A NULLSTELLENSATZ FOR NASH RINGS

GUSTAVE A. EFROYMSON

Let D be a domain in R^n defined by a finite number of strict polynomial inequalities. Then the Nash ring A_D is the ring of real valued algebraic analytic functions defined on D. In this paper, it is shown that A_D is Noetherian and has a nullstellensatz. For $\mathscr P$ a prime ideal of A_D , $A_D | \mathscr P$ is said to be rank one orderable if its quotient field can be ordered over R so that it has essentially one infinitesimal. Then $A_D | \mathscr P$ is rank one orderable if and only if $\mathscr P$ equals the set of functions in A_D which vanish on the zero set of $\mathscr P$ in D.

DEFINITION 0.1. Let R denote the real numbers. Let D be a domain in R^n , defined by a finite number of polynomial inequalities $p_i(x) > 0$. A function $f: D \to R$ is said to be algebraic analytic if there exists a non-trivial polynomial $p_f(z, x_1, \dots, x_n)$ in $R[z, x_1, \dots, x_n]$ so that $p_f(f(x), x) = 0$ for all x in D, and if f is analytic (expandable in convergent power series) at every point of D.

DEFINITION 0.2. The ring of all such algebraic analytic functions $f: D \to R$ is called the Nash ring A_D ; see [7] for this notation.

DEFINITION 0.3. (1) An ideal J of A_D is real if $\sum_{i=1}^m \lambda_i^2 \in J$ implies all $\lambda_i \in J$.

- (2) For $J \subset A_D$, $V_R(J) = \{a \in \mathbb{R}^n \mid f(a) = 0 \text{ for all } f \text{ in } J\}$.
- (3) For $S \subset D$, $I(S) = \{ f \in A_D \mid f(s) = 0 \text{ for all } s \text{ in } S \}$.

In §1 and §2 we develop some of the preliminaries for the study of the Nash ring. Most of §1 comes form Cohen's paper [3]. In §2 we prove the finiteness of the number of components of an algebraic set using Cohen's theory. In §3 it is shown that A_D is Noetherian. Mike Artin made several valuable suggestions which were very helpful in proving this theorem.

Finally in § 4 we get to the nullstellensatz. Originally it was intended to prove the following conjecture.

CONJECTURE 0.4. An ideal $J \subset A_D$ is real if and only if $I(V_R(J)) = J$. Instead of this we are only able to show that: If $\mathscr{S} \subset A_D$ is prime, then A_D/\mathscr{S} is rank one orderable (Definition 4.2) if and only if $I(V_R(\mathscr{S})) = \mathscr{S}$. This is sufficient to prove the conjecture in the case $D \subset R^2$. This is because the only nontrivial case is for \mathscr{S} a prime of dimension 1 in which case A_D/\mathscr{S} real implies A_D/\mathscr{S} rank one orderable.

¹ Added in proof, this conjecture is now a theorem proved by T. Mostowski, preprint 1974.

1. Cohen's effective functions. In his paper, [3], Paul Cohen introduces the concept of an effective function. Since this concept is very useful here and is used in [3] to prove the Tarski principle, which we also find very useful, we will reproduce with some slight modifications the discussion in [3]. The main change here is to drop the term "primitive recursive" which is, I believe, not necessary for our needs.

DEFINITION 1.1. Let k be a field. A polynomial relation $A(x_1, \dots, x_n)$ is a statement involving a finite number of polynomials in $k[x_1, \dots, x_n]$ plus the terms: and, or, not, equals, greater than, and also parentheses.

DEFINITION 1.2. Let k be a real closed field. A function f defined on a subset D of k^n is effective if for every polynomial relation $A(x, t_1, \dots, t_s)$, there exists a polynomial relation $B(x_1, \dots, x_n, t_1, \dots, t_s)$ so that $A(f(x_1, \dots, x_n), t_1, \dots, t_s)$ if and only if $B(x_1, \dots, x_n, t_1, \dots, t_s)$.

DEFINITION 1.3. Let
$$\operatorname{sgn} x = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0. \\ -1 & \text{if } x < 0 \end{cases}$$

LEMMA 1.4. The function f is effective if and only if there exists for each positive integer d a polynomial relation $A_d(c_0, \dots, c_d, x_1, \dots, x_n, \lambda)$ so that $A_d(c, x, \lambda)$ if and only if

$$\lambda = \operatorname{sgn} \left(c_0 f(x)^d + \cdots + c_d \right)$$
.

Proof. All polynomial relations can be constructed from inequalities p(x) > 0.

DEFINITION 1.5. Let $p(x) = a_0 x^m + \cdots + a_m$ be a polynomial. By a graph for p(x) we mean a k-tuple $t_1 < t_2 < \cdots < t_k$ so that in each interval $(-\infty, t_1)$, (t_1, t_2) , \cdots , (t_k, ∞) , p(x) is monotonic. By the data for the graph we mean $sgn(a_i)$, all i; $\langle t_1, \cdots, t_n \rangle$, and, $sgn(p(t_i))$ all i.

It is clear that from the data for its graph we can determine in which (t_{i-1}, t_i) the polynomial has roots.

