (1963),
314-329.
17. —————, A nonlinear integral operation, Illinois J. Math., 8 (1964), 621-638.

18. G. W. Marrah and T. G. Proctor, Solutions of some periodic Stieltjes integral
equations, Proc. Amer. Math. Soc., 34 (1972), 121-127.

19. R. H. Martin, Jr., A bound for solutions of Volterra-Stieltjes integral equations,
Proc. Amer. Math. Soc., 23 (1969), 506-512.

20. ———, Product integral approximations of solutions to linear operator equa-
tion, Proc. Amer. Math. Soc., 41 (1973), 506-512.

21. James A. Reneke, A product integral solution of a Stieltjes-Volterra integral
equation, Proc. Amer. Math. Soc., 24 (1970), 621-626.

22, ————, Continuity for Stieltjes-Volterra integral equation, Technical Report,
No. 41, Clemson University.

23. ———, Product integral solutions for hereditary systems, unpublished
manuscript.

24. W. W. Schmaedeke and G. R. Sell, The Gronwall inequality for modified Stieltjes
integrals, Proc. Amer. Math. Soc., 19 (1968), 1217-1222.

25. H. S. Wall, Concerning harmonic matrices, Arch. Math., 5 (1954), 160-167.

Received July 3, 1973.

GEORGIA INSTITUTE OoF TECHNOLOGY








