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EQUICONVERGENCE OF DERIVATIONS

A. G. O T A R R E L L

This paper is a study of bounded point derivations on
the classical Banach algebras of analytic functions of a
complex variable. The results are positive in character.
The higher-order Gleason metrics dp of R(X) are introduced
and conditions are studied under which convergence takes
place with respect to these metrics. In particular, if R(X)
admits a pth-order bounded point derivation at a point x € dX
and X satisfies a cone condition at x, then dp(y, x) tends to
0 as y tends to x along the midline of the cone. Similar
results hold for the other classical function algebras. In
the case of the algebra H°°(U), for open UaC, the analogous
results hold only for regular derivations (a regular pth-order
derivation maps zp to a nonzero complex number). The
points of the maximal ideal space of H°°(U) at which regular
bounded point derivations exist are characterized in terms
of analytic capacity, following Hallstrom.

1* Let a? be a point of the plane C and A be a class of functions
analytic in a disc D centered at x, each function having modulus
bounded by 1. Then, as is clear from Cauchy's integral formula,
the family {/' | / e A} is equicontinuous at x9 and for every sequence
{&•}—>%> the sequence {f'(xn)} converges to f\x), uniformly on A, i.e.,
{f\xn)} is equίconvergent to f'(x). More generally, for any integer
P ^ 1, {f{P)(xn)} is equiconvergent to f{P)(x).

Now, given a C-algebra A of continuous functions on a compact
set XdC which are analytic on X, it is often possible to find points
on dX at which nonzero point derivations exist on A. A (first order)
point derivation at x e Xon A is a linear functional D: A —» C such that

D{fg) = f(x)Dg + g{x)Df ,

whenever f, ge A. This notion generalizes that of derivative at a
point. For points yeX all point derivations are of the form
f—>ocf(y) for some complex constant a (independent of /) provided
A contains the polynomials. Suppose A contains the identity map z
and D is a normalized point derivation at x on A, i.e., Dz = 1. A
natural question is:

Ql. When is there a sequence of points xn e X, converging to x,
such that the sequence {f'(xn)} converges to Df for all f e A?

A bounded point derivation is a point derivation that is continuous
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with respect to the uniform norm on X. If A admits a bounded point
derivation D at a point x we may ask:

Q2. Can we find xn —> x, xn e X, such that f'(xn) is equiconvergent
to Df on A = A Π{/ | 11/11x^1}?

We shall concern ourselves with Q2, which lends itself to treat-
ment by Banach algebra techniques.

2* We treat first the case A = R(X), the uniform closure on
X of R0(X), the class of rational functions with poles off X. R(X)
is a function algebra on X [2, p. 2]. The Gleason metric d° on X, with
respect to R(X), is defined by

d\x, y) = s u p {\f(x) -f(y)\\fe R0(X), \\f \\z ύ 1} ,

for x, y e X. Here \\f\\x denotes the sup norm of F on X The
properties of X with respect to this metric have been thoroughly
investigated. An account may be found in [2], [4] If % and y
belong to the same component of X, then d°(x, y) < 2. If x is a
peak point for R(X), then d\x, y) = 2 whenever y Φ X. This prompted
the definition of Gleason part. A part P of the algebra R(X) is a
subset of X which forms an equivalence class under the relation
x — y ( = )d°(x, y) < 2. The structure of parts can be very compli-
cated. Davie has shown that P may be disconnected, and the Swiss
cheese example shows that P may have no interior (cf. [4]). However,
a nontrivial part (a part which does not just consist of one peak
point) has full area density at each of its points, and in fact Browder
[2, p. 177] has shown that every Gleason ball {xeX\ d°(x, a) < ε} (s > 0)
about a nonpeak point a has full area density at a.

In particular, a is not isolated in the part metric d°, and there
is a sequence of points xn e P\{a} which converges to a simultaneously
in the Euclidean and Gleason metrics. In plain language, as ??,—>+ °o,

xn — a I —> 0, and {f(xn)} is equiconvergent to f(a) for / 6 R0(X) Γ)

{/| | |/| |x^l} = Λo(JΓ,l).
For p >̂ 1 we define the pth order Gleason metric on X by

d*(x, y) = sup {| Γ\x) - Γ\y) \ \ f e RQ(X, 1)} ,

for x, y e X.