THEOREM A_m . There are effective functions of a_0, \dots, a_m which give the data for the graph of $p(x) = a_0 x^m + \dots + a_m$. Namely, we have effective functions: $t_i(a)$, $\operatorname{sgn}(p(t_i(a)))$ and of course $\operatorname{sgn}(a_i)$ so that $t_1(a) < \dots < t_{m-1}(a)$ forms a graph for p(x).

THEOREM B_m. Let $p(x) = a_0 x^m + \cdots + a_m$. There are m+1 effective functions: k(a) and $\xi_1(a) < \xi_2(a) < \cdots < \xi_m(a)$ (possibly not

everywhere defined) so that $\xi_1(a), \dots, \xi_{k(a)}(a)$ are the roots of p(x).

Proof. The proof is by induction. The theorems are trivial for m=0. We now assume that we have proven both A_r and B_r for all integers r < m. First we prove A_m . The polynomial p'(x) has lower degree r than m and so by the corresponding B_r , its roots are effective functions of the coefficients of p'(x) and the coefficients of p(x).

Next we prove B_m . First choose a graph $t_1(a) < \cdots < t_{m-1}(a)$ for p(x) using A_m . From the data we can determine the number of roots k(a) effectively. We have to show that roots are effective. In each interval $(-\infty, t_1), \cdots, (t_i, t_{i+1}), \cdots, (t_{m-1}, \infty)$, there is at most one root of p(x). Some of the t_i could be roots, but since we know $\operatorname{sgn} t_i$, this is no problem. Moreover, we can tell from $(\operatorname{sgn} t_i, \operatorname{sgn} t_{i+1})$ whether or not p(x) has a root in (t_i, t_{i+1}) . Suppose $\hat{\xi}$ is such a root. Then, by Lemma 1.4, we have to show that if q(x) = $c_0x^s+\cdots+c_s$ is another polynomial, $\operatorname{sgn} q(\xi)$ is an effective function of the c_i 's and a_i 's. First divide q(x) by p(x) and if r(x) is the remainder we can replace q(x) by r(x) since the coefficients of r(x)are effective functions of the c_i 's and a_i 's, and $q(\xi) = p(\xi)b(\xi) + r(\xi) =$ $r(\xi)$. So we can assume s < m. By induction, we know the roots $u_1 < \cdots < u_s$ of q(x) effectively in terms of the c_i 's. Thus $\operatorname{sgn}(u_i - t_j)$ is effective for all i and j, meaning that we know effectively which of the u_j are between t_i and t_{i+1} . By checking sgn $(p(u_j))$ for all j, we can determine effectively where ξ is relative to the u_i 's. Then from the data for q(x) we know sgn $q(\xi)$ also.

THEOREM 1.6. (Tarski and [3]). Let k be a real closed field and let $A(x_1, \dots, x_n)$ be a polynomial relation in $k[x_1, \dots, x_n]$ with n > 1. Then there exists a polynomial relation $B(x_2, \dots, x_n)$ so that $\{\exists x_1 \in k \text{ so that } A(x_1, \dots, x_n) \text{ if and only if } B(x_2, \dots, x_n)\}.$

Proof. Regard the polynomials $p_1(x), \dots, p_s(x)$ which appear in $A(x_1, \dots, x_n)$ as polynomials in x_1 with their coefficients in $k[x_2, \dots, x_n]$. Then one notes that the truth of $\exists x_1 A(x_1, \dots, x_n)$ depends only on the relative positions of the roots of the $p_i(x)$ and the sign of the $p_i(x)$ in between these roots. By Theorems A_m and B_m this data is effectively determined from the coefficients of the p_i which are just polynomials in $k[x_2, \dots, x_n]$.

THEOREM 1.7. The function $f(x_1, \dots, x_n)$ is effective if and only if there exists a polynomial relation $A_f(z, x_1, \dots, x_n)$ so that $\{z = f(x_1, \dots, x_n) \text{ if and only if } A_f(z, x_1, \dots, x_n)\}.$

Proof. If f is effective, consider the polynomial relation t=z. By the definition of effective function, there exists a polynomial relation $A_f(t, x_1, \dots, x_n)$ so that $A_f(t, x_1, \dots, x_n)$ if and only if $f(x_1, \dots, x_n) = t$.

Now suppose $A_f(t, x_1, \dots, x_n)$ exists so that $\{z = f(x_1, \dots, x_n) \text{ iff } A_f(z, x_1, \dots, x_n)\}$. Given any polynomial relation $A(z, t_1, \dots, t_s)$, consider the relation $(A_f \text{ and } A)$. Then by Theorem 1.6, there exists $B(x_1, \dots, x_n, t_1, \dots, t_s)$ so that $(\exists z : A_f \text{ and } A)$ iff $B(x_1, \dots, x_n, t_1, \dots, t_s)$.

Theorem 1.7 is the only result in this section which does not appear in [3]. The reason for adding it is to give a possibly simpler description of the concept "effective function".

