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ARITHMETIC PROPERTIES OF CERTAIN
RECURSIVELY DEFINED SETS

D. A. KLARNER AND R. RADO

Let R denote a set of linear operations defined on the
set N of nonnegative integers; for example, a typical element
of R has the form p(xu , xr) = m0 + ΎΠ1X1 + + mrxr where
m0, , mr denote certain integers. Given a set A of positive
integers, there is a smallest set of positive integers denoted
<iZ: A} which contains A as a subset and is closed under
every operation in R. The set <.#: Ay can be constructed
recursively as follows: Let Ao — A, and define

A k + ί = A k U {p(cί):peR, ά e A k x ••• x A k ) ( fc = 0 , 1 , •••) ,

then it can be shown that <i2: Ay = Ao U Ax U . The sets
ζR: Ay sometimes have an elegant form, for example, the set
<2x + Sy: 1> consists of all positive numbers congruent to 1
or 5 modulo 12. The objective is to give an arithmetic char-
acterization of elements of a set ζR: Ay. This paper is a
report on progress made on this problem when the authors
collaborated at Reading University in the academic year 1970-
71.

Many of the questions left open here have since been resolved;
see [2]. We start with a review of certain notions from universal
algebra which are going to be used in the precise formulation of our
problems. We would like to point out at the outset that only the
language and very little of the theory of universal algebra seem to
enter our work.

Consider a set R of unitary operations defined on a set X, and
suppose A is a subset of X. It can be shown that there is a "small-
est" set (R: Ay with A £ (R: Ay £ X such that (R: Ay is closed
under all operations in R. This is a rough version of the "definition
from above" of the set (R: Ay. However, there is an alternative
"definition from below" which involves iteration of the operations in
R. We define a sequence of sets AOf Alf recursively so that
i = 4 0 g i ι g . . . and Ao U A, U = <#: A}.

Even though we have a constructive definition of (R: A) it is
often very difficult to decide whether a given element x of X is an
element of <i2: Ay. Such a situation may lead to a search for a
simple characterization of the elements of (R: Ay which avoids the
recursive construction. In general, we seek an arithmetic character-
ization of sets <iϋ: Ay of natural numbers where R is a finite set of
unitary linear operations defined on the set of natural numbers, and
A is a finite set of natural numbers.
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Let us introduce some notation from universal algebra and give
a precise formulation to our problem. Henceforth, X denotes a set.
Let Xr, for every natural number r, denote the set of all r-tuples
of elements of X. A mapping p which sends Xr into X is called an
r-ary operation on X, For every Y £ X we put

(1) p(Y) = {p(y):yeYr}.

In particular, p(φ) — φ. A finitary operation on X is an r-ary
operation on X for some unspecified natural number r. Henceforth,
R denotes a set of finitary operations on X. For Γ g X , let

( 2 ) () J
pe R

Henceforth, A denotes a fixed subset of X. Let S*(R: A) denote the
set of all subsets of X which contain A and are closed under all
operations in R. In other words,

(3) ^(R\A) = {Y: A S 7 g l ; β ( 7 ) g Y} .

Finally, for ^ £ ά*{R\ A), S~Φ Φ, we define the meet of ^' by

(4) Λ ^ = Π Γ ,
r

and if ^ ~ = 0, then we define A ^ " =
The iom of ^ ~ is defined by

(5) V ^ = Λ^(i2: U

It is easy to check that A ^^ S^{R\ A). Clearly, V <^~e ^(R: A)
for all ^ " e £f(R\ A). Because of its importance, we have a special
notation for the set A S^(R\ A), namely,

(6) <£:A>- A^(R:A).

This brings us to the first noteworthy result in the theory of
universal algebra (see Kurosh [3, pp. 93-99]).

THEOREM 1. The set 6^{R\ A), ordered by set inclusion, forms a
complete lattice with meets and joins defined by (4) and (5) respec-
tively. The greatest element of £^{R: A) is X, and the least element
is (R: A) as defined in (6).

The next result provides a construction for (R: A).

THEOREM 2. Let Ao = A, and Ai+1 = A, (J R{At)for ΐ = 0, 1,
and put A^ = Ao U A, (J -. Then
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(7) <R:A> = A..

Proof. By definition, A = i o g 4 M S l Next, let p be an r-ary
operation in R, and select elements xlf •• ,α?r of A^. Then there
exists a number k ^ 0 such that α?i, , xr € A^. Hence, in view of
Afc+1 = A* U R(Ak), we have p ^ , , xr) e Afc+1 £ A^. This proves

An easy proof by induction on k establishes that AkS Y for
k = 0,1, whenever Γ e ^(22: A). Hence F e ^ ( i 2 : A) implies
A^ £ Γ. In particular, A^ £ <i2: A>. But <i2: A> is the least
element of S"(R: A). Therefore AM = <#: A>, and the proof is
complete.