The first thing to note is that dp(x, y) may be +©o, so we are
using the word "metric" a little loosely. An ordinary metric may be
obtained from dp by composing it with the arctangent function, but
we would rather not do this. We extend dp to C x C by writing
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dp(x, y) — dp(y, x) = + co whenever one of the elements x, y fails to be

in X.

For p ^ 0 we say that a (normalized) pth order bounded point

derivation on R{X) exists at a point sc e X if and only if the func-

tional f-+fm(x) on i?0(.X) extends to a continuous linear functional

Dl on R(X), i.e., if and only if

sp(x) = sup {| /<*>(*) I I / e Λ0(X, 1)} - || JD51|

is finite. Suppose this happens, and xn is a sequence of points of X

tending to x (in Euclidean norm). Then to say that f{P)(%n) —> Dlf

equiconvergently on R{X, 1) is the same thing as saying that dp(xn, x)—+0.

Notice that the two definitions so far available for a normalized

first order bounded point derivation on R(X) agree.

For purposes of computation it is usually easier to work with the

function dl, defined by

dl{x, τ/) = sup {| Γ»(y) \\fe R0(X, 1) and f(x) = f'(x)= ... =/<»(*) = (>} .

3* The elementary properties of the functions dp, sp, dp are
summarized in the following theorem. Here, as usual, p is a non-
negative integer.

THEOREM 1. Let x,yeC. Then

(1) I sp(x) - sp(y) I £ dp{x, y) <, sp(x) + s*(y);

( 2 ) dp(x, y)^(p+l)l\x-y |/(diam X)p+1;

(3) for xeX,

sp+1(x) = lim d^ ϊ
x - y\

( 4 ) for each compact subset K of a component of X there is a
constant L > 0 such that

dp(x, y)£L\x-y\,

for x, y e K, so dp is continuous on X;

( 5) sp is continuous on X;

( 6 ) dξ(x, y) ^ d*(x, y)£{l + exp (diam X)} {supo^* s\x)}dl{x, y);
(7) if Xn is a decreasing sequence of compact sets, each con-

taining X in its interior, whose intersection is X, then si \ sp and
dl} dp, where si and dl are respectively, the sp-function and the
dp-function associated with Xn',
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( 8 ) sp and dp are lower semi-continuous;
( 9 ) if \ xn — x \ —> 0 and {sp(xn)} is a bounded sequence, then sp(x)

is finite;
(10) if sp(w) < + oo for some w Φ x, then sp(x) — + oo if and

only if dp(xf y) = + oo for every y Φ x;
(11) x is an interior point of X if and only if

n nl

Proof.
( 1 ) is clear.
( 2 ) : Take f(z) = (z - y)p+1/(divm X)p+1. Then / e R0(X, 1), so

(3 ) requires a lengthy but straightforward argument, using the
Cauchy integral formula.

( 4 ) follows from (3), using compactness.
( 5 ) follows from (1) and (4).
( 6 ) : For the second inequality, let / e RQ(X, 1), and form

g(z) = f(z) - Σ J—P (2 - xY

Then g(x) - g'(x) = . . . = ̂ (3))(α;) = 0, and

{1 + exp (diam X)} j sup s%x)\ .

( 7) follows from the fact that each / e R0(X, 1) belongs to every
R(Xn) from some point on.

( 8 ) : By (4), (5), and (7), sp and dp are increasing limits of con-
tinuous functions.

( 9 ) : Take Xm j X as in (7). For each m9 x e Xm, so by (5),

sl{x) ^ sup sl(xn)

S sup sp(xn) .

Thus, by (7),

\h) — Hill om\JU) ^ JSUp o \kn) \ T 0 0
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(10): We may assume p > 0. If dp(x, y) == + oo for every y Φ X,
then by (1),

SP(X) ^ dp(x, W) - SP(W) = + oo .