THEOREM 1.8. (Tarski's principle as proved by Cohen [3]). Let k be a real field with only one ordering and let $A(x_1, \dots, x_n)$ be a polynomial relation $k[x_1, \dots, x_n]$. Then if Q_i is either \forall or \exists , the statement (*) $\{Q_1x_1 \in L, Q_2x_2 \in L, \dots, Q_nx_n \in L, A(x_1, \dots, x_n)\}$ is true for one real closed field $L \supset k$ iff it is true for every real closed $L \supset K$.

Proof. First note that $\forall x$ is just $\sim \exists x \sim$. Then use induction and Theorem 1.6 to find a polynomial relation B involving only the coefficients of the polynomials in $A(x_1, \dots, x_n)$ so that(*) iff B. Since any real closed field induces the unique ordering on k, B is true or false independent of L.

2. Algebraic analytic functions.

THEOREM 2.1. Let $A(x_1, \dots, x_n)$ be a polynomial relation. Let $D = \{(a_1, \dots, a_n) \text{ in } R^n \text{ such that } A(a_1, \dots, a_n)\}$. Then each connected component of D is also defined by a polynomial relation. Moreover, there is a finite number of such components.

Proof. We use induction on n. For n=1, since D is a union of points and intervals, the result is obvious. For n>1, $A(x_1, \cdots, x_n)$ involves a finite number of polynomials $p_i(x_1, \cdots, x_n)$ for $i=1, \cdots, s$. Consider each p_i as a polynomial in x_n with coefficients in $k[x_1, \cdots, x_{n-1}]$. Then there exist functions $\varphi_{ij}(x_1, \cdots, x_{n-1})$ as in Theorem B_n giving the roots of $p_i(x)$. So our region D will be a union of intersections of sets of the form $\varphi_{ij}(x_1, \cdots, x_{n-1}) < x_n < \varphi_{i'j'}(x_1, \cdots, x_{n-1})$ (where k=1 could be k=1), where k=10, where k=11 is such that k=11 both k=12 is such that k=13 in k=14 is such that k=14 is and k=15 in k=15. The proof of k=16 is a union of k=16 in k=16 in k=17 in k=18 in k=19 in

It will be enough to show that the domain $E \subset D$ of $\varphi_{ij} = \varphi$

can be split up as a union of E_i where each E_i is connected and defined by a polynomial relation and φ is continuous on E_i . This is because we can further divide the E_i into connected components where other $\varphi_{i'j'}$ are defined, continuous and $> \varphi_{ij}$ by the same process. Let $p_{\varphi}(x_1, \dots, x_{n-1}, z) =$ the irreducible polynomial for φ and let $g(x_1, \dots, x_{n-1}) =$ the discriminant of p_{φ} with respect to z. By further subdividing and using Theorem B_m we can also assume $\varphi =$ $i^{ ext{th}}$ root of p_{arphi} . So the subset of E where $g(x_1, \cdots, x_{n-1})
eq 0$ can be written as $E_1 \cup \cdots \cup E_t$ where each E_i is connected and by our induction hypothesis each E_i can be defined by a polynomial relation. So fix E_1 say. Then let $\alpha_1(x_1, \dots, x_{n-1}), \dots, \alpha_d(x_1, \dots, x_{n-1})$ be the roots (real and complex) of $p_{\varphi}(x_1, \dots, x_{n-1}, z)$. The α_i are continuous functions and if some $\alpha_i(P)$ is not real, then there exists $j \neq i$ with $\alpha_i(P) = \alpha_i(P)$. Since the α_i are continuous, no complex root can become real without p_{φ} getting a double root so this cannot happen in E_1 since $g \neq 0$ there. So let $\alpha_1, \alpha_2, \dots, \alpha_n$ be the real roots of p_{φ} and suppose $P \in E_1$ that $\alpha_1(P) < \cdots < \alpha_u(P)$ and $\alpha_i(P) = \varphi(P)$. For Q near enough to P, $\alpha_i(Q) < \cdots < \alpha_u(Q)$ and so $\varphi(Q) = \alpha_i(Q)$ which shows that φ is continuous at P (since α_i is) and so φ is continuous on E_i . The other E_i are handled just the same way.

On the rest of E, we have $g(x_1, \dots, x_{n-1}) = 0$ and so we can solve for $x_{n-1} = \psi(x_1, \dots, x_{n-2})$, for possibly more than one ψ but only a finite number. Now let

$$h(x_1, \dots, x_{n-2}) = \varphi(x_1, \dots, x_{n-2}, \psi(x_1, \dots, x_{n-2}))$$
.

Then, by induction, we can split up the domain F of ψ into sets F_j which are connected and on which both φ and ψ are continuous. Then $E_{i+j} = \{(x_1, \dots, x_{n-2}, \psi(x_1, \dots, x_{n-2})) \mid (x_1, \dots, x_{n-1}) \in F_j\}$ is connected and φ is continuous on E_{i+j} .

THEOREM 2.2. Let D be a domain of R^n defined by a finite number of polynomial inequalities. Then, if $f: D \rightarrow R$ is algebraic analytic, f is effective.

