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IRREDUCIBLE SUBGROUPS OF ORTHOGONAL
GROUPS GENERATED BY GROUPS

OF ROOT TYPE I

BETTY SALZBERG STARK

In this paper it is shown that the only irreducible sub-
groups of orthogonal groups over finite fields of odd charac-
teristic generated by groups of root type 1 are (1) unitary
groups, (2) groups of type G29 or (3) the commutator subgroups
of the orthogonal groups in question. This is a general-
ization of a previous result by the author.

In a previous paper [6], the author proved that the only subgroups
of orthogonal groups over finite fields of odd characteristic which are
generated by groups of root type 1 (defined below) and transitive on
one-dimensional singular subspaces are the groups (1), (2), and (3)
above.

The result of this paper is related to two current lines of research.
Firstly we note that the irreducible groups that we study, together
with the vector spaces they act on, form a quadratic pair in the sense
of Thompson [8] [see e.g., 4], since the elements of a group of root
type 1 have a minimal polynomial (x — I)2.

Thus we have a classification of certain subgroups of orthogonal
groups which form a quadratic pair. However, our methods depend
on the orthogonal geometry and hence are unlike the methods of
Thompson. In addition, we include the case p = 3, not considered
by Thompson.

Secondly, the groups of root type 1 form a conjugacy class in
the orthogonal groups as well as in the groups (1), (2), and (3) above.
(This is not proved here, but is proved in [8] § 16, where Thompson
shows I7 is a conjugacy class in G, and can also be proved directly.)
Furthermore, any two groups of root type 1 generate either an abelian
p-group or SL (2, q) (where q is the number of elements in a group
of root type 1) or a group of order q* which is isomorphic to the
Sylow p-subgroup of SL (3, q). Thus our result is analogous to results
obtained by, for example, Aschbacker [2], or Fischer [3], who have
investigated the classification of groups generated by a conjugacy
class of p-elements such that any two ^-elements generate a group
from a given class of groups.

1* Terminology and restatement of theorem* Let V be a finite
dimensional vector space over a finite field of characteristic not 2.
Let B be a symmetric bilinear form on V. B determines a quadratic
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form Q on V by B(x, x) — 2Q(x). In addition, suppose there is no
x Φ 0 in V such that B(x, y) = 0 for all y in V. Then we say B is
nondegenerate on V. In this case, the group of linear transformations
on V preserving B is called the orthogonal group (with respect to
B), and is denoted 0(F). The commutator subgroup of 0(F) is denoted
Ω(V).

If for all xeS Φ {0}, S £ V, B(x, x) — 0, we say S is singular.

We remark that the condition S Φ {0} is not standard. Our "singular
vectors" and "singular subspaces" are always nonzero. If a vector
u is nonzero and not singular, it is nonsingular. This is standard.
Further, we use protective terminology. Thus, a one-dimensional
subspace is a point and a two-dimensional subspace is a line. Let
< > denote "subspace generated by". Thus <x> is the point generated
by the vector x.

The set of vectors x such that B(x, y) — 0 for all y e Y ^ V is
denoted Y1. lί X Q Y1 we say X is perpendicular to Y. Since B
is bilinear, this is equivalent to saying <X) is perpendicular to (Y}.
Since B is symmetric, I g P implies F g P .

Now let x be a singular vector (hence nonzero by definition),
and let u be in xL. Define a linear transformation px>u by: For zexL,
px>u sends z to z + B(z, u)x. This transformation preserves B on the
n— 1 dimensional space xL. (Note that in case ue(x} pXyU acts as
the identity on xx.) By Witt's theorem (see, for example, Artin [1,
p. 121]), every linear transformation which preserves 5on a subspace
of V can be extended to a member of 0(F). Tamagawa [7] shows
that the extension p of pXtU to a member of 0(V) is unique. In fact,
if y is a singular vector such that B(y, u) — 0 and B(x, y) = 1 (when
u£ <&>, such vectors always exist) then p sends y to y — Q(w)# — u.
We abuse notation by allowing px>u to stand for its extension to a
member of 0(F); ^ ^ is called a Siegel transformation.

Since, as a direct consequence of its definition,

( -L j Px,uPx,v Px,u + v

we see that the set J — {pXιku \ x singular, ue χ-f u£ (x}; x, u fixed,.
k e F} is a group isomorphic to the additive group of F. If u is
singular we say Σ is a group of root type 1. If u is nongingular
we say Σ is a group of root type 2.

Let I F\ = q — pn, where p is an odd prime. Let dim V = t and
index V—v. We remark that if Ω(V) contains a group of root
type 1, v must be at last 2, and hence t is at least 4. We restate the
main theorem of this paper:

MAIN THEOREM. Let G be an irreducible subgroup of Ω(V)
generated by groups of root type 1. Then
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(i) G^GM

(ii) G = SU(t/2, q2) and either

t = 4m + 2, v = 2m, m ^ 1 or t — 4m, v = 2m, m > 1

or
(iii) G - Ω(V).