This proves one direction.
If sp(x) = + oo and dp(x, y) < + oo for some #, then assume p is

minimal. We have x e X and so we may choose a sequence fn e R0(X, 1)
such that

\ΓΛχ)\—>+~ ,

while I f{

n

p)(x) — fίp)(y) | ^ M for all w, for some constant M. Form

flr.(«) = (2« - x - y)fn(z) .

Then

gίp)(z) = 2pf<Γι)(z) + (2z-x~ y)fίp)(z) .

Thus

- y)fίp)(x) - 2pflΓ»(y) - (y - x)fip)(y) |

-2p I /ίr1 }(») - /5r1}(l/) I > + ̂  as n • + oo .

(11): The point x is an interior point of x if and only if

sn(x) ^ Mnn !

for some constant M> 0. ("Only if" is clear, and "if" is true be-
cause the inequality implies that every function in R0(X, 1) is actually
analytic in a full disc centered at x. This forces x 6 X.) (11) is just
a way of rewriting this.

4* For our purposes all measures will be finite complex Borel
regular measures with compact support in C. For v > 0, the potential
of order v of a measure μ is given by

I ζ — si

where | μ | is the total variation measure of μ. Wherever μι(z) < + <
we define the Cauchy transform of μ by

For every continuous linear functional L on R(X) there is a measure
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μ, supported on X, which "represents L on R(X)", i.e.,

j fdμ = Lf

for every / e R(X). This fact follows from the Hahn-Banach and
Riesz Representation theorems. Also, μ may be chosen to have its
support on dX, since R(X) and R(X) \ dX are isomorphic Banach
algebras. An annihilating measure for R(X) is a measure μ on X
such that

\fdμ = 0

for every feR(X). We write μ _L R(X). The following easy fact
was first noted by Bishop, and plays a central role in our theory
(cf. [2, p. 171]).

LEMMA. If μ ± R(X), μ\y) < + co, and μ{y) Φ 0, then the
measure

μ{y) z - v

represents "evaluation at y" on R(X), i.e.,

j fdμ = ΛV)

for f e R(X).

The case p = 0 of the following theorem is due to Browder [2,
p. 176].

THEOREM 2. Let pbe a nonnegative integer. Suppose the measure
μ represents a bounded pV& order point derivation on R(X) at x. Then
for every given a > 0 there is a corresponding 6 > 0 such that
dp(x, y) < a whenever

ί 2 ) "V1 x y \ v Lύ'ίyΛ <C b

Proof. We proceed by induction on p: Suppose p is the least non-
negative integer for which the proposition fails. Let μ represent
Dl and a > 0 be given. We may suppose a < 1. For τ — 0, 1, ,
p — 1, R(X) admits a bounded τth order point derivation at x, repre-
sented by
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= ri(, -*y
pip

so there are numbers bv > 0 such that

(3) Σ I * - V I "XG/X bτ

forces dT(x, y) < α/2. Now

, | Γ l i l (
\z-y\v

^ r! (diam X)p-rμv(y) ,

so, setting cr = όr {supo^rS2, τ! (diamX)^}" 1 , and c = inf O ^ P - I cΓ, we deduce
that Σ?ίo I a? - 2/1 Wl/) < c forces (3) for τ = 0, 1, •""-, p - 1.

Let K = 1 + exp (diam X),

Γ = 2{ sup s\x))K .

Note that T ̂  2J5Γ, since s°(α;) = 1.
Choose b > 0 to be smaller than each of the numbers c, 1/2,

pi (diam X)-*"1 and a{2T(KP + | | μ | | ) Γ \ where JBΓP > 0 is a constant,
depending only on p, which will be described later.

Let (2) hold. We will show that dp(x, y) < a. We claim it
suffices to show

(4) dξ(y,x)<a/T.

For, assuming (4), we have by Theorem 1(6), (1),

dp(x, y) ̂  iΠsup s\y)}dξ{y, x)

^ K{ sup sv{x) + sup d\xy y)}dS(y, x) .