Proof. There is a polynomial $p_f(z, x_1, \dots, x_n)$ so that $p_f(f(x), x) = 0$ for all x in D. Let $g(x_1, \dots, x_n)$ be the discriminant of p_f considered as a polynomial in z. Then in any connected subset of D where $g(x) \neq 0$, f will equal a fixed root of $p_f(z, x)$. So f(x) is effective there. When g(x) = 0, we can solve for x_n in terms of the other variables and in polynomially defined regions D_i of R^{n-1} , x_n will be an algebraic analytic function of x_1, \dots, x_{n-1} . There is a finite number s of the D_i so that $D = D_1 \cup \dots \cup D_s$. On each D_i , f also will be an algebraic analytic function and so by induction on n we are done.

DEFINITION 2.3. Let D be the subset of R^n defined by $D = \{a \in R^n \text{ such that } p_1(a) > 0, \cdots, p_s(a) > 0\}$, where all $p_i(a)$ are in $R[x_1, \cdots, x_n]$. Let $f: D \to R$ be an algebraic analytic function. By Theorem 2.1, there is a polynomial relation $A_f(z, x_1, \cdots, x_n)$ in $R[z, x_1, \cdots, x_n]$ so that $A_f(z, x)$ iff z = f(x). Finally let L be a real closed field containing R. Now $A_f(z, x)$ makes sense for z, x_1, \cdots and x_n in L. If we let $D_L = \{a \in L^n \text{ such that all } p_i(a) > 0\}$, we can define $f_L: D_L \to L$ by setting $z = f_L(x_1, \cdots, x_n)$ iff $A_f(z, x_1, \cdots, x_n)$.

LEMMA 2.4. For f_L defined as above, we have $(f+g)_L = f_L + g_L$ and $(fg)_L = f_L g_L$.

Proof. We have f(x) = z iff $A_f(z, x)$; g(x) = w iff $A_g(w, x)$ and (f+g)(x) = u iff $A_{f+g}(u, x)$. But $\forall x, z, w, u$ in R we have: $p_i(x) > 0$, $A_f(z, x)$, $A_g(w, x)$ and $A_{f+g}(u, x)$ implies u = z + w. So by Theorem 1.8, the same holds for L.

One handles $(fg)_L$ similarly.

3. The Nash ring is Noetherian. We retain the notation of § 2 so that D is a domain in R^n defined by a finite number of polynomial inequalities and A_D is the ring of algebraic analytic functions $f: D \rightarrow R$.

LEMMA 3.1. Every maximal ideal of A_D corresponds to a point of D and vice versa.

Proof. Let \mathcal{M} be a maximal ideal of A_D and suppose that for every $P \in D$ there exists $f_P \in \mathscr{M}$ with $f_P(P) \neq 0$. Then choose $f \neq 0$, $f \in \mathcal{M}$. Let $V_{\mathbb{R}}(f)$ denote the zero set of f in D. There exists a polynomial $p_f(z, x)$ so that $p_f(f(x), x) = 0$ for all x in D. Then if $p_f(z, x) = a_d(x)z^d + \cdots + a_0(x)$, we have $a_d(x)(f(x))^d + \cdots + a_0(x) = 0$ for all x in D. Then it follows that a_0 vanishes on $V_R(f)$, and so $V_{\mathbb{R}}(f) \subset V_{\mathbb{R}}(a_0)$. The singular points of $V(a_0)$ will have dimension \leq n-2 and if we let W be the singular set of $V_R(a_0)$, then $V_R(a_0)$ W will be a union of a finite number of topological components; C_1, \dots, C_s by Theorem 2.1 or ([8], p. 547). For each C_i choose $P_i \in C_i$ and $f_i \in \mathcal{M}$ so that $f_i(P_i) \neq 0$. Then f_i will vanish only on $W_i \subset C_i$ which is of dimension $\leq n-2$. Then replacing $V_{\mathbb{R}}(a_0)$ by $W \cup$ $W_1 \cup \cdots \cup W_s$, we go through the same process of removing the singular points and finding new f_i which vanish only on a lower dimensional piece of $W \cup W_1 \cup \cdots \cup W_s$. Eventually we obtain $f_1, \dots, f_t \in \mathcal{M}$ so that for all P in D, there exist some f_i with $f_i(P) \neq 0$. Let $f = \sum f_i^2$. Then f is in \mathscr{M} and also a unit in A_D , which is a contradiction.

LEMMA 3.2. For every maximal ideal $\mathcal{M} \subset A_D = A$, the local ring $A_{\mathcal{K}}$ is Noetherian.

Proof. (As in [1], p. 87). Every maximal ideal \mathscr{M} corresponds to a point of D, so we may as well assume that this point is $0 = (0, 0, \dots, 0)$. The completion of A at \mathscr{M} is then isomorphic to $R[[x_1, \dots, x_n]]$ and thus Noetherian. We have $R[x_1, \dots, x_n] \subset A_{(0)} \subset R[[x_1, \dots, x_n]] = \widehat{A}_{(0)}$.