2. The use of standard basis notation* Artin [1] shows that
V can always be represented in the following way:

V = (x19 #_!> _L <>2, X-2> 1 <#*, #-fc> JL w

where (xu cc_ί) is a "hyperbolic line",

i.e., B(xif x^i) = 1 and QO )̂ = Q(^_Ϊ) = 0

and W is anisotropic (containing no singular points). The dimension
of W is 1, 2 or 0. The index of V is ft.

By Witt's theorem, if vif -—,vt are any vectors in V with the
same multiplication table B(vίf vά) as some subset of a standard basis,
they can be extended to a standard basis. Thus we use (xlf x2}, for
example, to stand for any singular line in V.

3. Preliminary results. We restate for the reader some of the
results from [6].

LEMMA 1. The groups of root type 1 are in one-to-one correspon-
dence with the singular lines of V.

The follows from elementary properties of Siegel transformations,
namely

( 2 )

( 3 )

and for

( 4 )

singular u

Px,u-tkx Px,u

Px,cu Pcx,u

Px.u = P-u,x .

keF

ceF

Thus we may make the following definition:
Let Σl = {pXtU 11 = (x, u}} U {1}.
If Σl g G, say I is an axis line for G.
For the following lemmas let Σl and Σm be groups of root type 1

and let H be the group generated by Σl and Σm. Let W = <£, m)
and suppose I Π m = {0}.
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L E M M A 2.

( 1 ) If I Π m 1 = I, H is abelian.
( 2 ) If I n m1 = P , (α point),

H is isomorphic to the p-Sylow subgroup of SL3(g) (g = pn).
(3) IflΠm1 -{0}, #^SL2(g).

LEMMA 3. 1/ Z n mL — {0}, i ί is reducible on W, every singular
point in W is on exactly one axis line for H, and the orbits of
singular vectors under H form singular lines.

To illustrate, if I = (xlf x2), m — <x_x, x_2>, then (xlf £_2> is an orbit
of singular vectors under H, i.e., for any c, de F, not both zero there
is a σ e H such that σ{x_2) = cxx + dx_2.

LEMMA 4. If I Π m1 = P, P is on two distinct axis lines in H.

To illustrate Lemma 4, let I — (xu x2} m = (x_u x3). Then P = (x2},
and <ίr2, x3> as well as <x2, x^ are axis lines for H.

LEMMA 5. If I Π mL = {0}, i ϊ is transitive on the nonsingular
vectors of a given length in W.

4* Baer's theorem* In Lemma 2 we have remarked that two
groups of root type 1 either generate a p group or SL2(g). In the
latter case, we say the two groups of root type 1 are opposites,
following Thompson [8]. Baer's theorem allows us to assume that
each group of root type 1 in an irreducible subgroup of Ω( V) has an
opposite. For the convenience of the reader we state the relevant
theorems:

LEMMA 6 (Baer). (Theorem 3.8.2 [5]). Let K be a conjugacy
class of p-elements of the group G. If every pair of elements of K
generate a p-group then K lies in a normal p-subgroup of G.

LEMMA 7 (Theorem 3.1.3 [5]). If G possesses a faithful irre-
ducible representation on a vector space over a field of characteristic
p, then G has no nontrivial normal p-subgroups.

5. No two axis lines intersect (Case 1). In §§ 5 and 6 we assume
that no two axis lines of G intersect. Suppose I = (xu x2) is an axis
line for G. By Baer's theorem (Lemmas 6 and 7), we must have an
opposite, "m". Without loss of generality, we may use standard basis
notation and let m = (x-l9 #_2>. Each singular point in W = (I, m} is
on exactly one axis line for H, the group generated by Σl and Σm.
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We retain these definitions for H, W, I, and m in §§ 5 and 6. Thus
if G is to be irreducible and have no two axis lines intersect, the
dimension of V must be greater than 4.

In order that (xu #_2> = X not be fixed by G, some point in X
must be moved by an element of G out of X. Without loss of
generality (by Lemma 3) let us assume (x^y is moved out of X. Then
we must have an axis line of form n = <x_x + y, z}. We may assume
zext since n Π xt has dimension one. If ze(xl9 x2}

λ, then <2> is on
two axis lines, by Lemma 4. Thus

n = (X-i + cx1 + dx2 + v, x__2 + ax2 + bxx + u)

where v, u e WL, a, b, c, de F.

Case 2. Suppose a = 0. Then since y = x_2 + bxλ + n is perpen-
dicular to (bx2 — x_ίf x_2 + bxΊy = fc, an axis line for if, we must have
x = x_λ + cα?! + d#2 + v also in kι, so that ?/ is not on two axis lines
(Lemma 4). Hence c — 0 and d — —b and w = <ίc_1 — bx2 + ι;, x_2 +
bxλ + ̂ 6).

Thus u and v are both singular, uevL, and < ,̂ v>e W1. Thus
the dimension of V must be at least 8. We return to this case later.

Case 1. Suppose a Φ 0. By Lemma 5 we may send x_2 + ax2 +
bx1 + u to z = #_2 + α#2 + u by an element of iϊ".