Thus, if dp(x, y) ^ a, then dp{x, y) = s u p o ^ ^ P dv{x, y), since (3) holds

for τ = 0, 1, •••, p — 1, so

d*(x, y){l - Kdξ(y, x)} ^ \ Tdξ(y, x) .
Δ

Since Kdl{y, x) < aK/T < α/2 < 1/2, we deduce

dp(x, y) ̂  Tdfty, x)< a ,

which is a contradiction.
We proceed to get (4).
The measure μQ = {{z — x)p/pl)μ represents evaluation at x on

R(X). Thus σ = (z — x)μ0 annihilates R(X). Now
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<r(y) = - 7 \ — —— dμ(z) = 1 + (y - x)μo(y) ,
pi J ^ — ̂ /

so, since

I (y - α)A,G/) \^\y - x \ μl(y)

^\y-x\(diBmX)'+ιft(y)<b<1

Pi '

we have σ{y) Φ 0. Also σ^y) < + oo, since μ1^/) < + °°, by (2). Thus,
by the lemma, the measure

σ __ (s - x)p+ίμ
o{y){z - #) plσ(y)(z - y)

represents evaluation at y on i2(X), so

(z - x)p+1μ

annihilates the class

B - {/ € i?0(X, 1) I f(y) = / ' (») - . . . - /<»>(„) = 0} ,

since μp+1(y) < +oo, by (2).
Let β = ί(?/). Then | e | > 1 - 6 > 1/2, and also 11 - e \ < b.
We have

dί(»,α) = sup I

d\μ\(z)

- y)p+1 - (z -

(z - y)>»
- (1 - e) d\μ\(z)

z - y)"

Now we observe that (z — x)vl{z — ?/)v+1 is a linear combination of
terms

1 x — y (x — y)v

z-y ' (z - yf ' ' " ' (β - »)"+1 f

so that we may continue the inequality:

JJ+l

£2K,\x-y\Σ,\x-V + 26 || ίi||,
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where Kp depends only on p, and so, continuing:

This concludes the proof.

5. We now establish a convergence theorem for the dp metric.

THEOREM 3. Suppose p = 0, and x is not a peak point for R{X),
or p ^ 1, and R{X) admits a bounded pth order point derivation at
x. Suppose there is a positive constant K, and a sequence of points
{Vn}> elements of X, which converges to x {in Euclidean norm), such
that

(3)

for n — 1, 2, 3, . Then {yn} converges to x in the dp metric.

Proof. Select a measure μ, supported on dX, with no mass at
a?, which represents the pth order derivation at x.

By Theorem 2, it suffices to show that \x — yn\ *μv{yn) is small
for each v, 1 ^ v ^ p + 1, provided w is large.

Fix ε > 0, and v, 1 ^ v <; p + 1. If 2 6 3X, then for each n ^ 1,

I« - Vn I

by (3). Choose n > 0 such that

ί£B(a?, rλ)<ψ.

Choose r > 0 such that

Then choose N so large that n7> N ensures | x — yn | < r. Then, for

...
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This completes the proof.

COROLLARY 1. Suppose X satisfies a cone condition at a point
x e dX. Then whenever p = 0 and x is not a peak point for R(X),
or p ^ 1 and R(X) admits a bounded pth order point derivation at
x, it follows that dp(y, x) —• 0 as y approaches x along the midline
of the cone.

This clearly follows from Theorem 3. Using the language of
tangent cones [3, p. 233] we can say more.

COROLLARY 2. Let x e dX, E be a compact connected subset of X,
x e E, E\{x} c X, and suppose that

Tan (E, x) Π Tan (dX, x) = (0) .

Then under the same hypothesis on p, R(X) as before, dp(y, x)-+0
as y approaches x in E.

COROLLARY 3. Suppose X satisfies a cone condition at x, and
Γ is the midline of the cone. Suppose R(X) admits a bounded pth

order point derivations at x(p ^ 1). Let Ώl and Dv

x~
ι denote the

normalized point derivations of orders p and p — 1 at x. Then

Dif = li
vTr L y - x

for every f e R(X)y and the convergence is equiconvergence on R(X, 1).

This follows readily from Corollary 1.