Let $I_1 \subset I_2 \subset \cdots$ be an increasing sequence of finitely generated ideals of $A_{(0)}$. We will show that this sequence is eventually constant. Since $\{I_j \hat{A}_{(0)}\}$ is eventually constant, it is sufficient to show that I finitely generated implies $I\hat{A}_{(0)} \cap A_{(0)} = I$. So let $I = (a_1, \dots, a_s)$ and let $b \in I\hat{A}_{(0)} \cap A_{(0)}$. Then there exists a finite etale extension B of $R[x_1, \dots, x_n]$ which contains a_1, \dots, a_s , and b. This follows from the definition of A. Now $\hat{B} = \hat{A}_{(0)}$. So $(a_1, \dots, a_s)\hat{B} \cap B = (a_1, \dots, a_s)B$ (by [9], p. 269, Theorem 12). Thus $b \in (a_1, \dots, a_s)A_{(0)}$, since $B \subset A_{(0)}$.

LEMMA 3.3. Let q be a prime ideal of $R[x_1, \dots, x_n] \subset A_D = A$. Then $qA_D = \mathscr{S}_1 \cap \dots \cap \mathscr{S}_s$ where the \mathscr{S}_i are prime in A.

Proof. Let C = the complex numbers. Let V = the variety of q in C^n . Let W be a normalization of V. Then we can consider $W \subset C^{n+m}$ so that $\pi: C^{n+m} \to C^n$ induces $\pi: W \to V$. If (z_1, \dots, z_n) are coordinates for C^n , letting $z_j = x_j + iy_j$, we get $C^n \cong R^{2n}$ and similarly we get $C^{n+m} \cong R^{2(n+m)}$. If

$$D = \{(x_1, \, \cdots, \, x_n, \, y_1, \, \cdots, \, y_n) \in R^{2n} \mid p_i(x, \, \cdots, \, x_n) > 0, \, i = 1, \, \cdots, \, t\}$$
 ,

then $\pi^{-1}(D) = \{(x_1, \cdots, x_{n+m}, y_1, \cdots, y_{n+m}) \in R^{2(n+m)} \mid p_i(x_1, \cdots, x_n) > 0, i = 1, \cdots, t \text{ and } y_j = 0 \text{ for } j = 1, \cdots, n\}.$ As usual $p_i(x) \in R[x_1, \cdots, x_n]$. So $\pi^{-1}(D)$ is defined by a polynomial relation. Also since W is the zero set of some polynomials $g_1(z_1, \cdots, z_{n+m}), \cdots, g_s(z_1, \cdots, z_{n+m})$ in $C[z_1, \cdots, z_{n+m}]$, W considered in $R^{2(n+m)}$ is the zero set of

Re
$$(g_1(x_1, \dots, x_{n+m}, y_1, \dots, y_{n+m}))$$
,
Im $(g_1(x_1, \dots, x_{n+m}, y_1, \dots, y_{n+m}))$, ...

Then, by Theorem 2.1, $\pi^{-1}(D) \cap W$ has a finite number of components E_1, \dots, E_s .

For each E_i , we define a prime \mathscr{T}_i in A_D by letting $\mathscr{T}_i = \{f \in A_D \mid f \circ \pi \text{ vanishes on an open neighborhood of } E_i \text{ in } W\}$. Since any f in A_D can be extended to an open neighborhood U of D in C^n , f will be defined on $\pi^{-1}(U)$ and so on $\pi^{-1}(U) \cap W$.

Since W is normal, about every point $R \in W$, there exists a

neighborhood $U_R \subset W$ so that $U_R - (U_R \cap W_{sing})$ is connected. Here $W_{sing} = \text{singular points}$ in W. The above statement follows from Zariski's Main Theorem [9], p. 320, Theorem 32, and [5] p. 115, Theorem 16. So if $f \circ \pi$ vanishes over some neighborhood $U \subset W$ of some $Q \in E_i$, it follows that $f \circ \pi$ vanishes over some neighborhood of E_i . So if $(fg) \circ \pi$ vanishes on a neighborhood of E_i , then either $f \circ \pi$ or $g \circ \pi$ will vanish on a neighborhood of some point of E_i and so over a neighborhood of E_i . Thus \mathscr{P}_i is prime.

It also follows that $qA_D = \mathscr{S}_1 \cap \cdots \cap \mathscr{S}_s$. If $f \in q$, then f vanishes on W and so $(f \circ \pi)$ will vanish on a neighborhood of each E_i and so $f \in \mathscr{S}_1 \cap \cdots \cap \mathscr{S}_s$.

If $f \in \mathscr{S}_1 \cap \cdots \cap \mathscr{S}_s$, then $f \circ \pi$ vanishes on a neighborhood in W of E_i , for all i. So, if $P \in D$, $f \circ \pi$ vanishes on a neighborhood of $\pi^{-1}(P)$ on W so f vanishes on V near P. By the local nullstellensatz [5], p. 92, Theorem 20, $\mathscr{S}_1 \cap \cdots \cap \mathscr{S}_s \ \hat{A}_P = \mathfrak{q} \hat{A}_P$ where $\hat{A}_P =$ the completion of the local ring A_P . But, as in the proof of Lemma 3.2, this implies that $\mathscr{S}_1 \cap \cdots \cap \mathscr{S}_s A_P = \mathfrak{q} A_P$. By Theorem 3.1, all maximal ideals of A come from some P in D and so $\mathfrak{q} A = \mathscr{S}_1 \cap \cdots \cap \mathscr{S}_s$.