THEOREM 3. Let Ye ό^(R: A). Then A{J R(Y)e 6^{R\ A) and

(8) (R:A) = AUR«R:A)) .

Proof. Since A U R( Y) S Γ we have i2(A U Λ( F)) S Λ( F) which
implies the first assertion. Put S = (R: A> and, for every X' S -3Γ,
9>Z' = A U iϊ(X') Then S is the intersection of all Γ g l with
X' 2 φX'. Consider one such X'. By definition of S, S S X\ which
implies ^S S -̂SΓ' £ X'. Therefore, by definition of S, φS £ S and
so 9^S £ 9>S. Again, by definition of S, we have S £ φS so that,
finally, S = φS, which is (8).

We introduce the following notation:

P ={1,2,3, . . . } ; # = {0,1, 2. .-};/= {0,1, -1,2, -2 , ...};

[α, 5] ^ ^ a e J α ^ a ^ί)} for a,beJ.

Henceforth, X is assumed to be the set P. We shall also severely
limit the scope of the set R. An r-ary operation p on P is said to
be linear if there exist numbers α, m19 , mr such that

(9 ) p(xίf , xr) = a + m ^ + + m r£ r

for all xlf' ',xr£P. If α = 0 then /> is said to be homogeneous.
Henceforth, unless the contrary is stated, R is assumed to be a finite
set of finitary linear operations on P. Usually, the elements of R
will be listed explicitly, say in the form R = {pt: i e [1, k]}, and in
this case we write (pt(i e [1, k]): A> instead of (R: A}. A similar
convention is adopted when the elements of A are listed. For example,
we shall consider sets such as (2x + l,3x + 1:1> and (2x + Zy: 1>.
An r-ary operation p is called strictly increasing if p(xlf , xr) >
xί9 , xr for all xlf , xr e P. An important corollary of Theorem 3
can be derived for sets R consisting of operations of this kind.
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COROLLARY OF THEOREM 3. Let R be a set of strictly increasing
operations on P, and A £ P. Then the equation Y = A (J R{ Y) holds
if and only ifY= (R: A),

Proof. In view of (8), we only have to show that Y = A U R(Y)
implies Y=(R:A}. Our assumption implies Ye S^(R: A), so that
(R: A) £ Y. If (R: A) Φ Y then there is a least element x of
Y\(R:A}. Then X£ A, since otherwise we would have xe(R:A}.
But the relations Y = A U R( Y) and x £ A imply the existence of an
r-ary operation p in R together with elements xl9 •••, $ r of Y such
that (̂a?!, , xr) = x. By hypothesis, p is strictly increasing, so that
x > xl9 , # r . Hence α;1? , xr e (R: A}, and x = p(xίy , α?r) e <i2: A>,
which is the required contradiction. This completes the proof.

Another notational convenience we shall employ concerns the
addition and multiplication of sets of numbers. For neJand A, 5 i J
we define

n + A = {n + a: a e A} ,

A + B = {a + b'.aeA be B} ,

nA — {na: a e A}; AB = {ab: a e A; b € B) .

For example, the set [a + dn: ne N}, which forms an arithmetic
progression, may be written as a + dN.

Sets expressible as a finite union of arithmetic progressions enter
our investigations in a natural way. For example, consider the set
S = (x + p(xl9 - , xr): a) where α, r e P, and p is an r-ary operation
on P such that, with d — p(a, a, , α), we have (̂α;̂  , α;r) =
^(l/i, •> ?/r)(mod ώ) whenever ^ = ^(mod d) for ΐ e [1, r]. Under
these circumstances all elements of S are congruent to a modulo d,
so that

(10) S^a + dN .

On the other hand, a simple induction on k establishes that a + kde S
for all ke N, in view of a + (& + l)d — α + kd + ^(α, , a). Hence
there is equality in (10). Furthermore, one can show under various
conditions that if (R: A} contains an infinite arithmetic progression,
then (R: A} is expressible as a finite union of arithmetic progressions.
For example, see Theorem 4 below. Before proving Theorem 4 we
must discuss some general properties possessed by sets expressible
as finite unions of arithmetic progressions.

A set A £ P is called a per-set if A is expressible as a finite
union of infinite arithmetic progressions. This means that A has the
form
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(11) A = U (α, + dtN) ,

where ke N and ai9 d^e P for ie [1, ft]. It is easy to see that a set
A £ P is a per-set if and only if A = F + dN where F is a finite
subset of P and de P. The name "per-set" is used to remind us of
the periodicity property of such sets which is expressed in the
following lemma.

LEMMA 1. A set A £ P is a per-set if and only if there exists
de P such that d + A^ A.

Proof.
( i ) Let A be a per-set defined by (11) with ft > 0. Let d be the

least common multiple of dlf , dk. Since at + dtn + d = ai + d£n +
(d/dt)) for i e [1, ft] and n e N it follows that d + i g 4.

