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A FIXED POINT THEOREM FOR y^-SET-CONTRACTIONS
DEFINED IN A CONE

JUAN A. GATICA AND W. A. KIRK

Let X be a Banach space and H a solid closed cone in X
with interior H°. Suppose B is a bounded open set in X
containing the origin. For G — B Π H°, let dHG denote the
relative boundary of the closure G of G in H. In this paper
mappings T:G-> H are considered where T is a Λ-set-con-
traction, k < 1. It is shown for such mappings that if
(I - tT)(G) is open, t e [0,1], and if T satisfies (i) Tx Φ Ix for
all x e dHG and λ > 1, then T has a fixed point in G. In the
special case when T is a contraction mapping, (I — tT)(G) is
always open and boundedness of B can be dispensed with.

The Leray-Schauder boundary condition (i) is an assumption
which in particular holds for convex G if T: dHG —* G, or even more
generally if T is 'inward' in the sense of Halpern and Bergman [7]
(cf. also, Vidossich [15] (Theorem 5(ii)) for an equivalent condition
on / = I — T). Conditions similar to (i) have been imposed by several
authors recently in proving fixed point theorems in functional analy-
sis, although, as we note in more detail below, it is usually assumed
that the origin is an interior point of the domain of T, with the
condition Tx Φ Xx, λ > 1, required of all x in the boundary of this
domain.

We are concerned here with the "ά-set-contractions", k < 1,
a class of mappings which includes not only the usual "contraction
mappings" (mappings U: D—+X satisfying for some a < 1, || Ux— Uy\\^
<x\\% — v\\> %, yε D), but also mappings of the form T = U + C with
U a contraction mapping and C compact. This class is defined by
Kuratowski [9] as follows: For a bounded subset A of X define the
measure of noncompactness, 7(A), of A by Ί{A) = g. 1. b. {d > 0:
there exists a finite number of sets Sί9 , Sn such that A c (J?=i £<
and diam St ^ d, i — 1, , n}. A continuous mapping T: D-* X,
D c X, is called a ^-set-contraction if there is a fixed constant k ^ 0
such that 7( T(A)) ^ ky(A) for all bounded A c D. There has been
intensive study of these mappings recently including, notably, Nuss-
baum's development [10] of a theory of topological degree for them.

With i ϊand G as above, we prove in this paper that if T:G—+H
is a A-set-contraction, k < 1, satisfying (i) on dHG, and if (I — tT)(G)
is open, te[O, 1], then T has a fixed point in G. This theorem is
specifically related to a number of recent results; for example,
Nussbaum has proved [10] that if D is a bounded closed and convex
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subset of X with nonempty interior and if Γ ΰ - ^ I is a λ -set-
contraction, k < 1, satisfying for some x0 e D, Tx — x0 Φ X(X — x0) for
all xedD and λ > 1, then T has a fixed point in D. (See also Nuss-
baum [11, 12].) This result reduces to a theorem of Browder [3]
under the stronger assumption that T is semicontractive, and to one
of Darbo [4] if T: D —> D. The boundary condition used by Nuss-
baum is similar to (i) (if xQ is the origin), but it requires x0 to be
an interior point of the domain D of T. Another related fact, due
to Petryshyn [13], is that if G is a bounded open subset of X with
0 G G and if T: G -> X is a 'condensing mapping' (i.e., Ί{T{A)) < y(A)
for all AczD such that Ύ(A) > 0), then the assumption Tx Φ Xx for
all xedG and λ > 1 implies that the fixed point set of T in G is
nonempty and compact. Thus this result holds for a more general
class of mappings and convexity of the domain is no longer
required.

In attempting to weaken the assumption that the origin be an
interior point of the domain of the mapping, Gatica and Kirk [6]
have proved existence of fixed points for contraction mappings
T:G-+H where H is any closed and convex set in X, with G e l
open relative to H and OeG. The boundary condition assumed for
this result is: (i)' Tx Φ XX, X > 1, for all nonzero xed^G, where
d^G denotes the relative boundary of G in the closed subspace £ίf
of X spanned by H. Subsequently, Gatica [7] has extended this
result to the case where T is a fc-set-contraction, k < 1, under the
additional assumptions that G be bounded and I - tT one-to-one,
t G [0, 1]. These results differ from the theorem of this paper in that
by assuming H is a cone we are now able to replace the assumption
that the boundary condition (i)' hold on the relative boundary of G
in £ίf with the much weaker assumption that it hold only on dHG.
This new result does not appear to follow directly from our preced-
ing results and arguments.