THEOREM 3.4. A_D is Noetherian.²

Proof. It is enough to show that $\mathscr P$ prime in A_D implies $\mathscr P$ is finitely generated, [6], p. 8, Theorem 3.4. Let $A=A_D=\lim A_j$ where $A_0=R[x_1,\cdots,x_n]$ and A_j is finitely generated over A_0 and A_j is etale over A_0 in a neighborhood of D. Let $\mathscr P\cap A_j=\mathfrak q_j$. Then $\mathfrak q_0A=\mathscr P_1\cap\cdots\cap\mathscr P_s$, all $\mathscr P_i$ prime, by Lemma 3.3. If $A_k\supset A_j$, then $\mathfrak q_jA_k=\mathfrak q_k\cap\mathfrak q_{jk2}\cap\cdots\cap\mathfrak q_{jkt}$ where t depends on j and k, and all $\mathfrak q_{jkl}$ are prime and of the same dimension. Also $\mathfrak q_jA=\mathfrak q_kA\cap\cdots\cap\mathfrak q_{jkt}A$. But $\mathfrak q_jA\supset\mathfrak q_0A$ and so is the intersection of a finite number of the $\mathscr P_i$. Since $\lim \mathfrak q_jA=\mathscr P$, $\mathfrak q_j$ eventually stops splitting and $\mathfrak q_jA=\mathscr P$, for j large.

4. The Nullstellensatz. We retain the notation of the previous sections so that D is defined by a finite number of polynomial inequalities. A_D is still the Nash ring.

LEMMA 4.1. If $f \in A_D$ and f(a) > 0 for all $a \in D$, then, there exists $h \in A_D$ so that $f = h^2$. Moreover, f and h are units in $A = A_D$.

Proof. Define $h(a) = f(a)^{1/2}$ for all a in D. Then note that h is in A. The fact that f and h are units is clear.

² This theorem has been proved independently by different methods by J. J. Risler, [10].

DEFINITION 4.2. Consider L an ordered field containing R, the reals. Then ε in L is infinitesmal if $0 < |\varepsilon| < \lambda$ for all λ in R.

We say L is rank one ordered if there exists ε infinitesmal in L and if for any other infinitesmal α in L there exist positive integers m and n so that $|\varepsilon|^m < |\alpha|$ and $|\alpha|^n < |\varepsilon|$.

THEOREM 4.3. Let $\mathscr T$ be a prime ideal in $A_{\mathcal D}$. Then the quotient field of $A_{\mathcal D}/\mathscr T$ is rank one orderable if and only if $I(V_{\mathcal R}(\mathscr T))=\mathscr T$.

Proof. The proof will occupy the rest of the section. We first assume A_p/\mathscr{P} rank one orderable and note that there are two cases which will be handled separately. Let $p_1(x) > 0$, $p_2(x) > 0$, ..., $p_s(x) > 0$ be the polynomial inequalities defining D and let $p(x) = \prod p_i/(1 + \sum x_j^2)^l$ where $l > \sum \deg p_i$. Then there exists a real number M > 0 so that |p(x)| < M for all x in R^n and so by Tarski's principle (Theorem 1.8) |p(x)| < M for all x in L^n for L any real closed field containing R.

Now let L be a real closure of the quotient field of A_D/\mathscr{T} which by hypothesis will be rank one ordered. We let \mathscr{T} be the total map $A_D \to A_D/\mathscr{T} \to L$. Then since $R[x_1, \cdots, x_n] \subset A_D$, we have $x = (x_1, \cdots, x_n) \in L^n$. So $p(\mathscr{T} x)$ makes sense and (considering $R \subset L$) we have two cases (1) $p(\mathscr{T} x)$ is infinitesmal and (2) $p(\mathscr{T} x) - \alpha$ is infinitesmal for some $\alpha \in R$, $\alpha \neq 0$. By Theorem 3.4, A_D is Noetherian and so $\mathscr{T} = (f_1, \cdots, f_u)$ for some $f_1, \cdots, f_u \in \mathscr{T}$. We let $X = V(\mathscr{T}) = \{(x_1, \cdots, x_n) \in C^n \mid f_i(x_1, \cdots, x_n) \mid i = 1, \cdots, u\}$ and let $q = \mathscr{T} \cap R[x_1, \cdots, x_n]$ and W = V(q).

LEMMA 4.4. In Case (1), $p(\varphi x) = \varepsilon$ infinitesmal in L, $X = V(\mathscr{S})$ contains a real nonsingular point of $W = V(\mathfrak{q})$ and so $I(V_R(\mathscr{S})) = \mathscr{S}$.

Proof. If X_R , the set of real points of X, is such that X_R is contained in the singular set of W, then there exists $q(x) \in R[x_1, \cdots, x_n]$ so that $q(X_R) = 0$ but $\varphi q \neq 0$. This is because $R[x_1, \cdots, x_n]/\mathfrak{q}$ is orderable and so $\mathfrak{q} = I(V_R(\mathfrak{q}))$ by the Dubois-Risler Nullstellensatz ([4], Theorem 2.1). Let $f = \sum f_i^2$, (recall $\mathscr{P} = (f_1, \cdots, f_n)$). Then for any $a \in R^n$, f(a) = 0 if and only if $a \in X_R$.