Hence we get an axis line for G, n = (w, z}. Choose w on n in
u1. Then w •=- ex^Λ- fx~ι + ^x2 + ^^-2 + a? where x e (W, u)L. Hence
g + ah = 0 or # = — αλ. At this point, we need more information.
We thus note:

LEMMA 8 [6], Using standard basis notation, if I = (xlf x2},
m = <#_i, X-2y, n = < -̂2 + ^^2 + ^, ^^-2 — ahx2 + ea?L +/^_i + x} where
(x, u) e {I, m ) 1 and (x9 u} is anisotropie, then Σl, Σm, and Σn generate
a group G isomorphie to SU3(q). In addition, G is transitive on
the singular vectors in V= <ϊ, m, n) and is transitive on the non-
singular vectors of a given length, and every singular point of V is
on an axis line for G.

By Lemma 8, if (u, x} is anisotropic, the group generated by H
and Σn is isomorphie to SU3(q).

Now suppose (u, x} contains one singular point, (y). Then
(t + y} 6 n for some t e W. But since y is singular, t is singular
and hence t belongs to some axis line s of H. Thus <ί + 2/>es1.
But n Π s1 Φ n since (n, W} does not contain a 4-dimensional singular
space. Thus by Lemma 4, (t + y} must be on two axis lines for (?,
contradicting the hypothesis of this section.
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LEMMA 9. Let m and I be axis lines for G such that m Π lL = Φ-
Let Σn move some point of <m, V) outside of <m, I). If we assume
that for the group T generated by Σm, Σl, and Σn, no two lines
intersect, then either (a) (jn, I, n} contains a ^-dimensional singular
space {Case 2 above) or else (b) T ~ SUz{q) and (m,l,n) is non-
degenerate with dimension 6 and index 2.

As a consequence of Lemma 9, we now prove

LEMMA 10. Suppose no two axis lines of G intersect. If
T ~ SUk(q) is a subgroup of G fixing a 2k-dimensional subspace U
of V, then either

(1) U=V,
(2) there is a Case 1 axis line moving U and G 3 SUk+1(q), or

(3) there is no Case 1 axis line moving U; axis lines moving U are
Case 2 axis lines.

Proof. If U Φ V, T is reducible on V and there must be another
axis line h. Thus Σh is a subgroup of G which does not fix U and
for some pair of opposites Σl, Σm in T, Σh does not fix ζl, m). If
h is a "Case 1" line, (h, U} Π U1 has dimension 2 and is anisotropic.
By work in [6], Σh corresponds to a unitary transvection with center
(x + y} where x is in U and y is nonisotropic in Uι. (We have
abused notation by identifying the orthogonal geometry of U and
the corresponding unitary geometry of U.) One wishes to know that
SUk(q) and such a unitary transvection generate SUk+1(q). But one
need only remark that SUk(q) is transitive on nonisotropic vectors of
a given length, to see that if <x + y) is a center of a transvection
for G, then so is (z + y) for any z in U of the same length. Thus
T and Σh generate a group isomorphic to SUk+1, since such unitary
groups are generated by the set of all unitary transvections.

6* No two axis lines of G intersect (Case 2). We now assume
that Case 1 does not occur in G. We have in G, the subgroup H,
generated by the opposites Σl and Σm. In addition, by Lemma 3,
we have for each c and d not both zero the axis line

n(c, d) — (cx_x + dx2 + xz, cx_2 — dxγ + #4> .

But H and Σn(c, d) fix (xz, x4}. In order that G be irreducible we
need still another axis line k such that Σk moves <x3, £4>. (Hence
Σk is opposite to Σn(c, d) for some c, d.)

First assume k is in WL. Then let O_4> = k Π < 3̂>
x and let

O_3> = k Π <^4>1. Thus k = O_3, £_4>.
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If k is not in W1, there are two possibilities
(1) k = l(c, d) — (cxt + dx2 + #_3, cx2 — dx_t — #_4>
( 2 ) A; = p(c, d) = (cxt + dx__2 + #_4, c#2 - dx1 + #_3>.
Since the group generated by Σl(c, d), Σn(c, d), and H is iso-

morphic to the group generated by Σ(x_3, #__4>, Σn(c, d), and H, we
may identify possibility (1) with k = O_3, #_4>.

Further, a line of type (2) in addition to a line of type n(c, d)
produces a Case 1 configuration in G: Σ{xt + x_4, x2 + x-z) sends

<#_! + #3, £-2 + #4> tθ <X_! + # 2 + X_3 + 0?3 — ίCχ — #_4, >.

Thus, we may choose keW1. We remark that the group T
generated by Σk, Σn{c, d), and H fixes the space <x_x, a?2, x3, α?_4>.

We generalize this process:

LEMMA 11. Suppose G has no Case 1 configuration and G con-
tains a subgroup T(n) (n ^ 2) generated by groups of root type 1 with
the following axis lines: (xu x2), (x_ίy x_2), , (x^ + x2n-lf %-2 + #2w>>
<ί»-(2»-i)> -̂2̂ > ?%e^ (1) T(%) is transitive on the (singular) vectors
in the space X — (x-lf x2f x3, α?_4, , x2n-u ^-2%) and T(n) fixes X.