THEOREM. Let H be a solid closed cone with interior H° in the
Banach space X, let B be a bounded open subset of X containing the
origin, and let G = B Π H°. Suppose T:G —> H is a k-set-contraction,
k < 1, with the property that (I - tT)(G) is open, te[O, 1]. // T
satisfies:

( i ) Tx Φ Xx for all x e dHG and X > 1,
then T has a fixed point in G.

The assumption that (I-tT)(G), te [0, 1], is open always holds if
1 — tT is one-to-one (see Nussbaum [12], Theorem 2), and in par-
ticular it always holds in the important case when T is a contraction
mapping. Also in this case, the assumption that B is bounded may
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be dispensed with by the reasoning of Gatica-Kirk in the proof of
Theorem 2.2 of [6], Thus we have the following:

COROLLARY 1. With H as in the theorem, let BczX be an open
set containing the origin, and let G ~ B Π H°. If T: G —»H is a
contraction mapping satisfying

( i ) Tx Φ Xx for all x e dHG and X > 1,
then T has a fixed point in G.

If T:G —>H is a nonexpansive mapping (i.e., if \\Tx~ Ty\\ ^

\\x — y\\, x,yeG) t h e n tT is a contraction mapping for te[O, 1).

Also, if (i) holds for T on duG t h e n (i) also holds for tT, t < 1, so

t h e above implies:

COROLLARY 2. With H as in the theorem, let BaX be an open
set containing the origin and let G = B Π H°. If T: G —> H is a
nonexpansive mapping satisfying:

( i ) Tx Φ Xx for all x e dHG and X > 0.
(ii) ( x J c G such that xn — Txn—+0 as n—* ̂ o implies existence

of xf e G such that x' - Tx' = 0.
Then T has a fixed point in G.

We should mention that condition (ii) above was first used by
Petryshyn [14], where he notes that it always holds if T is a
generalized contraction in the sense of [2, 8]. Also (ii) always holds
if X is uniformly convex and B is bounded and convex, because
Browder has shown [3] that in such situations / — T is demiclosed
for nonexpansive T. Thus we have:

COROLLARY 3. Suppose X is a uniformly convex Banach space,
HdX is a solid closed cone, and B a bounded open convex subset
of X with OeB. Let G = Bf)H°. If T:G-*H is a nonexpansive
mapping satisfying (i) on dπG, then T has a fixed point in G.

In what follows we use dA to denote the boundary of a subset
A of X. We also use 7 to denote the measure of noncompactness,
and in particular, if {yn} is a bounded sequence in X, Ύ({yn}) =
7({2/n: * = 1, 2, ...}).

The following lemma, which is contained implicitly in [5], is used
repeatedly and we include its proof for the sake of completeness.

LEMMA. Let X be a Banach space, D a bounded subset of X,
and T: D—> Y a k-set-contr-action, k < 1. Suppose {an} is a sequence
of numbers converging to a e [ — 1, 1], and suppose for {yn} czD, yn +
<xnTyn — zn where {zn} converges. Then 7({yn}) — 0 and thus {yn} has
a convergent subsequence.
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Proof. Since D is bounded it follows that ikΓ=sup {\\Tx\\: xe D} <
co, and clearly we may suppose i k f > 0 . Let ε > 0. Since an—+a
as n —• oo there exists a positive integer N such that if m, n Ξ> N,
\an-am\< ε/M, \am\£l + e, a n d || zm - zn\\< ε. I f y({yn}) = d,
then clearly 7({yn}Z=N) = d and τ({ 7fyΛ}~=ΛΓ) ^ fed. There exists a finite
cover {S^ . . -, Sr} of {ΓyΛ}?^ such that if 2tyfc, Tys e S, for ί = 1, . . . , r,
then || ϊtyΛ - 2tyβ || ^ fed + ε. Now let

F< = T'^S,) n {yn: n - N, N + 1, ...} , i = 1, , r ,

and observe that {yn}7=Nc:\jUiF,. Also if yn,ymzFiy then

II ym - Vn II = II tfw2Vn - ^Ti/n + ocmTyn - α:wΓτ/w + « « - « * II

^ I αw - α m 11| IV* || + | am \ \\ Tyn - Tym || + || zm - zn ||

^ I α:w - αm I M + | α m | (kd + ε) + ε

< 2ε + (1 + e)(kd + ε) .