Now let $h(x) = \prod_{i=1}^n p_i^2 q^2/(1 + \sum_{i=1}^n x_i^2)^m$ where $m \ge \sum \deg p_i + \deg q$. Then h(x) is bounded on R^n and so in particular on D. We now define a new function $g(r) = \inf\{f(x) \mid x \text{ in } D \text{ and } h(x) = r\}$. For r small and positive, $\{x \mid h(x) = r\}$ is a compact set in D and so g(r) is defined and positive. Also g(0) = 0. By Theorem 1.8, Tarski's principle, g(r) is defined by a polynomial relation. This means that g(r) is "piecewise algebraic" and each of the pieces can be expanded

in Puisseaux series. Then it follows easily that there exists an integer λ so that $g(r) \geq r^2$ for all r in the domain of g. Then $f(x) \geq h(x)^2$ for all x in D. Since p(x) > 0 on D, we have $f(x) - h(x) + p(x)^m > 0$ for all x in D, and for any positive integer m. Applying Lemma 4.1, we see $\varphi f - h(\varphi x) + \varepsilon^m > 0$ for all positive integers m. But since ε is infinitesmal in L and L is rank one ordered, we see $\varphi f \geq h(\varphi x) > 0$. But this contradicts $f \in \mathscr{P} = \ker \varphi$. So X contains a nonsingular real point P of W.

That $I(V_R(\mathscr{T}))=\mathscr{T}$ will now be shown. First, by the implicit function theorem, we know that there exists a neighborhood U of P in R^n so that $U\cap W_R=U\cap X_R$ is isomorphic to a ball in R^d , d= dimension of W. That is we have an analytic algebraic map of a ball $B\subset R^d$, $B\stackrel{j}{\to} X_R$ which induces a homomorphism $A_D/\mathscr{T}\to A_B$, $g\to g\circ j$. Now if g vanishes on X_R , $g\circ j$ vanishes on B and since $g\circ j$ is analytic, it is zero. But then g itself will vanish on a complex neighborhood of P in X and so g=0 on X and is in \mathscr{T} .

LEMMA 4.5. In Case (2), $p(\varphi x) - \alpha$ infinitesmal, $\alpha \neq 0$ and $\alpha \in R$, we have $f(\varphi x)$ makes sense and $= \varphi f$.

Proof. For each p_i we have $p_i(a) > 0$ for all a in D so by Lemma 4.1, $p_i = h^2$ for some unit h in A_D . But then $\varphi p_i = (\varphi h)^2 > 0$. But $\varphi p_i = p_i(\varphi x)$ and so $p_i(\varphi x) > 0$ for all i which implies $\varphi x \in D_L$. This shows $f(\varphi x)$ is defined by Definition 2.3.

If any φx_i were infinite (larger in absolute value than all real numbers), then we would be in Case (1), so we can assume that for each i there exists $a_i \in R$ with $a_i - \varphi x_i$ infinitesmal or 0. Now $P = (a_1, \dots, a_n)$ is not on the boundary of D for if it were then $p(a_1, \dots, a_n)$ would = 0. This would imply $p(\varphi x_1, \dots, \varphi x_n)$ infinitesmal and put us in Case (1).

For notational simplicity, we assume $P=(0,\cdots,0)$ and by the above, we can assume that P is in the interior of D. For any $f\in A_D$, we can expand f in finite Taylor series about P so $f(x)=\sum_{|i|\leq m} \partial f/\partial x^i(P)x^i+\sum_{|i|=m} x^ig_i(x)$ where $i=(i_1,\cdots,i_n)$ is an n-tuple of nonnegative integers, $|i|=i_1+\cdots+i_n$, and $g_i\in A_D$. We abbreviate by writing $f=p_m(x)+\sum x^ig_i(x)$. By assumption each φx_i is infinitesmal or 0.

We claim that $\exists M_i \in R$ so that $|\varphi g_i| < M_i$. This is because g_i being analytic at P is bounded near P so there exists M_i a positive real number and $\delta > 0$ so that $||x|| < \delta$ implies $|g_i(x)| < M_i$. But then there exists an integer $j_0 > 0$ so that $M_i^2 - g^2(x) + \sum_{i=1}^n (x_i/\delta)^{2j} > 0$ for all x in D, and all $j \geq j_0$. But then $M_i \geq |\varphi g|$ as in the argument of Lemma 4.4. So we see that $|\varphi f - \varphi p_m| < \varepsilon^m M_m < \varepsilon^{m/2}$, ε infinitesmal and > 0 in L. So $\lim_{m\to\infty} \varphi p_m = \varphi f$ in L.

Next note that $f(\varphi x) = p_m(\varphi x) + \sum_{|i|=m} (\varphi x)^i g_i(\varphi x)$ so $|f(\varphi x) - p_m(\varphi x)| < \varepsilon^{m/2}$ also and $\lim_{m\to\infty} p_m(\varphi x) = f(\varphi x)$. But $p_m(\varphi x) = \varphi p_m$ and so our result follows.

LEMMA 4.6. If $f(\varphi x) = \varphi f$, for all $f \in A_D$, then $I(V_R(\mathscr{T})) = \mathscr{T}$.