( 2 ) If k is a singular line in U, the space spanned by axis lines
of T(n), and Σk is not an axis line for T(n), then Σk is not an axis
line for G.

( 3) G contains T(n + 1).

We remark that as a consequence of this lemma, since F i s finite
dimensional, there can be no group G without a Case 1 configuration.

The proof of (1) is tedious but straightforward. One shows all
vectors in (x_u x2j x2j-u x_2i> 2 ^ j ^ n are in the same orbit by
applying in sequence various transformations in H, Σ(x_{2j^1)f X-2j) and
Σ(x_i + x2i-u x-2 + #2i>. Then one remarks that x^ can be sent to
an arbitrary vector of Xf α1x_1 + a2x2 + - . . + a2nx_2n by sending X-x

to £_! + a3x3 + α4#_4, then fixing a3x3 + α4#_4 and sending x_: to X-ι +
aδxδ + a6X-G, repeating until in the last place where a2j^ and a2j are
not both zero, one sends x^ to axx^ + a2x2 + a2^γx2^γ + a2jx-2j.

By part (1) every point in X is on (exactly) one axis line for
T(n). A new axis line k in U must have no point in X. Since
U Π X1 = X, k must not be on X1. Without loss of generality, say
& = <&! + 2/, £> and let 2 = k Π (x-i}L. Then 2 = x2 + w, since Σk is
an opposite to Σ(x_u x_2}. But 2 g X. Thus w£ X. Thus there is
a component of 2 in y = (xu x_2, x_Zj x4, , x2n} Say δ ^ is a
component, then Σ(x_x + aj_2i, #_2 + ^_(2i_1)> ( S Γ(^)) moves z to 2 4-
(#_! + a?-2j) — δ(»-2 + #-(2i-i)) But then we have a Case 1 configuration
(if δίCtay-D is a component, use IX^.i + α?2i_i, a?-2 + <%»• This proves
(2).

Thus we must have a line r moving X and lying outside of U.
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Without loss of generality, say r moves x_lf r = (x + y, z + w} where
x, z e U and y, w£ U. Say z has an x1 component. Say ζx + y} g
<>_!>L Π r. Then x = x2 + azxz + b3x_3 + + α2w#2% + b2nx_2n. Since
T(w) is transitive on vectors in X, and fixes X, some element in
T(n) sends a; to y = x2 + c3£_3 + c4x4 + + c2n_1x_{2n^1) + c2nx2n. Some
σ e J^ccx + #2i-i, a?-2 + »ai> sends y to y + e2i_i(—#_2 — x2j) + x_x + α?2i_1#

But since there are no Case 1 configurations, e2/-i = 0 for all j .
Further, some τ e Σ(x_2j, X-M-D} sends y to y + ciS(x-.κ2j-u) Thus
c2i = 0 as well, since the coefficient of X-{2J-D must be zero. Thus
we may choose x = x2, or without loss of generality x can be chosen
to be any vector in X, say x = x^. The hypothesis of no two axis
lines intersecting yields r = (x^ + T/, #_2 + w} with j/,we Z71. With-
out loss of generality r — (x^ + x2n+1, X-2 + x2%+2). In addition, we
have shown that an axis line of form (x + y, z + w} with x, z e U
and y, we U1 can be written with xe X. Hence, if we are to have
a line which does not fix (x2n+u a w 2 ) , w e must have lines of form
(x-un+i), x-un+z)}, or (x_, + a?-.(2ft+1), X-2 + x-2ny ^ before. But the
latter produces a Case 1 configuration. This proves part (3).

We now prove:

THEOREM 1. If no two axis lines of G intersect, G = SUk(q),
k ^ 3. (In this case dim V = 2k. If k is even, index V — k. If k
is odd, index V — k — 1.)

Proof. We have shown that if G is a group satisfying the
hypothesis of this paper, such that no two axis lines intersect, then
G must contain SUz(q). Let n be the largest number such that
T ~ SUn(q) S G and let U be the 2^-dimensional space fixed by T.
If U = V, we are done. If not, there must be an axis line r for G
such that Σr does not fix U. Since T is transitive on the singular
vectors of U (for this we need n ^ 3) and since no two axis lines of
G intersect, we may write r = (x^ + xn+u x_2 + xn+2). (If r were
Case 1, we would contradict the maximality of n.) In addition we
must have (x_{n+1), x__{n+2)}. But T is transitive on the singular vectors
of U. So we then also have as axis line (xx + xn+l9 x2 + xn+2), and
2'<&_<Λ+1,, X-(n+2)} sends <^ + xn+u x2 + xn+2} to

rC \Xι ~T Xn+1 I %— ( Λ + 2 ) > *^2 "I ^ % + 2 •£—(»+1)/

and Jfc sends r to <>_! + αj2 + ^%+2 - X-{n+1) + a?ft+1 + ^ + α?Λ+1 + £_ u + 2 ) ,
• ••>, a Case 1 configuration.