6. For examples to which these results apply, see [5], [10].
Hallstrom [6] has given necessary and sufficient conditions that R(X)
admit a bounded point derivation at a point x. Essentially, the
complement of X has to be "thin" at x, in terms of analytic capacity.

Let an9 rn be two sequences of positive numbers such that

1 > an + rn > an > an - rn > an+1 + rn+ί ,

for n — 1, 2, 3, . Let Dn denote the open disc with centre an and
radius rn. Let X be the compact set obtained by removing (Jί=i Dn

from the closed unit disc D. Xis an example of a so-called L-set.
For these L-sets, the point 0 is a peak point for R{X) if and

only if Σi=xrjan = +°o [10], and R(X) admits a b o r d e r bounded
point derivation at 0 provided Σ*i~ιrJ(a%+ί) < +°° Let E denote
the negative real axis. Applying Corollary 1 to X we obtain the
following:
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THEOREM 4.

( 1 ) Suppose Σ£=i rJan < + oo. Then limz_0 (d°(z, 0) = 0.
zeE

(2) Suppose Σ ί =i rj(ai+1) < + «>. 2%e^ lim^0 d
p(s, 0) = 0 .

By choosing, say, αw = l/(n + 1), rn = l(n + 1)!! we can ensure
that the hypothesis of (2) is satisfied for every p ^ 0, so that fiP)z
is equiconvergent to f{P)(0) on R0(X, 1), for every p.

One might wonder whether some kind of Browder density theorem
might work for p > 0: if R(X) admits a pth order bounded point
derivation at x, are there always other bounded derivations at nearby
points? The answer is] no: in [9] an example is constructed in which
R(X) admits a first order bounded point derivation at just one point.
Moreover, this example can be modified to produce an example with
a bounded point derivation of every order at that certain point, and
no other bounded point derivations of any order >̂ 1 anywhere else.

What goes wrong? The following observation may clarify
things. If μ represents a first order bounded point derivation on
R{X) at x and μ\y) < + oo, set

z - y

D = \

Then, provided C Φ 0 and D Φ 0, the measure

v _ fl (z-xY _ 1 {z-xf\
\C (z-yf CD z-y V

represents a first order bounded point derivation on R(X) at y. So
this gives a sufficient condition for the existence of other derivations:
{y I μ\v) < + ° ° , C ' ^ 0 , DΦ 0} Φ 0. Unfortunately μ2 is the potential
associated with harmonic functions in R\ and the associated capacity,
C2, vanishes on planar sets. So it is entirely possible, even likely,
that μ\y) Ξ +00 on spt μ. In fact, μ\y) < + 00 if and only if

where An(y) = {z \ l/2"+1 ^ | z - y \ ̂  1/2"}, n = 1, 2, 3, . Thus, for
instance, if

(i.e., \μ\ has positive area density at y), then μ\y) = +00.
Eeturning to the problem posed in § 1, we note that for x e d(X),
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without some condition on X, we cannot ensure that there will be a
sequence xn —> x with xne X and f'(xn) equiconvergent to f'{x) on
R0(X, 1), even when s\x) < +00. For let X be the example of [9],
with a bounded point derivation just at 0, and select any sequence
{xn} of distinct points of X, tending to 0. For each n(n = 1, 2, 3, •)
there is a function fn e R0(X, 1) such that f'n(xn) > in. Inductively,
choose a closed disc Dn centered at xn such that f% is analytic in a
neighborhood of Dn, \\fn\\Dn£ 2, \fn(z) \ > 2n for z e Dn, DnΠDm= 0

for m <n, xmg Dn for m > n. Form a new compact set Y — X U
(Uί=i^) Then R(Y) still admits a bounded point derivation at 0.
The only other bounded point derivations are at points of the Dn.
For z 6 Dn, s^z) > n. So there is no sequence of points of Ϋ = (Jί=i A
along which / ' is equiconvergent to /'(0) on RQ(Y, 1).

