
PACIFIC JOURNAL OF MATHEMATICS
Vol. 53, No. 2, 1974

QUATERNION ORDERS ASSOCIATED WITH
TERNARY LATTICES

GORDON L. N I P P

It is advantageous for the study of the spinor genus of
quaternion orders to realize each order as corresponding to
a ternary lattice. In the two known correspondences, those
of Eichler and Pall, the question of whether the mapping is
onto or not is not considered. Peters has investigated the
question for Eichler's correspondence, and his results show
that it is not onto. Pall's correspondence, though onto, is
only defined over the rational integers. In this article, a
generalization to Dedekind domains of Pall's correspondence
is defined. Those orders which are images of ternary lattices
under the correspondence are completely determined, and the
relationship of this mapping to Eichler's is examined.

I* Introduction* The terminology will be that of O'Meara [4].
Throughout we will be dealing with a regular ternary quadratic space
V over the quotient field F (characteristic of F not equal to 2) of
a Dedekind domain D and with the even Clifford algebra C+ = C+( V)
of V. For convenience we will assume that F is a global field.

The content of the individual sections is as follows:
In §2 we give some necessary preliminary results on the rela-

tionship between a regular ternary quadratic space, its even Clifford
algebra, and their rotations.

We define a mapping # from an integral ternary lattice L on V
to an order &L on the quaternion algebra C+{V) in §3. ΰL is the
i?-module in C+ generated over D by 1 and all products xy such that
x and y are in L. We also determine in this section that the mapping
is one-to-one and that two integral ternary lattices L and K are in
the same class (spinor genus, genus) if and only if the orders &L and
$κ are in the same class (spinor genus, genus).

The problem of whether our mapping is onto or not is formulated
in the following two contexts:

(i) If # is an order on the even Clifford algebra of a fixed
regular ternary quadratic space V, does there exist an integral lattice
L on V such that ϋ L = #?

(ii) If & is an order on a quaternion algebra, does there exist
a regular ternary space V and an integral lattice L on V such that

In §4 we give a counterexample to answer the first question,
but we do show that if an order ϋ-L is the image of a lattice L, then
all orders in the genus of ϋL are images as well.
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In § 5 we show that a necessary and sufficient condition that the
second question be answered in the affirmative is that the square
root of the volume of ΰ be a square in the ideal class group of D.
This condition is satisfied in many important cases (e.g., it is always
satisfied over the rational integers, or, more generally, when & is
free) and yields one of the principal advantages of our mapping over
Eiehler's. (It can be seen from [6], §4, that Eichler's correspondence
is not onto in these cases.) Additionally, we investigate the rela-
tionship between those orders which are images under Eichler's
correspondence and those which are images under our mapping.

Some of the material in this article is from a Ph. D. dissertation
written at the University of Southern California under Professor
Dennis Estes. The author wishes to gratefully acknowledge Professor
Estes' advice and encouragement.

2* Clifford algebras* Let D be a Dedekind domain whose quo-
tient field F is a global field (char F Φ 2). Let 7 be a regular
ternary quadratic space over F with associated quadratic form N and
symmetric bilinear form B, and let C+ be the even Clifford algebra
of V. We assume that the vectors xl9 x2, xz form a basis for V with
B(xi9 x3) = ai3- e F. The relat ions

x2 = N(x)Λ, xy + yx = 2B(x, y)Λ for all x,yeV

imply that the products

form a basis for C+ over F, which we shall call the basis for C+

corresponding to xί9 x2, xz. These basis elements are multiplied as
follows:

a\ = —a33akkΊ + 2ajkat

(2ai3 akkΊ — akkak; σ even

\a + 2aikat + 2aSha} — AaikajkΛ; σ odd

for each permutation

(1 2 3
σ —

\i j k
It is well-known that C+ is a quaternion algebra. Conjugates of

the basis elements take the form

Furthermore, if N and B are the quadratic and symmetric bilinear
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forms on C+,

N(at) = a.a, = a,Ίakk-l

B(qi,D = \{at + at) = aik l

B(aιf oίj) = — (α:^- + α̂ -α*) = (2aikajk — αfcA;α^ ) l .