7* Two axis lines contain the same point and are perpen*
dicular to each other* If two axis lines I and m for G contain the
same point P, then either I is perpendicular to m (e.g., (xu x2} and
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<#!, #3» or else I Π m 1 = P (e.g., (xu x2} and <jxu #_2». We suppose
in this section that the former case occurs, but the latter does not,
and in addition for no point Q is the space of axis lines containing
Q of dimension larger than 3.

Let P = <#!>. Using standard basis notation we assume (xu x2}
is an axis line containing P. Let the space spanned by the axis lines
containing P be called S.

Not that the hypotheses of this section imply S is singular.
Let an opposite to (xu x2} be denoted (x_u x^2) as usual. Then

ί = Sn<^_ 2) J has dimension 2 and includes xλ. By the following
lemma, I is an axis line for G.

LEMMA 12. If S is the space spanned by axis lines for G which
contain the singular point P, and P § m £ S, where m is a line, then
m is an axis line for G.

Proof. Say lt — <P, xty 1 ^ i <̂  k are the axis lines spanning S.
Then m = <P, Σί=i<V&i> % the fact that px,uPx.* = P*,*+» w e s e e

that m is an axis line for G. (If S is not singular, Σm may be a
group of root type 2.)

Thus using standard notation, we may name our I above "(xu xd}"
where x3e <x_29 x_u χ2, α^) 1 .

We remark that Σ(x__u x_2} sends (xu xz} to (xγ + αα;_2, xz). By
Lemma 12, <cc_2, x3} is also an axis line for G. By Baer's theorem
(Lemmas 6 and 7), we know that (xu x3} must have an opposite; call
it m.

Let m = (x + w, y} where w Λ- xexi and y e EiS and w 6 <a?x, x2>

x~ι9 X-2}
L. T h u s .τ = X-γ + α ^ x + δ x 2 + cx_2 f o r s o m e a,b,ce F.

Case A. Assume w is singular or zero. Hence x is singular.
Let H be the group generated by Σ(xιy x2} and Σ(x-U ^_2>. Since x
is singular we can find & σ e H which sends m to σ(m) — (x2 + dxγ +
^^ (̂̂ /)> where d e F. (Note that since the coefficient of au is nonzero
in x, the coefficient of x2 is nonzero in σ(x). Further, note that σ(y)
must contain an " # _ 3 " component since y did, and σ e H.)

If o{y) is perpendicular to < x̂, x2}, then J(j(m) sends <»!, x3) to
<»i, 3̂ + %2 + d»i + w>. Thus w G < 3̂>. However we show w e (x3}
even if σ(y) is not perpendicular to (xlf x2}.

If σ(y) is not perpendicular to (xlf x2}, then by Lemma 4, <x2 +
d^ + w} is on an axis line with some point P on (xu x2}. Since o"(?/)
is not perpendicular to xZy (x2 + dxλ + ^> is on an axis line with some
point Q in (xu £3>. Thus {x2 + dxγ + w} is on axis lines with P, Q,
and σ(y). It P Φ Q, these three points are linearly independent and
(x2 + dxx + ^> is on too many linearly independent axis lines for the
hypothesis of this section. Thus P = Q = <^>. But then (x,} is on
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too many axis lines, unless w e <#3>.
Therefore, we may suppose that σ{m) — (x2 + dx1 + cx3f x_3 + ax-2 +

bx1 + ex2 + fx3 + z} where z e (xu x29 x3j x_l9 x_2, X-3)
L, and there is

no #_! component since (x2 + dx1 + cx3, x^) is an axis line. In addition,
by Lemma 12, we may assume 6 = 0.

There is an element t e Σ(x_2, x3} which sends σ(m) to tσ{m) =
(x2 + dxlf x_3 + hx_2 + ex2 + gx3 + z>. Since tσ(m) is singular, h = 0.
By Lemma 12 we may also assume e — 0, and we obtain tσ(m) =
<#2 + dxl9 X-3 + gx3 + z). Here cZ may be zero or not.

Let T be the group generated by H, Σ(x19 x3}, and Σm for Case
A. But T fixes the space U = <#!, x_2, x_3 + gx3 + z}, so T is not
irreducible. Further, T is transitive on the vectors of U. Thus we
have an axis line for G which moves x19 say I — (x^ + y, w} where
w ί U. Let w be in xt. If w is also in x2, w is on an axis line with
some point in (xu x2}9 not (xλy. If w is also in ^s1, w is on an axis
line with still another point. Further, (w, axί + x29 bx± + x3} must be
3-dimensional since no point in (xu x2, x3} can be on an axis line with
#-i + y> these all being on axis lines with (x^. Hence (w, axx +
x29 bxλ + x3, x._x + y) (in the space of axis lines containg w) is 4-dimen-
sional. This implies w must either not be perpendicular to x2 or else
not to xz.