(ii) Suppose that A £ P and (ί + 4 g i for some (ίeP. For
a e i put /(a?) = min (Af)(x + dJ)). Then the set F = {f(x): xeA}
has at most d elements, and if ί7 = {α1? , ak} then

A = U (ie [1, ft])(α, + dN) = F+ dN.

This completes the proof.
We concluded from (ii) that per-sets are the sets of the form

F + dN with F finite and deP.
We note that the relations d + A ξΞ: A and d' + A g 4̂ imply

(d + dθ + A - d + (d' + A) s ί + A £ A
Let ^ denote the set of all per-sets. Our next result shows

that & has a nice structure.

LEMMA 2. Let A, Be&*. Then A U B, A Π Be &*. Also, for
every finite set F Q A, we have

Proof. By Lemma 1, there are numbers d, df eP such that
d + A S A and d! + J5g B. Then dd' + (A U B) £ A U J5, dd' + (A Π B)£
i Π δ , and the sets i U 5 and Af] B are in ^ by Lemma 1. There
exists neP such that F g [1, wd]. Then nd + (A\F) £ A\F, and
A \ F G ^ by Lemma 1. This completes the proof.

For any sets X, Y we say that X is almost contained in Y, and
we write

if X\F is finite. We say that X and Y are almost equal, and we
write

X= Y,
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if X £ Y £ X. Clearly, the relation <5 is reflexive and transitive,
and == is an equivalence relation. The set A £Ξ P is called a near
per-set if A is almost equal to a per-set. Thus, a near per-set is a
set which is expressible as a finite union of arithmetic progressions,
each progression being allowed to be finite or infinite. The set of
all near per-set has a structure similar to that of 3? as given in
Lemma 2. It is easy to see that a set A Q P is a near per-set if
and only if there is d e P such that d -f A £ A. We are now ready
to state and prove a result which shows how per-sets enter our theory.

. THEOREM 4. Let A be a per-set and R a set of operations of the
form a + /mιxι + + mrxr, where a, r, ml7 , mr G P, such that the
highest common factor (mlf , mr) has the value 1. Then <i?: A) is
a per-set.

Proof. Assume A, R Φ φ. There is d e P with i + 4 g i Put

S = (R: A)

f(x) = min (S ΓΊ (x + dJ)) (x e S)

Then S' is finite and

SSU(* + dN) = S' + dN.
xeS'

We can write S' in the form S' = {sl9 ••-, s j , such that J G P , and
there is m e [0, &] such that (i) s19 , sme A + dJ, (ii) for each
λ G [m + 1, ά] there is an operation ^(α^, , xr) e R and indices
λi, , λ r G [1, λ — 1] such that p(sλl, , sXr) e sλ + c?J". Then s;. +
dΛΓSϊ A £ S for λ G [1, m]. Now assume, using an inductive argument,
that σe[m + l,k] and sλ + dN ^ S for all λ e [1, a - 1]. We shall
deduce sσ + dN £ S. There are indices λly , λ r e [1, σ — 1] and an
operation p(xu , xr) = a + m^i + + mrxr e R such that p(sλl9

• , S;r) G sσ + dJ. Then sσ G α + m^^ + . . + mrs^r + cί J; s^ + dN £
S (i G [1, r]). There are numbers pte P such that sλ. + dPf + dΛΓ g S
for ί G [1, r ] . Then α + Σ ^*s^ + ^ Σ w<p1 + d Σ ™ιN S S. There
is g G P such that q + ΛΓ g Σ ŵ ΛΓ This is a well-known consequence
of (ml9 , m r) = 1. There is ί G / such that α + Σ mιsk — ^σ + id.
Now we have

sσ + td + d Σ m ^ i + d(g + ΛΓ) g sσ + id + d Σ m^V^ + d Σ m ^

This implies sβ + dN £ S. Thus we have proved, by induction, that
sx + d-W £ S for each λ e [1, k]. Therefore S' + dΛΓ £ S, and there is
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a finite set FS S' + dN satisfying (S' + dN)\F £ S £ S' + dN. Then
S = (S' + diST)\F' for some ί7' £ F. Since S' + dNe^ it follows
from Lemma 2 that Se ^f and Theorem 4 is proved.

It is worth noting that if the set <J?': A'> contains an infinite
arithmetic progression, and Rr contains a nonempty set R satisfying
the hypothesis of Theorem 4, then <i2': A'} contains a nonempty per-
set but possibly may not be equal to a per-set.

Before going on to special cases of sets of the form {R: A} we
prove one more fairly general result concerning the multiplicative
structure of sets (R: A). For the moment we drop the requirement
that the elements of R be linear operations. An r-ary operation p
on R is now said to be homogeneous if

(12) ρ(axu ax2, , axr) = ap(xlf , xr)

for all a, xl9 , xr e P. We shall show that under certain conditions
the set (R: A) is closed under multiplication.