It is natural to ask about the relationship between bases for C+

corresponding to different bases of V. Let 1, al9 a2, a3 and 1, βl9 β2,
βz be the bases for C+ corresponding to the bases xl9 x2, x3 and y19 yi9

yz for V respectively. Suppose B(xi9 x5) = aiS and B(yi9 ys) — bij9 and
let T be the change of basis matrix satisfying

(The prime denotes transpose.) It is most useful to state our result
in terms of the bases for C+

(1) δ = ( 1 , δl9 δi9 δs), p = ( 1 , p l 9 p29 p3)

W Π O T O TOT* 'ϊ / O f\ /• 2̂  Z* / /j*WJJLvίltί 1 U I 6 -7^ Jf J -T— IV) tv :=p- ΰ

δt = a* — ajk l and ft = βt - 6ifc l .

The proof of the following proposition is computational and has been
carried through over the rational integers by Pall in [5], Theorem 1.

PROPOSITION 2.1. The bases d and p of C+ are related by

" 1 0 0 0"

0 adj T

_0

where adj T is the adjoint of T.

We note that it is a consequence of Proposition 2.1 that the
discriminants of V and C+(V) in corresponding bases satisfy

rJ(Λ sy /γ sy \ — rJ^iw Ύ o* ^
lυ^Xj ^*Ί> *̂*2> ^*"3/ ~~" ^ \*^Ί> ™ii ™Z) *

Much is known about the relationship between the rotations of
V and of C+(V) (see [2], §4.2). Some of the development will be
sketched here for later reference. Let σ be a member of the group
of rotations O+( V) of the regular ternary space V. It is well-known
that σ can be expressed as the product of two symmetries σ = τuτv

where u9 veV. In the Clifford algebra of V,
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σ(x) = τuτv(x) = (uv)x(uv)~ι

for every xe V. We shall define a mapping φ:C+ ~+C+ which is
induced in a natural way from V on C+ by σ. If the vectors xlf x2,
x3 form a basis for V, φ is the linear mapping defined on a basis for
C+ by

= σ{xι)σ{xj)f

So for each ηeC+,

φ{η) = (wv)^ι )-1 .

0 is clearly an isometry, and it follows from Proposition 2.1 that φ
is a rotation. So φ e O+(C+).

Conversely, if φ e O+(C+) with φ(l) = 1, then, since C+ is a qua-
ternion algebra, there exists ξ eC+ with N(ζ) Φ 0 such that φ(rf) =
ί^ί"1 for every 7jeC+. We infer from [2], §5.2, that the mapping
σ: V—> F defined by σ(x) = fa ί"1 satisfies the conditions of the following
proposition:

PROPOSITION 2.2. Let φ e O+(C+) with φ(ϊ) = 1. Then there exists
a mapping σ e O+(V) such that φ is the mapping induced on C+ by σ.

It follows from Proposition 2.2 that every element ζ of C+ can
be expressed as ς = uxu2 where uλ and u2 are in V.

3. The correspondence. If L is a lattice on V, it is well-known
that there exists a basis xlf x2, xz for V and fractional ideals Al9 A2,
A3 of D in F such that

J-J —— jΆ -^Xγ ~χ~ JΆ.2X2 ~T~ -^l-3»^3

We assume that L is an integral lattice on V (N(L) c D), and with
L we associate the D-module #L in C+ generated over D by 1 and
all products xy such that x and $/ are in L. Then

^ = ^•1+ Σ AtAjXM

= DΛ + Γ Σ A?a;? + A3A2(-x2x3 + 2B(a;3, a?2) l)
L*=i

+ ^Asί-^a?! + 2B(xu xB)-ΐ)

(1) + ΛAtf i + Λ-Aiα2 + Ai

A\N{xx) + 2
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= DΊ + N(L) 1 + A2Aza, + AzA,a2 + A,A2az

— DΊ + A2Azax + AzAλa2 + AxA2az

where 1, al9 a2, az is the basis for C+ corresponding to x19 x2, xz. An
order on C+ is a lattice on C+ which is closed under multiplication
and which contains 1. (The class, genus, and spinor genus of an
order are defined as for any other lattice.) To show that ΰ-L is an
order, we need only show multiplicative closure, and to this end we
will perform the computations for one case.