7 Let Xbe a compact subset of the plane. Let A be an algebra
of functions on C which contains the polynomial and all of whose
functions are analytic on X. Suppose A, regarded as a subset of
C(X), forms a function algebra. Suppose A enjoys the Arens property:
For each x e X,

Ax — {/ G A I / is analytic on a neighborhood of x]

is dense in A in the uniform norm on X. (A sufficient condition for
this is that A contains a dense subset B which is "Tφ-invariant",
i.e., the function Tφff given by

π ζ

belongs to 5 whenever / belongs to B and ψ is a continuously differ-
entiable function with compact support. An example is A — A(X),
the algebra of all continuous functions on C which are analytic on
X; another example is A = Aa(X), the uniform closure on X of those
functions in A(X) which satisfy a condition Lip a on C.) Then most
of what we have done for R(X) goes through for A. New functions
dp, sp, dg may be defined analogously, for instance:

d\x, y) - sup {| f^(x) - f^(y) \ \ f e A,
/ is analytic on a neighborhood of {x, y}} .

For any xeCwe can form Ax. So given any compact set YdC we
may form a new algebra

Y(A) = Π (Uniform closure on Y of Ax Π A(7)) .

F(A) is clearly a uniform algebra on Y, contains the polynomials,
and all its functions are analytic on Ϋ. Moreover, by its definition,
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it has the Arens property.
Replacing R(X) by A, Theorem 1 will go through, except that

(7) will have to be changed:
(7') if xedX, Vn is a decreasing sequence of compact neighbor-

hoods of x, whose intersection is {%}, and Xn = X\J Vn, then sζ(x) | sp(x),
and dζ{x, -)]dp(x, •)> where sζ and dζ are the sp and dp functions
associated with the algebras Xn(A).

Lemma 1 goes through, using the Arens property.

The maximal ideal space of A is X (cf. [1], its Silov boundary
is a subset of dX, so Theorems 2 and 3 work for A in place of
R(X).

8* Now we turn to H°°(U), the Banach algebra of bounded
analytic functions (with L°° norm) on the bounded open set UaC.
First, we look at H°°(U) itself. There is a natural projection map
from the maximal ideal space ^f of H°°(U) to U, given by Φ —*φ{z)
(recall that z denotes the identity map of C). The fiber ^ x over a
point x e U consists of one point φx = evaluation at x. The fiber ^ C
over a point xedΐl is usually very large. Gamelin and Garnett [5]
showed that a necessary and sufficient condition for ^ C to be a peak
set for H~{U) is that

(4) Σ
n = l

Here 7 denotes the analytic capacity:

Ί(K) = sup {| /'(oo) I I / is analytic off K, \\ f || ^ 1, /(oo) = 0} .

When ^ x is not a peak set, they showed that it contains a distin-
guished homomorphism, φx, characterized by the property that it has
a representing measure on ^ with no mass on ^ ^ .

We say that an element De H°°{U)*, a continuous linear map of
H°°{U) to C, is a first order bounded point derivation at a point
φ^^£ if

D(fθ) = Φ(f)Dg + φ(g)Df

whenever /, g e H°°(U). D is called regular if Dz Φ 0, and a regular
D is normalised if Dz — 1. We shall be concerned with regular
derivations only, but we note that there are usually many derivations
on H°°(U) which annihilate z. For instance, let U be the open unit
disc. Then Hoffman [7] has shown that the fiber κy£γ over the point
ledU contains many homeomorphic images of the unit disc, on each
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of which all the functions in H°°(U) are analytic. So there is a
superabundance of bounded point derivations at points of ^ C , and
each of these derivations annihilates z.

Inductively, we say H°°( U) admits a regular normalized pth order
bounded point derivation at φ£^€ if the following hold:

(1) For each v, 1 <Ξ v <; p — 1, Dv is a vih order regular normal-
ized bounded point derivation at φ.

(2) There is an element Dp e H°°(U)* such that

for all / , geH°°(U), where D°f means φ(f).
( 3) B V = j>!

We observe that for p >̂ 1 there cannot be any regular pth. order
bounded point derivation at a point φ e ^fx\{φx}. For such a deriva-
tion would have a representing measure μ on .^C and then ((z—x)p/pϊ)μ
would be a representing measure for φ with no mass on ^ £ , which
is impossible.