Since ε is arbitrary this implies 7({yn}) ^ fed which in turn yields
d ^ kd. Since fe < 1 we conclude d — 0. But this implies that the
closure of the set {yn: n — 1, 2, •} is compact.

Proof of the theorem. We may assume without loss of generality
that G is the interior of its closure. For t e [0, 1], let Gt = (I- tT)(G).
By assumption, Gt is open and since tT is also a ίfe-set-contraction,
tk < 1, I - tTis proper (Nussbaum [11], Corollary 2). Thus (I-tT){G)
is closed and hence dGta(I - tT)(dG).

Fix α 6 G and let α: = c φ ) = sup {£ 6 [0, 1]: x e Gt). We first show
that either a = 1, or there exists w e dHG such that w — aTw — x.
(Note that a is well-defined since xeG0 = G.)

Let μn-+a as n —> oo where a?e G^. Then for each tt there
exists yneG such that yn — μnTyn = α;. By the lemma there exists
yeG and a convergent subsequence {yni}T=ι of {i/J such that yn. —>7/
as i —> co. Since μniT-~>aT uniformly on G as i -> co it follows that
y — aTy — x, i.e., # 6 Gα.

Now suppose α < 1 and let tn | α as n —> co where ίΛ e (o:, 1), ^ =
1, 2, . Since x$ Gtn and y — tnTye Gtn the segment joining y — tnTy
and x must contain a point zne dGtn. But 3Gί% c (J — tT)(dG), so for
each w there exists wn e dG such that

As n —> cof y — tnTy—*x so it follows that sw —>a;. Thus by the
lemma some subsequence {w%ί}Γ=i of {wn} converges to a point w e dG,
and (*) yields: w — aTw = &.

Now xe H° and α T ^ e Jϊ. Since £Γ is a cone and w = x + aTw
we have w e H°. This, with the fact that w e 3G, implies w e dHG.
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(Notice that since, by assumption, G is the interior of its closure,
dHG = dHG.) Therefore, we have established the following:

If xeG and if a = sup {t e [0, 1]: xe GJ, then either (a) a = 1,
or (b) there exists w e dHG such that w — a Tw = x. Moreover, if (a)
holds for xeG, there exists yeG such that y = x + Ty.

Now to complete the proof, let {fej be a sequence of points of
G such that Λ,,—>0 as ΐ—» ©o. For each i, let at = tf(/^)._ From the
above for each i either (a) at — 1, or there exists wέ e 3HG such that
wt — 0iiTwi = / .̂ But if (a) holds for infinitely many i, then we
may suppose (by passing to a subsequence) that for each i there
exists 2/i 6 G satisfying y, = λ< + ϊfy*. Since ^ —• 0 it follows from
the lemma that there exists a subsequence {s/̂ .JJLi of {ι/J which con-
verges to a point yQeG. Since

yij = hiJ+ TytJ, i = l,2, ••-,

we must have 2/0 = 2V0 and Γ has a fixed point in G.
On the other hand, if (a) does not hold for infinitely many i,

there exists an integer N such that for wt e dHG,

(**) w* — α , T ^ = hi , i = iV, JV + 1, .

Moreover, by passing to a subsequence we may suppose at —> α ^ 1
as ί —> oo. Then since /̂  —• 0, the lemma again applies and there
exists a subsequence {w ĴJLi of {wj which converges to a point
wedHG. This, with (**), yields w — aTw. Since αe[0,1] and
w 6 δ^G, (i) implies either a = 0 or a = 1. But α — 0 is not possible
because this implies 0 e dHG, a contradiction in view of the fact
G = Bf)H° with B open, and OeB. And if a = 1 then w = aTw =
Tw, completing the proof.

As a final comment we note that in relation to Corollary 1, if
the stronger assumption T: dHG —> G is made then H need not be
a solid cone, and in fact may be taken to be any closed and convex
set with G = B Π H Φ 0 . This fact is a consequence of results of

[1].
We wish to thank the referee for suggestions which improved

our exposition.

Added in proof. Recent generalizations of the theorem of this
paper based on degree theory results of Nussbaum and Petryshyn
and not requiring (/— tT){G) to be open for 0 < t ^ 1 will appear
in [W. A. Kirk, "A remark on condensing mappings," J. Math. Anal.
Appl.] and in [W. V. Petryshyn and P. M. Fitzpatrick, "Fixed point
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theorems and the fixed point index for multivalued mapping defined
in cones"]. The latter paper extends the theorem to multi-valued
mappings in Frechet spaces.
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