;1, x2)N(xz)Λ - N(x3)az] .

c [AtN(xz)] [ i A

+ [AlN(xz)]A1A2az

and since

AlN(xz), A.A&Bix,, x2)) c N(L) c D ,

we have

^) c f l H AγA2az c $L .

So ΰ L is an order on C+.
We next show that the mapping ΰ : L —* ϋ L from integral ternary

lattices on V to orders in the even Clifford algebra C+ of V is one-
to-one.

THEOREM 3.1. Let L and K be integral lattices on V. If &L =
ΰ-κ, then L = K.

Proof. The theorem localizes. So we assume D to be a principal
ideal domain and lattices to be free. Let

L = Dx, + Dx2 + JD Ŝ and iΓ = Dy, + JDT/2 + Dyz ,

and suppose ( ^ y2, yz)
r = T(xu x2, xz)

r where T is the nonsingular 3 x
3 change of basis matrix. Let

SL = {ωe &L: B(ω, 1) - 0} ,

and define δ and p as in §2, (1). Clearly, ^ G S L and PiβSκ for i =
1, 2, 3, and SL = Sκ. Hence

SL = Dd, + D<?2 + Ddz = Dp, + Dp2, + Dpz .

From Proposition 2.1, (ft, ft, ^ = (δlf δ2, δ3) adj T. Thus, adj T is
unimodular, T is unimodular, and L — K.
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In the sections that follow, we shall compare our mapping to
Eichler's correspondence. The quadratic forms on the even Clifford
algebras of a ternary space V as defined by O'Meara and Eichler
differ by a factor of two. Using O'Meara's development, it is con-
sistent to treat the order

( 2 ) NiL^KN^L) + A2A3x2x3 + A

as the image of the lattice

L = A1xι + A2x2

under Eichler's correspondence (see [2], p. 96).
Clearly, if A Φ (0) is a fractional ideal of D in F, then the images

of the ternary lattices L and AL under Eichler's mapping coincide.
Thus an order can be the image of lattices in different genera. The
next results show that this does not occur with our mapping.

THEOREM 3.2. Two integral ternary lattices are in the same
class if and only if the quaternion orders &L and #κ are in the same
class.

Proof. Let φ e O+(C+). We may assume 0(1) = 1, since if
ζ Φ 1, ζ is a unit, and we consider ζrιφ. As in §2, let σ e O+(V)
induce φ on C~. Then

L = σ{K)

if and only if

So L e els K if and only if &L e els &κ.
Theorem 3.2 holds in the local case. Hence we can record the

following corollary:

COROLLARY 3.3. Two integral ternary lattices L and K are in
the same genus if and only if the orders ΰ-L and ΰ-κ are in the same
genus.

The next lemma is needed in order to prove the analogous theorem
for spinor genera.

LEMMA 3.4. If ΣeO'(V), then the mapping Φ induced by Σ on
C+ is in O\C+). If ΦeO\C+\ Φ(l) = 1, then there exists ΣeO'(V)
such that Φ is the mapping induced on C+ by Σ.
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Proof. Let Σ e O\V). JfxeV, then in the Clifford algebra for V

Σ(x) = τu-τv{x) = ξ~ιxζ

where τu and τv are symmetries on V, f"1 = uve C+, and iV(f) ̂  0.
If Φ is the automorphism induced on C+ by σ, then Φ(/3) = ί-1/9ί for
every β e C+. By hypothesis, N(ξ) is a square in F. Hence the spinor
norm of Φ is 1; i.e., ΦeO'(C+).