THEOREM 5. Let i £ P , and let R be a set of homogeneous
operations on P. Put S = (R:A). Then A i g S implies SSg=S.
In particular, if A = {1}, then SS = S. For all sets T, AT £ S
implies R(AT) = AR(T) S S. Γtes, A A S S implies AS £ S.

Proo/. Now let AS £ S and ί e SS. Then there is a e S such
that

teaS = a{R: A) = (R: a A) a <i2: SA> £ (R: S) a S ,

which proves SS £ S. If, in addition, A = {1} then S = IS £ SS, and
the theorem follows. (Dean Hoffman called to our attention the fact
that AAQS implies AS a S.)

In subsequent sections we shall focus attention on a very restricted
class of sets (R: A) where R denotes a finite set of finitary linear
operations on P, and A £ P. Section 2 deals mainly with sets of the
form

(13) (mx + nt(i e [1, A;]): α> ,

where α, k, m, ni9 , nk e P. These are sets generated by unary
linear operations on P. In § 3 we study the sets (mx + wy: 1> with
in, ne P. The cases (m, w) = 1 and (m, π) > 1 differ significantly
and are treated separately; most of our results relate to the case
(m, n) = 1.

2» Sets generated by unary linear operations* A unary linear
operation on P is a function of the form (̂α;) = mx + w with me P
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and ne N. Throughout this section we deal exclusively with sets
(R: A) where A S P and R is a set of unary linear operations on
P, finite except possibly in Theorem 8. We may suppose, without
loss of generality, that R does not contain the identity operation.
If R contains an element x + d with de P then (R: A) is a per-set.
We note that for unary operations

(1) <R: A} = U <R: a) .
A

U
aeA

Hence, it is natural to focus attention on the case when A contains
exactly one element. The problem treated in this section is to find
a satisfactory arithmetic characterization of the elements of a set of
the form

( 2 ) (mtx + n-Xi e [1, k]): a) ,

where Jc, a, m% — 1 e P and n^N for i e [1, k]. The case k = 1 in (2)
is particularly easy. We have to consider the set (mx -f n: α) with
m — 1 e P; ne N; ae P. Using the construction given in Theorem 2
we find

{mx + n: α> = {α, am + n, am2 + %(m + 1), •}

= {am' + φ * - l)/(m - 1): ί e N} .

Thus, the set (mx + w: a> has the form G — r, where G is a geo-
metric progression with positive rational terms, and τ is a positive
rational number. This procedure can be carried out for arbitrary k
in (2) and shows that the elements of (2) are precisely the numbers
of the form

3

where t e N; μx = m^(ί); ^ = ^ ( < ); λ(l), , λ(ί) 6 [1, k\. This character-
ization, though not very satisfactory in itself, is often a step towards
something better. For example, the next theorem is an immediate
consequence of (3).

THEOREM 6. Let d, k, me P and a,beN. Then

{(mx + 6 + ίd(i e [0, k - 1]): a)
(4)

( - U (6(m° + + m*-1) + am* + dΣ ^ [0, & - 1]) .
ί Λ r i

Proof. The set corresponding to ί = 0 on the right of (4) is to
be interpreted as {a}. Let te P. In (3) put μ1 — = μt = m. We
note that each ^ ranges over the set b + ώ[0, A; — 1]. Thus, in our
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case all the numbers of the form (3) comprise the set

am1 + Σ m\b + d[0, ft - 1])
i = 0

= b(mQ + + mf~ι) + am' + d Σ m^O, ft - 1] ,

for each te N. This establishes (4).
We can derive an interesting corollary from this theorem with

the help of the following lemma which deals with representation of
numbers in the m-ary number system.

LEMMA 3. Let k,m,teP and k^m. Then

(5) Σm*[0, fc - 1] = [0, (ft - l)(m° + . . . + m^1)] .

Proof. Let j e [1, (ft - l)(m° + + m*"1)] and suppose that

j — 1 = aom° + + at^m1'1 ,

where a0, , at_γ e [0, ft — 1]. Then there is a number s = min {%: at <
ft — 1}, and we have

j - 1 = (ft - l)(m° + - -m8"1) + asms + + a^m1'1 ,

where a8 < fc — 1. Then

i = ((ft - 1) + (1 - m))(m° + .. + m8-1)

+ (αβ + ί)ms + Σ aim* .
s<i<t

Since fc — m, αs + 1 e [0, ft — 1] this proves, by induction, that the
right hand side of (5) is contained in the left hand side. The opposite
inclusion holds trivially.