Suppose w is not perpendicular to x29 but is perpendicular to x8.
Then w = ax1 + 6#2 + x__2 + cx3 + x where x e (xlf x2, x3i X-l9 X-2, X-3 +

gx3 + z)L and w is on an axis line with x1 + dx3i d Φ 0. We may use
Lemma 12 with <ccL + cZo;3, α;3> and <X + dcc3, x^ to get the axis line
m — (jxί + rf^3, 6^2 + X-2 + ^>. If 6 = 0, Σm sends <#_2, X-i} to
<α;_2, ^_i + #_2 + ^) But then x_2 is on too many axis lines (since x
is linearly independent of x^ and x3). Thus 6 ^ 0 . But by [6], this
gives us a G2 configuration in the 7-dimensional space (xl9 x2y x_l9 x__2,

If w is not perpendicular to x3i we have another opposite to
<#!, x3). If we are in Case B (which follows) we end up with a line
m ( = (xx + c?̂ 3, x_2 + bx2 + ί̂ » and G2, as above. So we assume Case
A again occurs and we have a line of form I = (x^ + ax_2, x_3 +
fx3 + Xs), where x_3 + fx3 •+ x 0 <^_3 + ^^3 + ^> since w$U, and Z7 is
fixed by T. But #_3 + /a?8 + xe <#!, a;2, x_l9 X-2}

L' If ^_3 + fx3 + xe
(x-3 + ^^3 + z}1 then x_3 + fx3 + x is on axis lines with x_x — dx_2

and x2 + dxlf as is α;_3 + gx3 + ^. Whether or not d = α, #2 + ^^i ends
up on too many axis lines. Thus <£_3 + /α?3 + x} ί (x-3 + gx3 + z}1

and again by [6], and Witt's theorem, we get G2.

Case B. We recall that (xl9 x2}f {x^ly #_2>, (xu x3), and (x_2, x3}
are axis lines for G. Further Σm is an opposite to Σ(xu x3}f and
m — (x + w, y), where <̂ /> = m Π <^i>L, <^ + ^> = w Π {^s)1, and
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we (xu x2f x~l9 X-2}
λ In Case B, w is nonsingular.

By Lemma 5, H, the group generated by Σ(xu x2} and Σ(x_u X-2}
is transitive on nonsingular vectors of a given length. Thus we may
assume for a Φ 0, m = <#_2 + ax2 + w, #> where y has an #_3 com-
ponent.

If w — bxz + z, where ze (xZf X-Z)
λ, then apply σeΣ(x_2, xz) to

obtain σ(m) = <#_2 + α#2 + 2, x). We may choose cc = σ(m) Π z 1 .
Again, x$ x£, so we may use Lemma 4 to see #_2 + α#2 + 2; is on an
axis line with some point P in (xlt xz). We obtain I = (x_2 + ax2 +
z, xι + bxz} where b is not zero, for otherwise xx is on too many axis
lines. (Since x3 is on an axis line with #_2, P Φ (x3).)

We recall that σ(m) (— <#_2 + ax2 + z, x)) is an axis line for G,
and x ί xt, xe{xλ + bx^}1 Π z1. Thus x = ίc_3 — 6^_x + cx2 + dα;3 + exx +
/^_2 + t where t e (xlf x2i xs, x_lf x_2i x_Zi z)1. By Lemma 12, there is
an axis line n — <α?_2 + ax2 + zy #_3 — bx^ + cx2 + gxz +/α?_2 + ί) . Since
n is singular, / = —arγc. Look at the point P = n Π ̂ -2 — ̂  Π
<^_i, cc_2>

J-. P = <ίc_3 — δx_j + /cu_2 + gx3 + ί — QΓxcx_ι — α" 1 ^) =
<α?_3 — &#_! — 2α~1cα;_2 + ^ 3 + £ — α " 1 ^ ) . But P is on an axis line
with some point in (x_lf x_2>, as well as with #_2 + ax2 + z. Thus
P is on an axis line with <#_!>. Apply Lemma 12 to see r = (x-lt X-z +
gxs + t — α " 1 ^ ) is an axis line. By [6], the group generated by
Σr, Σl, H, and Σ(xu x3) is isomorphic to G2 on the 7-dimensional space
(xlf x2f X-l9 X-2, xz, X-z + gxz + t — a^cz, z). We remark for the con-
venience of the reader that in [6], we showed that G2 is generated
by Σ(xu x2), Σ(x_u x_2), Σ(xu xz), Σ(x_u x_z), Σ(x2t x_z), Σ{x_2j xz) and
Σ(xλ + dxZy bx2 + x_2 4- x) where xe (xu x2y x_u x_2y xz, X-Z)

L. In Case
A, " # _ 3 " was replaced with " # _ 3 + gxz + z". (Witt's theorem makes
this substitution legal.) In Case B, " # _ 3 " was replaced by "^_3 +
gxz + t — aΓιcz" and "x" by "z + kxz" where k is chosen such that
z + kxze <cc_3 + gxz + t — α " 1 ^ ) 1 . Then note we have the line <£_2 +
ax2 + « + λ%c3, a?! + δx3> as an axis line for G by Lemma 12.

Thus we have seen we have (under the hypotheses of this section)
a G2 formation, which by [6] is transitive on the singular points of the
7-dimensional space U spanned by the axis lines. Suppose then that
G contains G2 and acts irreducibly on a space of dimension larger
than 7.