Conversely, let Φ e O\C+) with Φ(l) - 1. Then, for some ί e C+

and for every β e C+, Φ(/5) = £"̂ Sf where JV(£) is a nonzero square in
i*7. The mapping defined by Σ(x) — ζ^xζ for xe V is in O+(V) and
induces Φ on C+. There exist ux and ^2 in F such that ξ = w^,
J? = r%lrtt2, and since N(ξ) is a square, the spinor norm of Σ is 1.

THEOREM 3.5. Two integral ternary lattices L and K are in
the same spinor genus if and only if &L and ϋκ are in the same
spinor genus.

Proof. If σeO+(V) induces φeO+(C+), and if the localization
Op 6 O+(VP) of σ at p induces φP e O+(Cp~), then clearly ψp is the localiza-
tion at p of φ. Additionally, if σpe0+(Vp) induces the localization
φP G O+(Cp~) of φ at p, then σp is the localization of σ at p. If Σp e
O'( VP) induces ΦP e O\C+) and if L and K are integral lattices on Vt

then

jL/p = = Op2l pXX.p

at every p if and only if

at every p. Hence L e spn K if and only if &L e spn ΰκ.

4* Ternary lattices* We next consider the question of whether
our mapping is onto or not. That it is not when the question is
posed in the context of a fixed space V and its even Clifford algebra
C+ can be seen from the following counterexample. Let V be a three
dimensional vector space over the field of rational numbers with basis
X = (xu x2, #3). Define a symmetric bilinear form on V by B{xu Xj) =
0 if i Φ j and B(xίf x%) = 2 for i = 1, 2, 3. Let ϋ be the Z-module
generated in C+ by the set

β = (l,

ΰ- is an order, as may be easily seen by multiplying the basis elements
together.
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The discriminant of V in the basis X, dv{X), is 8, and the dis-
criminant of ϋ in the basis β, d#{β), is 16. Assuming that ϋ — ϋLf

the image of a lattice L on V, we let Y be a basis for L over the
integers and 7 the corresponding basis for ϋ = ϋL. We note that

d*(β) = d»(i) = dF(F)2

and that

dv(Y) = a2dv(X)

where a is the determinant of the (rational) change of basis matrix
from X to Y. Thus

16 - dv(Yf = a'dv(Xf = 64α4 .

So α4 = 1/4. This is impossible over the rationals; hence ϋ is not the
image of a lattice on V.

However, a useful theorem does hold in this context.

THEOREM 4.1. Let ϋ be an order in the genus of ϋL, where L
is an integral lattice on V. Then there exists a lattice K in the
genus of L such that ϋ = ϋκ.

Proof. We are assuming that at every p there exists φP e O+(C+)
such that ϋp = ΦP{&Lp). Without loss of generality, we may assume
that όp(l) = 1. By Proposition 2.2, there exists σpe O+(VP) such that
φp is the mapping induced on Cp by σp. Thus,

P — ψp\ Lp) — σp(Lp) K{p)

where K[p) = σp(Lp). Since there exists a basis cclf a2, a3, a4 for C+

such that

?9- — A /v I A fY i A sγ i A /y

and

it follows that ϋp = &Lp at all but possibly the finite number of spots
which divide any of the fractional ideals At or Bt for i = 1, 2, 3, 4.
So by Theorem 3.1, K{v) — Lp for all but a finite number of spots
p. Therefore, there exists a lattice K' on V such that i?^ = Km for
all p (see [4], 81:14). Then

for every p, and ?? = ^ , . Clearly K' is in the genus of L.
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5* Quaternion orders. The problem of the preceding section
may be reformulated in the following way. For a fixed order & over
Don a quaternion algebra 21 over F, does there exist a regular
ternary quadratic space V over F and an integral lattice L on V such
that &L & #?