COROLLARY OF THEOREM 6. If ft ^ m Ξ> 2 in Theorem 6, then

\mx + b + id(i e [0, ft - 1]): α>

(m —

Proo/. Use Lemma 3 to rewrite the sum Σ (i e [ °^ — !]) ί n (4)»
and (6) is the result. For a future application we note that (6) remains
true if a — 0.

Our next result shows that if in Theorem 6 the number ft is
sufficiently large with respect to given values of α, 6, d, m, then the
set (6) is a near per-set, and under certain conditions even a per-set.
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THEOREM 7. Let a, d, m — 1 e P and be N. Then there exists
a number fc — fc(a, b, d, m) such that whenever k ^ tc then the set

S = (mx + b + id(i e [0, k - 1]): α>

is a near per-set. Furthermore, if d divides the number (am +
b — α)(m* — ϊ)/(m — 1) for some teP then S is a per-set. Finally,

( 7) κ(a, b,d,m)^2 + (am + b - a)(md - ΐ)/d .

Proof. Define, for teN,

(8 ) a(t) = b(m° + + m'"1) + am' .

It follows that

(9 ) a(t + 1) =

for ί e ΛΓ. Since the sequence (a(t): teN) satisfies a linear recurrence
relation it is eventually periodic modulo d; moreover, if d divides
a(t) — a(0) for some te P, the sequence is periodic modulo d. More
precisely, there are numbers q, r such that qeN; re [1, d]9

(10) a(t + r) = α(ί)(mod d)

for all t ~ϊ> q, and if cZ divides the number

- a(0) = (am + b - a)(m* - l)/(m - 1)

for some ί e P , then q = 0.
Now let us suppose & Ξ> m and use the Corollary of Theorem 6.

We find that

S = U (α(«) + d[0, (k - l)(m* - l)/(m - 1)])

U^LJ U (α(t + TO) + d[0, (fc - l)(mt+rj - l)/(m - 1)]) .
t = q j e N

Now choose a fixed ί 6 [?, 9 + r — 1] and consider the set

(12) U («(« + ri) + d[0, (k - l)(mt+^ - l)/(m - 1)]) ,
jN

which, as we know, is a subset of a(t) + dN. In fact, the set
corresponding to a fixed j in (12) is a block of consecutive elements
of the arithmetic progression a(t) + dN. We want to show that the
set (12) is almost equal to a(t) + dN, i.e., that neighboring blocks in
(12) abut or overlap for all large values of j . To achieve this it
suffices to make k so large that

(13) a(t + rj) + d(k - l)(mt+rj - l)/(m - 1) ^ a(t + rj + r) - d
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for all large j . But (13) is equivalent to a condition of the form

(14) k ^ 1 + (am + b - α)(mr - l)/d + δ, ,

where δ, -* 0 as j —> oo. Thus, if j is sufficiently large, the right
hand side of (14) is less than

2 + (am + b - a)(md - ΐ)/d = κr ,

say. Hence, if k ^ ιc\ and t e [q, q + r — 1] then the set (12) is con-
tained in, and almost equal to, a(t) + dN. By combining this result
with (11) we obtain

(15) S = ' i j 1 (a(t) + dN) .
t = q

If d divides a(t) — α(0) for some ί e P, so that g = 0, then S is
actually contained in the set on the right of (15), because in this
case the set U (t e [0, g — 1]) on the right of (11) is the empty set.
Hence we conclude that S is a near per-set provided k ^ ιc'9 and a
per-set if k^ κf and if d divides a(t) — α(0) for some te P. This
completes the proof, except that we still have to show that k ^ tzr

implies the condition k^m which we imposed just before (11). In
fact we have, since md ;> 2d ^ d + 1,

Λ:' = 2 + (a(m - 1) + b)(md - l)d~ι

^ 2 + (l(m - 1) + 0)((d + l ) - ^ - 1 = m + l>m

which completes the proof of Theorem 7.
By using (1) and (6) one can obtain results similar to Theorem 7

concerning sets of the form

(mx + bt(i G [1, k]): A)

with A and {bu •••,&*} finite arithmetic progressions. So far, we
have not found any other class of sets of the form

imtx + nt{i e [1, k]): A}

which have a simple or interesting arithmetic structure. For example,
we have studied the set

S = <2x + 1, 3a; + 1:1>

which seems to be fairly complicated.
P. Erdόs has kindly communicated to us the essentials of a result

which shows that for certain sets R of unary linear operations and
certain sets A the set <J?: A} has density zero and is therefore neither
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a per-set nor a near per-set. This applies, for instance, to (2x + 1,

THEOREM 8. Let φa A, I § P; mte P, n,e N for iel. Let σ be

a positive real number such that Σ (i 61)mja < 1. Then, if
S = (rriiX + nt(i e I): A}, we have, for all teN,

I [1, t] Π SI ^ (1 - X mϊT1 Σ (a e [1, t] f] A)(t/aY .