Thus, without loss of generality we have an axis line I = (x^ +
uf v) where no point on I is in U, since all the singular points in U
are already on the required number of axis lines. Let v be the point
on I in xt. But I must be opposite to all lines of form (xlf ax2 + bxz)9

a and b not both zero, or by Lemma 4 some point on one of these
lines will be on an axis line with v. This is impossible since v must
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be perpendicular to some point on (x2, #3>. This establishes:

THEOREM 2. The irreducible subgroups G of Ω(V) generated by
groups of root type 1 such that (1) two axis lines I and m contain
the same point P and I § m1, but no two axis lines intersect which
are not perpendicular to each other and (2) for no point Q is the
space of axis lines of dimension larger than 3, are the groups G2(q).
The dimension of V is 7 in this case.

8* The nondegenerate axis line space* Let S be a maximal
dimension space spanned by axis lines containing any one singular
point. If we name this point <a?χ>, then let I = ζxl9 x2) be one of the
axis lines in S(= SixJ).

Suppose one of the opposites to I is m = (x_lf #_2>. Then T —
Sf] (x-i)1. Suppose in this section that T is nondegenerate.

Let W = T Π <^-2>1. We are going to work with TPand <#_2, x^).
Let weW. Then ρXl>w sends O_2, #_i> to <#_2, X-x - Q(w)x1 — w}.

Let z = Q(w)x1 + w. Then /0β_2fβ sends (xu x2) to <^, #2 — Q(z)x-2 — »>.
If z (and hence w) is nonsingular, then one obtains (xu #_2> as an
axis line. In both cases (w singular or nonsingular), applying Lemma
12 to <#_2, OL.J — Q(w)x1 — w) and <α?_2, ̂ _!> and (if w is nonsingular)
<#_2, #!>, one obtains <α?_2, w) is an axis line for G.

If there are no nonsingular vectors in W, we may still obtain
<x_2, a?!> as an axis line as follows: We know every point in W is
on an axis line with <x_2>. In addition, <#_i> is on an axis line with
<x_2>, and T7§ <>!, α?.!)1. If #_2£ T7, then the geometry of the space
of axis lines containing <£_2> is different from the geometry of SixJ,
(i.e., S(x_2) has dimension equal to dim Sfa) but T(x-2) is degenerate,
since x_λ g S(x_2) S xii).

But the group generated by Σ(xu x2) and Σ(x-U X-2) sends a?x to
X-ι, so this is impossible. Thus (xu X-2) is an axis line.

We have thus obtained:

LEMMA 13. If S(x) is the space of axis lines containing x, and
m is opposite to I, one of those axis lines (m and I both singular),
then S(m Π x1) 2 (S(x) Π m1) 0 m. If in addition T(x) is non-
degenerate, or if S{x) Π m1 contains a nonsingular point, then m Pi xL

is on an axis line with x, and (m, S(x)) = (I, S(m Π ^1))

Let n — (x_x + u, x2 + v) be an opposite for (xlt X-2), where
v, ue (xu X-z)1. Let T{x^) = (x2, x__2, U) where ί 7 g (xlf x-u X-2, x2}

L.

Using Lemma 13, we obtain that (x2 + v) must be on an axis
line with xlf so that v = axx + 6x_2 + w, we U{x^). A similar argu-
ment using S(x_2) (instead of SixJ) shows that x^ + u must be on an
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axis line with #_2, so that in particular u e <S(#_2)>, (u = dx1 + cx_2 +
xf xe Ufa)). Let Z = (Sfa), x^). We have shown Z = <£(#_! + v),

Xl} = (S(χ2 + v), X-2) = <S(α_2), #2>. We show, as in [6], that Ω(Z) S G.
Let £ = (x, y) be a singular line in Z. If <#2 + v) or <#_2> are

on I, then Z is an axis line for G by Lemma 12. If not:

Case 1. <#, τ/> e (x2 + v, α . a ) 1 . Here (x2 + v, #> and (x-2, y) are
axis lines, so by Lemma 4, so is (x, y).

Case 2. (x) e (x2 + v, x-2)
λ, (y) e <cc_2>-L, (by symmetry, ye(x2 +

v)1 could be used instead). Then (x, x_2) is an axis line and <#_2, y)
is an axis line where kx_2 + ye(x2 + v)1. By Lemma 4, (a?, fcx_2 + y)
is an axis line and by Lemma 12, <a?, y) is an axis line.

Case 3. <x, y> e (x-2)
L (resp. <x, i/> G (x2 + i;)1). Since some point

on the line I will be perpendicular to (x2 + v) (resp. ( α ^ ) 1 ) this reduces
to Case 2.

Case 4. <#> G <£_2, #2 + v}1 but <i/> g <ίc_2>
x, y g <ίc2 + v)1 but

?/ = afe + v) + b(x_2) + w where we (x_2, x2 + v)L. But by Case 1,
(x, w) is an axis line. Thus since (x, w), (x, cc_2>, and {x, x2 + v) are
axis lines, Lemma 12 implies (x, y) is an axis line.