Let us choose an orthogonal basis

7 = (1, Ύlt 72, 73)( 1 )

for SI with 7? = d^l, Ί\ = d2Ί(dlf d2eF), 7X72 = 73, and 7Λ = — 727i
Suppose, for a fixed p, a — (1, alf a2f az) is a basis for ϋ p over Dp

and α = (α0, βlf άif άz) is the corresponding dual basis for ϋ \, the dual
of # p . Let (tij), i, j = 0, 1, 2, 3, be the change of basis matrix from
7 to ά. Then if B is the natural bilinear form on SX, i?(α0, 1) = 1
and B(άif 1) = B(yi9 1) = 0 for i = 1, 2, 3, and

( 2 )

•£(αo,l) 0 0

^10 t'll ^12

0

t22 ί2;

^ 3

= 7

i

^ 2 0

0 0 0

Γ

where T = (ttj) for i, i = 1, 2, 3.
Define

( 3 )
(l, 7 lf 72, 7s) = NMNM and

= δ(α0, «i, «2, α8) - det Γ δ(l, 7X, 72, 73) .

8(1, 7i, 72, 73)
2 is the discriminant of SI in the basis 7, and the volume

of tf», v(tf»), is δ2Dp.

THEOREM 5.1. Let ΰ be an order on a quaternion algebra 31.
A necessary and sufficient condition that there exists an integral
ternary lattice L with &L p& ά is that Vv{ϋ) be a square in the ideal
class group of D.

Proof. Write L = Afa + A2α;2 + A3x3 where Al9 A2, A3 are frac-
tional ideals and x19 x2, xz form a basis for the space V spanned by
L. From §3, (1),

Then

-L = D l + A2A3x2x3

v(άL) - A\A\A\ det (B(xiy

where d0 = det (B(xif Xj)) and A = A^A^ Thus i/v(άL) = dQA2 is a
square in the ideal class group of D.
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To prove sufficiency, suppose v(ύ) — d\A* where d0 e F and A is
a fractional ideal, and let 1, Ύlf 72, 73 be an orthogonal basis for 21 as
in (1) above. Let

K = {ω e #*: B(ω, 1) - 0}, L = {A-K)d°

where the superscript denotes scaling. L is a ternary lattice on
FL = Vd0 where V = FΊX + F% + FΎ3. It will be shown that the
order ΰ-L in C+(Vd0) corresponding to L is isomorphic to &. This
assertion will follow if we prove that (i) L is integral, (ii) C+(Vdo)
is isomorphic to 21, and (iii) ΰ-L is locally isomorphic to ΰ at every
p under the restriction to #L of the localization of the isomorphism
in (ii).

To prove (i), we observe that

N(L) = d0A
2N(K) - VvW) N(K) = τ/v(ΰ)'N(ά*) ,

the last step following from [6], §3. By [3], Theorem 9,

- DP .

Hence N(LP) c Dp for each p, and N(L) c D.
For (ii), define ψ: C+(VdQ) —> 21 to be the linear map with ^(1) = 1,

ψ(aβ) = doaβ for a, β e Fd o. ψ1 is clearly one-to-one. To see that it
is an algebra isomorphism, it will suffice to verify that it preserves
multiplication on basis elements of C+(Vdo). We will carry through
the computations for one case. A basis for C+(Vdή is (1, β19 βi9 β9)
where ft = 7273, β2 = %%, and ft = 7X72. Noting that, in C+(Vd°),
JI — —dodz-l, t h e n

So
(iii) We will show that ψv{d L^ — ̂ p at each p. Using the

notation of the beginning of this section, we write

as a lattice on Fp, and if Ap = αpDp,

L p = Dpapά1 + Dpapά2 + Dpapά3

as a lattice on Fp°. The order in C+(F£°) corresponding to Lp is

ΰ-Lp = DPΊ + Dpa
2

pά2ά3 + Dpala^ + OptfjoLfii,

and its image ψP(&Lp) in SX̂, is an order with basis
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(1 , d0a
2

pά2άB, dQa2

pά3άl9

Since v{&%) = v{&p)~\ another basis for fPψLp) over Dp is

(1, d~ιά2άz, δ^ά^, δ-'ά.ά,) .