THEOREM 5. Lei xe U, p ^ l . Then H°°(U) admits a regular
bounded pth order point derivation at the distinguished homomorphism
φx in the fiber over x if and only if

(5) Σ2{P+ί)ny(AMW)< +oo .

Proof. If (5) holds, then certainly (4) fails, so ^ C is not a peak
fiber and φx exists. By a device in Gamelin and Garnett's proof of
the peak set criterion [5, p. 459, third paragraph], U can be shrunk
a little to produce a compact set X with the properties:

(1) X<zUV{x),
(2) xeX,
( 3 ) Σ ί S 2T+1>*r(An(x)\X) < + <*>.

By Hallstrom's Theorem [6, p. 156], R(X) admits a (normalized)
bounded point derivation of order p at x. Choose a representing
measure μ for this derivation with support on X and no mass at x.
Then, for v = 0, 1, , p the measure μu = (vl(z - x)p~v/pl)μ represents
a (normalized) vth order bounded point derivation on R(X) at x, if
v ^ 1, and μ0 represents x and has no mass at x. Now any function
in fZ"°°(?7) which extends analytically to a neighborhood of x belongs
to R(X), so for any two such functions, / and g, we have

( 6 )
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Since, as is well-known [5, Cor. 2.2], the set of all such functions is
pointwise boundedly dense in H°°(U), the dominated convergence
theorem implies that (6) holds for any /, geH°°(U). Thus μ repre-
sents a regular bounded pth order point derivation on R°°{U) at φx.

For the other direction, assume (5) fails. If ^ x is a peak set
there is no distinguished homomorphism, and nothing to prove. Other-
wise, (4) fails, and we may, just as in Hallstrom's proof of his
Theorem 1' [6, pp. 163-164], construct a sequence of functions gn,
each one in H\°°(U) and analytic in a neighborhood of x such that
l^p)(^)l >tt||flr||oo. Thus H°°(U) cannot admit a pth order bounded
point derivation at φx. This proves the theorem.

We remark that there is at most one regular normalised bounded
pth order point derivation at a distinguished homomorphism φx. For,
from the proof of Theorem 5, any two agree on a dense subset of
H°°(U), and have representing measures with no mass on ^ x . Thus,
by dominated convergence, they coincide.

9* The zero order Gleason metric d° on the maximal ideal space
of H°°(U) is given by

d\φ, ψ) = sup {| φ{f) - ψ(f) I I / e H~{U), \\ f \\π £ 1} .

To define the higher order metrics, we take first the case where φ
and ψ are distinguished homomorphisms at each of which H°°(U)
admits normalised regular bounded p t h order point derivations Ώl and
D$. Then

d\φ, ψ) = sup {| Off - Dff I I / G H~(U), || / ||^ ^ 1} .

In all other cases, we set dp(φf ψ) = + co. Let sp(φ) be the norm of
Ώl, if this exists, otherwise sv(φ) = + oo. For points y e U we will
write y for "evaluation at y".

THEOREM 6. Let p ^ 1. Suppose there is a constant K> 0 and
a sequence of points yne U, \ yn — x | —> 0 as n—*-^00, such that

Suppose ίΓ°(?7) admits a regular ptu order bounded point deri-
vation at the distinguished homomorphism φx over x. Then
dp(yn, φx)—>0 as n —> + oo.

Proof. We shall deduce this from Theorem 3. As in Theorem
5, we may shrink U to a compact set X which satisfies the hypotheses
of Theorem 3, with a smaller K. Thus there are representing meas-



554 A. G. O'FARRELL

ures μn for the D*n, and μ for D$x, with closed support in U{J
and no mass on ^ x such that

\fdμn

uniformly for / 6 R(X). Again, since R0(X) is pointwise boundedly

dense in H°°(U), this means that D*nf = \fdμn is equiconvergent to

Dξxf = \fdμ for all f e H°°(U).

The analogous result when p — 0 (also a corollary of Theorem 3)
is due to Gamelin and Garnett [5, 5.1].
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