COROLLARY OF THEOREM 8. If, in addition, σ < 1 and if either
the set A is finite, or A is infinite and the series Σ (a e A)a~° con-
verges, then the set S has density zero and is neither a per-set nor
a near per-set. This applies, for instance, to the set (2x + 1, 3x + 1'. A}
whenever Σ (a e A)a~τ < co for some τ < 1.

Proof. Put Σ (i e I)mΓ = 1 - δ, so that 0 < δ < 1. For t e N
denote by L(t) the set of all mappings λ: [1, r] —>I with some
unspecified r 6 N, such that mMl)m?Λ2) m;.(r) ^ £. We now prove
that, for all t e N,

(16) \L(t)\£F/δ.

Clearly, (16) holds for t = 0. Let te P and used induction with
respect to t. Then, by noting that L(t) has exactly one element
with r = 0, and by giving to λ(l) in turn each of the possible values,
we find that

I L(t) I - 1 + Σ I L([t/mt]) I S U Σ ^ 1 \tM
^ l + 3-^(1 - δ) = r1^ - (r - i) ^ δ-1^ ,

where [x] denotes the greatest integer not exceeding x. This proves
(16) for all te N. Let ae A and ί e N and put

Sβ(ί) = [1, t] Π <m,a; + nt(i e I): a) .

Let y G Sα(ί). Then we can choose r G N and a mapping λ: [1, r] —> /
such that

t^y = ft u) + mλω(nλ{2) + m ;

+ ^ ( r _ υ ( ^ ( r ) + ra;(r)α)

^ mλ[ι)mλ{2) - m ; ( r ) α .

Hence λei([ί/α]). Put <p(τ/) = λ. Then CP: Sα(ί) — L([ί/α]) is an in-
jection, and therefore

Now, using (16) we find that, with At = [1, t] Π A,
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^ Σ (a e At) I L([t/a]) \ £ Σ (a e A^fί/α]

which was to be proved.

3* Sets generated by one linear operation* If linear operations
p and τ are related, then one might expect the sets (p: a) and (τ: b}
to be arithmetically related. The first results proved in this section
are of this type. We show in Theorem 9 under fairly general con-
ditions that the set (m0 + mγxγ + + mrxr: α) is an affine transfor-
mation of the set (jnιxι + . . . + mrxr: 1). Using Theorem 9, we show
in Theorem 10 that if p and τ are linear operations and (p{x): 1> is
a per-set, then (p(x) + τ(y): 1> is also a per-set. All of the results
proved in this section were motivated by attempts to prove the
following conjecture.

Conjecture 1. Suppose r, mί9 , mre P, and (mί9 , mr) = 1.
Then <m1fic1 + + mrxr: 1> is a per-set.

If r — 2, m1? , mr e P, (m^ , m M ) = 1, and ( m ^ + +
mr_xxr^. 1> is a per-set, then it follows from Theorem 10 that <m1a?1 +
• + mrxr: 1> is also a per-set.

Most of our efforts to prove Conjecture 1 have been concentrated
on trying to show that (mx + ny: 1) is a per-set whenever (m, n) = 1.
For example, we have succeeded in showing (Theorem 11) that
(2x + ny: 1> is a per-set for all odd numbers n. (Conjecture 1 has
been proved, see [2].)

It would be interesting to know whether the set (mx + ny: 1)
contains an infinite arithmetic progression for all m, ne P. In fact,
a proof along the lines of the proof of Theorem 4 can be given that
if a, d, r — l,mly -,mre Pwi th(α, d) = (mu , mr) = l a n d α + ώiVS
(mιxι + + m^ri 1> = S, then S is a per-set. This motivates a
second conjecture. (This conjecture has now been proved, see [2].)

Conjecture 2. The set (mx + ny: 1> contains an infinite arithmetic
progression for all m, ne P.

The truth of Conjecture 2 is not enough to prove that (mx +
ny: 1> is a per-set. In fact, R. Graham has shown that (3x + Zy: 1>
is not a near per-set, but it is easy to prove that 36 + 45ΛΓ is
contained in this set. Evidence in favor of Conjecture 2 is given in
Theorem 12 in which it is shown that (mx + ny: 1> contains arbitrarily
long arithmetic progressions for all m, ne P. This is an interesting
result because it can be shown in a way similar to that used in the
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proof of Theorem 7 that if (m, n) — 1, and (jnx + ny: 1> contains a
sufficiently long arithmetic progression, then (mx + ny: 1) is a per-
set. The sufficiency of the length of the progression depends on m,
n, the size of the initial term, and the common difference of the terms
of the progression. Now we present our results.

In order to exhibit the essentially very simple idea behind our
next result we temporarily abandon our restriction to linear operations
on P and readmit general operations on J. We also introduce the
convention that if x denotes a vector of any dimension, with com-
ponents Xt e J, then x — t denotes the vector with components xt — t.
In what follows vectors x, #, z, w are assumed to have the appropriate
dimensions.