There are no more cases, because Z is nondegenerate, so if I is
a singular line in Z and m is a hyperbolic line in Z it cannot happen
that Z Π m 1 Π Πs {0}. (If this were true Z = mL 0 1 , m1 nondegenerate
and Z nondegenerate.) Thus Ω(Z) S G. In addition, we have proved:

LEMMA 14. Let Z be nondegenerate. Then the group generated
by all groups of root type 1 {Σ(x, y) \ y e x1 Π Z) and {Σ(z, w) \we
z1 Π Z) where (x, z) is some fixed hyperbolic line, is Ω(Z).

Now we wish to show Ω(Z) = G. Clearly, so far Z is fixed so
that if Ω(Z) Φ Gy G is reducible. Since the axis lines of Ω(Z) con-
taining one point P in Z span a space which by hypothesis has maximal
dimension, there can be no axis lines with one point in Z and one point
outside Z.

Without loss of generality, assume I = <#_x + u, v) is an axis line,
with no point on I in Z. Let v be the point on I in xt* If I is
opposite some line in S(x^, use Lemma 13. If not, v e Sfa)1. Then
v is on axis lines with every point in S{x^) Π <x_x + u)1 yielding a
contradiction. Thus we have:

THEOREM 3. The irreducible groups generated by groups of root
type 1 with nondegenerate axis line spaces are the groups Ω(V).
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9* The elimination of other possibilities: I* Mixed axis line
spaces* We again suppose Six^ is the space spanned by axis lines
containing xx and that Sfa) is of maximal dimension. Let Six^) =
(#1) 0 T(Xj) indicating only that x1 is linearly independent of T(x^).
In the last section, we showed that if T(xx) were nondegenerate,
G = Ω(V). In this section we assume Γis neither singular nor non-
degenerate. Thus T= U@W, where U is a maximal nondegenerate
subspace of T and W is singular and W'gί/1, and U and W are
both nonzero.

Some set of singular vectors spans T. They cannot all be pairwise
perpendicular, or U would be empty. Thus there are singular vectors
x, y such that (x, y) is hyperbolic and (x, y} £ U. Say (x) = x2.
Then suppose (x_u x_2) is an opposite to (xίf x2). Choose T(x^ in
{x-ι)L as before. Then y — cc_2.+ ax2 + zf where ze (xίf x2, x_u X-2)

L.
As in the previous section, since the group generated by Σ(x_lfx_2)

sends x1 to x_2, the geometries of their axis line spaces must be the
same. But if we apply Lemma 13 to the lines containing x1 which
are in T{x,) Π xL2 we get (Tfa) Π x±2, O S S(x_2). If x_2<$ T(x,) Π α?i2,
the geometry of T(x_2) is different from the geometry of T(x^). Thus
we may assume that (xlf x_2) is an axis line.

As in the previous section, if n = (x-x + u, x2 + v) is an opposite
for (xlf ^_2>, then (Sfa), x_,) = <S(#_2), x2) = (Six., + u), xγ} = (S(x2 +
v),X-2y Note that if xzeW(x^), the singular part of the axis line
space, then <S(£i), X-^) £ x£. Then we see that S(x^ + u) Π xi =
S^.i + u). Now apply Lemma 4 to <Xi, α;3> and all the axis lines
containing x_x + u to see xz is on axis lines with all of the points in
£(#_! + u) and with x19 Thus the space S(x3) has larger dimension,
producing a contradiction.

10* The elimination of other possibilities: IL Singular axis
line spaces of large dimension* We again let (xlf x2) be an axis line.
We assume (x_l9 x_2) is an opposite, and we let £(#0 be maximal
dimension. In this section T{x^) = S(x^) Π x^ and T{x^) is singular of
dimension at least 3. We name the vectors spanning T(xj) "x2, x3,
•• ,xk" according to standard basis notation. We obtain T(x_2) =
(x-ι, #3, •••, Xiϊ) by repeated applications of Lemma 4 with (x-u X-2}
Let <ίc_3 + u, x_! + v) be an opposite to <xu x3) with #_.3 + ^ chosen
in x£, X- L + v chosen in x£. Then x_t + v is on axis lines with all
the points in S(Xj) Π (x-ί + v)L Π (̂ _3 + ^ ) x as well as with x_s + u.

Now apply Lemma 4 with <xx, α:3> to see xz is on axis lines with
Six-! + v)Π xi Π xi = Six,) Π ix-, + v)1 Π (α;_3 + u)1 since 5(^0 s
(xlf Xs)1, as well as with xίf and ίu_2. But R — (xu x2, x3) Π (x~ι + v)1 f]
<£_3 + ^>J- is nonempty. But axx + 6x3g (^.i + v)1 Π <a;_3 + u}1 for
any α, δ not both zero. Thus x2 + cxt + d^3 e R. Thus S(a?8) is not



IRREDUCIBLE SUBGROUPS OF ORTHOGONAL GROUPS 625

singular, but has maximal dimension. This reduces us to the case
of the previous section, providing a contradiction. This completes the
main theorem.
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