Let

a[ = 1, a[ = δ-^αβ, α2 = δ"""1^!, αj = δ^ά^ .

If we show that B{a[, a5) = δi3 (Kronecker symbol), the result will
follow by the uniqueness of the dual basis. The only difficulty lies
in showing that B(a\, ά%) = 1, ΐ = 1, 2, 3, and since B(ar

if St) = —
δ~ιB(άιάzάZj 1), we need only prove that Bipc^a^ 1) = — δ(ά0, alf ά2, α3).
Using the relationships in (2), a computation shows that

Biάββs, 1) = det T-B(Ί{ifϊz, 1) .

From (3),

B(aΆas, 1) N ω m ) BίMVu D

Now,

1) - -B(7lΎt, 1) - -

Hence B[pίxa%a^ 1) = —δ(ά0, al9 α2, α3), and ψP{&Lv) = t?p for each j>.
Since (Ψ(&L))P = ΨP($LP) = $P for every p, ψ(&L) = ϋ , and the theorem

is proved.
In [6], §4, Peters has proved that a necessary and sufficient

condition that a quaternion order ϋ be an image of a ternary lattice
under Eichler's map is that iSΓ^*)"1 = Vv{ϋ). The following corollaries
allow us to compare those orders which are images of ternary lattices
under our correspondence and those which are images under Eichler's.

COROLLARY 5.2. Assume ϋ is the image of a lattice L under
Eichler's correspondence. Then ΰ is an image under our mapping
if and only if N(L) is a square in the ideal class group of D.

Proof. From §3, (2)

where A is a fractional ideal and de F. If N(L) is a square in the
ideal class group of D, it is obvious that Vv{d) has the same property.

If ϋ is the image of an integral ternary lattice under the mapping
defined in this paper, then for some ideal B and for some dQ e F,
φ) = d\B\ Hence
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and

a square in the

N(L) = ά

ideal class

GORDON L.

W(L)" 6A 4 =

idόWiL)-1

group of

NIPP

= dl&

D.

COROLLARY 5.3. Assume ΰ is the image of a lattice L under the
correspondence defined in §3. Then ΰ is an image under Eichler's
mapping if and only if N(L) = D.

Proof. It is a trivial consequence of (1), (2) of § 3 that if N(L) =
D, then ΰ is the image of L under Eichler's map.

Assuming ΰ is an image under both mappings, on the one hand
Vv(ΰ) = JV(#*)~Λ a n ( i o n t ^ e other Vvψ) = d0A

2 for some fractional
ideal A and some doeF. From the proof of Theorem 5.1, we may-
assume that L = (AK)d0 where K = {ω e #*: B{ωf 1) = 0}. From [6],
§3, N(&*) = N(K). Thus

N(L) = d0A
2N(K) = VW)-N(^) = D .

So it is easy to find orders which are realized as images of ternary
lattices under our mapping but not under Eichler's. Furthermore,
it is well-known that there exist Dedekind domains with (integral)
ideals which are not squares in the ideal class group. The image
under Eichler's correspondence of a lattice whose norm is such an
ideal is not an image under our mapping.

Additionally, there are orders which are not images under either
correspondence. To construct an example, let Z denote the rational
integers, let D = Z[V-10], and let A = 5Z + V-10Z, an integral
ideal which is not a square in the ideal class group of D (see [1],
p. 425). We note that A2 = 5D. Let V be the ternary quadratic
space with orthogonal basis xl9 x2, x3 satisfying

N(xt) = 5, N(x2) = N(x3) = 1 .

In the even Clifford algebra of F, consider the order

ΰ- = D l + Ax2xz + Dxzx1 + DxjX2

ΰ is not an image under either correspondence, since \/v(ΰ) = 5A,
not a square in the ideal class group, and Nty*)'1 = 5D Φ Vv(ΰ).
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