THEOREM 9. Let I be a set and let, for each iel, pτ(x) and
σt(x) be Ti-ary operations on J. Let a, β e J\{0}; a\ βr e J; A, B £ J.
Then

(1) a(Pi(x)(i e I): A} + a'= βiσ^ϋ e I): B) + β'

provided that

( 2 ) a A + a! = βB + βr

and, for each iel and each w over J such that (w — d')/d and
(w — βr)lβ are vectors of integers,

( 3) aPi(λ(w -a'ή + a' = /3σt(±(w - 0')) + β' .

Proof. Put

On account of symmetry it suffices to prove that the left hand side
of (1) is contained in the right hand side of (1), that is, that

(4) (Pi(x)(ieI):A)^R,

where

R = -&S + ff' ~ α '
cc β

First of all we have, by (2),

a a

Next, if z is a vector over J? then az lies over βS + β' — a' and
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+β')/β lies over S. Hence, for every i e I, σAiaz + af-β')lβ) e S,

β.σίk(az + a'- β'))
a \β /

( + β)) +
β / a

Put az + a' = w. Then

By (3), this yields

λfap/λ(ιv - a')) + «') - *-' 6 i2 ,

that is, ftί^r) e i2. Thus, i? contains A and is closed under each pif

which implies (4).

COROLLARY 1 OF THEOREM 9. Let r,mlf ---,mreP with m =
m^ + + mr > 1, cmd aybeJ. Then

(m — 1)<6 + m^! + + mrα;r: α> + 6
ί o )

= (δ + am — ̂ ( m ^ i + + mra;r: 1) .

REMARK. It is easily verified that the conditions (2) and (3) hold
in the case presented by (5).

COROLLARY 2 OF THEOREM 9.

(m — 1)<1 + m ^ + + mrxr: 0> + 1
( 6 )

= <m1a;1 + + mrxr: 1> .

REMARK. This is the case a = 0; δ = 1 of (5).

COROLLARY 3 OF THEOREM 9. The set <m1a?1 + + mrα;r: 1> is
cioseώ under multiplication for all r, mu , mr e P.

Proof. This result already follows from Theorem 5; however, if
we put δ = 0 in (5), we get

(m&i + + mrxr: a) ~ a{mγxγ + .. + mrxr: 1)

which is a key element in the proof of Theorem 5.

THEOREM 10. If ml9 *-,mreP with (ml9 , mr) = 1, and S =
(m^ + + mrxr: 1> is a per-set, then T = (jn^ + + mrxr +

iVi + + nsy8 + δ: a) is a per-set for all a, δ, nlf , n8 e N.
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Proof. First, note that if an affine transformation maps a per-
set into a set of integers, then this set is also a per-set. Hence, it
follows that the set

Q — ( m ^ + + mrxr + {nx + + ns)a + b: a}

(which is an afSne transformation of S according to Theorem 9) is
a per-set. Furthermore, aeQ and Q £ T, so

(mfo + + mrxr + nιyι + . . - + nsys + b: Q) = T .

But, since Q is a per-set, and (mίf , mr) = (mly , mr9 nί9 , w.) = 1,
Theorem 4 applies, and we can conclude that T is a per-set. This
completes the proof.

A simple special case of the next result is crucial for the proof
of Theorem 11. However, the reader is referred to [1] for a proof of
a more general result.

LEMMA 4. Suppose mlf m2e P with (mlf m2) — 1, and let u1? vly u2,
v2, denote integers such that vx — uλ Ξ> m2 — 1 and v2 — u2 ^ m2 — 1.
Then

\m{ϊiγ + m2u2 + (mL - l)(m2 - 1), mιvι + m2^2 - (m, - l^m, — 1)]

S m j ^ j + [ ]

THEOREM 11. If n is odd and ne P, then (2x + ny: 1> is a per-
set. Also,

(8 ) (2x + ny: 1> = {j (2'n + 2* - n + (n2 + n)N) ,
i = 0

where r denotes the order of 2 modulo n, and the symbol = was
defined in § 1.

Proof. Using the Second Corollary of Theorem 9, we have

(9) (2x + ny: 1> = 1 + (n + l)<2α? + ny + 1:0} .

From now on we work with the set T = (2x + ny + 1:0}; also, let

S - U (2* - 1 + nN) ,
i=0

where r denotes the order of 2 modulo n. Note that

2(2" - 1 + nN) + n(2v -1 + nN) + 1 £ 2M+1 - 1 + nN

for all u, ve{0, •••, r — 1}. It follows that S is closed under the
operation 2x + ny + 1; furthermore, 0 6 S, so

(10) <2α? + ray + 1: 0> = Γ £ S .

Now we show that T = S. Since 0, 1 6 T, we have (2Γ + 1) U
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% + l ) U { 0 } g T ; hence,

(11) R = (2x + 1, 2x + n + 1: 0> S T .

The Corollary of Theorem 6 with a = 0 implies

R = U (2* - 1 + ra[0, 2* - 1]) = U U (2 r ί + ί - 1 + n[0, 2rt+i - 1]) .
0=1 i = 0 ί = 0

Since R S T, we have

Γ 3 1 + 2(22r-L - 1 + w[0, 22r-1 - 1]) + nR

(12) = 22r - 1 + π(U Q V ί + ί - 1 + 2[0, 22r-1 - 1]

+ n[0, 2rt+i —°1])) .

But w divides 2r - 1, so | [0, 22 r- : - 1] | ^ n; also, (2, w) = 1. Thus,
Lemma 4 applies to the linear combination of intervals which appears
on the right in (12), so we can conclude that

T B 22r - 1 + ^ ( U ίj j(2 r ί + ί - 1

(13) + [n ~ 1, 22r + n2rt+i - 2n - 1]))
r—1

teN i=0

where atι = 2 r ί + ί + % - 2; 6W = (n + l )2 r ί + ί + 22r - 2n - 2. Let ί be
fixed, teN. The union of the r intervals [ακ, 6M] will form a single
interval of integers provided that ati+ιS bH + 1 for every i e [0, r — 2].
Now we have for i e N, since 2r — 1 :> n,

bti + 1 - α i<<+1 = (w + l)2^ ί+ί

+ 22r - 2n - 2 + 1 - 2 r ί + ί + 1 - w + 2

^ = (n - l )2 r ί + ί + 22r - Sn + 1

^ (w ~ 1) + (n + If - Sn + 1 = n2 + 1 > 0 .

Thus (13) yields

T 3 22' - 1 + tt U [αt0, 6ίfr-il
teiV

Again, this last union constitutes single interval since we have

&*.,_! + 1 - α l + l i β = (» + l)2 r < + r- 1

+ 22r - 2n - 2 + 1 - 2rt+r - % + 2

= (» - 1)2"+ '-1 + 22r - 3π + 1

(15) ^ (» - l)2 r- 1 + 22r - 3w + 1

^ (Λ - l) -ί(Λ + 1) + (w + I) 2 - Zn + 1
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Thus

(16)

so that

(17)

Now

(18)

, finally,

we show

D. A. KLARNER

Γ 3 2 - - 1 +

2{ - 1 +

AND

• «a»

= T .

nNs

R.

+

T

N) ,

for i = 0, •••, r — 1 by induction on i; in fact, we have the case
i = 0 in (17). Suppose (18) holds for some i :> 0. Then

Γ 2 1 + 2(2* - 1 + nN)
= 2ί+1 - 1 + n(2N + îV) = 2i+ι - 1 + nN.

Here we have implicitly used Lemma 5 which we will state and prove
at the conclusion of this proof. Hence, (18) holds also for i + 1, and
this means (18) holds for i = 0, , r — 1. It follows that

(19) S - 0(2* - 1 + nN) £ T,
i = 0

and this together with (10) implies S = T. This result together with
(9) implies (8). It remains to prove the following lemma.

LEMMA 5. Suppose mlf , mk> k — 1 e P with (mu , mfc) ~ 1,

Zeί >S = <1 + m ^ + + m Λ %: 1>, and let Alf '•*, Ak denote per-sets

such that A% £ S for ί = 1, ••-,&.

(20) 1 + m.A, + + m,A, £ S .

Proof. It is enough to prove this for per-sets Alt , Ak having
the special form A, = α< + diΫ with a4, d e P for i = 1, ••-,&. Suppose
N% is maximal with Nt^N such that α* + dΛ^ S S, then since A, £ S,
we have JVi S N. Because S is closed under the operation 1 + mιxι +
• + mkxkJ and ai + cίΛΓ. s S, we have

(21) 1 + Σ ^ ( α , +
1 = 1

Now, using the fact that N £ JV̂  for i = 1, , Λ, note that

(22) ΛΓ = Σ m.iV £ Σ ^ ^ = H -
t=i i = i

Hence,
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k k k

1 + Σ MiAi = 1 + Σ miai + d Σ MiN
(23)

fc & fc

g l + Σ ^ Λ + d Σ MiN* = Σ ™<(α, + diV,),
i = l i = l i = l

and this together with (21) implies (20). The proof is complete.
A result which supercedes Theorem 11 has now been proved;

namely, if m, ne P, with (m, n) = 1, then <1 + mx + ny: 0> contains
almost all positive elements of the residue classes it enters modulo
mn. In order to prove this result, the fact that <1 + mx + ny: 0>
is a periodic set with period (m + n + l)mιnι for some large number
I has been used. This result is proved in [2].
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