Proof. Note that $g \in I(V_R(\mathscr{S}))$ if and only if (*): For all a in D, $f_i(a) = 0$, $i = 1, \dots, u$ implies g(a) = 0. By Theorem 2.2, there are polynomial relations A_{f_i} and A_g so that (*) is equivalent to (**): For all a in D, $A_{f_i}(0, a_1, \dots, a_n)$, $i = 1, \dots, u$ implies $A_g(0, a_1, \dots, a_n)$. Now apply Theorem 1.8 and we have (***): For all a in D_L , $A_{f_i}(0, a_1, \dots, a_n)$ $i = 1, \dots, u$ implies $A_g(0, a_1, \dots, a_n)$. But by hypothesis $\varphi f_i = f_i(\varphi x) = 0$ so by (***) $g(\varphi x) = 0$. But $\varphi g = g(\varphi x)$ and so $g \in \mathscr{F}$.

LEMMA 4.7. If $\mathscr T$ has the zeros property, $I(V_{\mathbb R}(\mathscr T))=\mathscr T$, then $A_{\mathbb D}/\mathscr T$ is rank one orderable.

Proof. As in the proof of Lemma 4.6, it follows that if \mathscr{P} has the zeros property, then $X = V(\mathscr{P})$ contains a real nonsingular point P. Then the completion of the local ring of X at P is isomorphic to $R[[t_1, \dots, t_d]]$, d = dimension X. Thus $A_D/\mathscr{P} \subseteq R[[t_1, \dots, t_d]]$ and so we are reduced to the following lemma.

LEMMA 4.8. $R[[t_1, \dots, t_d]]$ can be rank one ordered.

Proof. Choose $\alpha_1, \dots, \alpha_d$ positive real numbers linearly independent over Q the rational numbers. Then order d-tuples $\langle m_1, \dots, m_d \rangle$ of nonnegative integers by $\langle m_1, \dots, m_d \rangle > \langle m'_1, \dots, m'_d \rangle$ if and only if $\sum_{i=1}^d m_i \alpha_i > \sum_{i=1}^d m'_i \alpha_i$. This is clearly a well ordering. Now order power series $\sum a_i t^i$ for $i = \langle i_1, \dots, i_d \rangle$ by taking $\sum a_i t^i > 0$ if the least i (with the described well ordering) with $a_i \neq 0$ has $a_i > 0$. This gives the required ordering.

THEOREM 4.9. Let $D \subset \mathbb{R}^2$ be defined by strict polynomial inequalities. Then an ideal $J \subset A_D$ is real (Definition 0.3) if and only if $I(V_R(J)) = J$.

Proof. First note that if $J = \mathscr{S}$ is prime, then A_{D}/\mathscr{S} will have transcendence degree ≤ 2 over R. If the transcendence degree is 0, then \mathscr{S} is a maximal ideal in A_{D} and by Lemma 3.1 corresponds to a point of D. So \mathscr{S} has the zeros property trivially.

If the transcendence degree is 2, then clearly $\mathscr{S}=(0)$ and $V_{\mathbb{R}}(\mathscr{T})=D$ and again no problem.

If the transcendence degree is 1, then the quotient field of A_D/\mathscr{S} if real can only be rank one orderable and so Theorem 4.3 applies and \mathscr{S} is real if and only if $I(V_R(\mathscr{S})) = \mathscr{S}$.

To finish, note that for any radical ideal $J \subset A_D$; $J = \mathscr{S}_1 \cap \cdots \cap \mathscr{S}_s$ an intersection of prime ideals, since A_D is Noetherian. But as in [4] Lemma 2.2, J is real if and only if each \mathscr{S}_i is real. So J real implies $I(V_R(J)) \subset I(V_R(\mathscr{S}_1)) \cap \cdots \cap I(V_R(\mathscr{S}_s)) = \mathscr{S}_1 \cap \cdots \cap \mathscr{S}_s = J$. Since $I(V_R(J)) \supset J$ always, $J = I(V_R(J))$.

The converse is easy.

REFERENCES

- 1. M. Artin, Grothendieck Topologies, Seminar notes, Harvard University, 1962.
- 2. N. Bourbaki, Commutative Algebra, Chapter 6, Valuations, Hermann, Paris, 1964.
- 3. P. Cohen, Decision procedures for real and p-adic fields, Comm. on Pure and Appl. Math. 22 (1969), 131-151.
- 4. G. Efroymson, Local Reality on Algebraic Varieties, J. Algebra, 29 (1974), 133-142.
- 5. R. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice Hall, Englewood Cliffs, N. J., 1965.
- 6. M. Nagata, Local Rings, Interscience, John Wiley and Sons, New York, 1962.
- 7. R. Palais, Equivariant Real Algebraic Differential Topology, Part I. Smoothness Categories and Nash Manifolds, Notes Brandies University, 1972.
- 8. H. Whitney, Elementary structures of real algebraic varieties, Annals of Math., 66 (1957), 545-556.
- 9. O. Zariski and P. Samuel, Commutative Algebra, Volume II, Van Nostrand, Princeton, 1960.
- J. J. Risler, Sur L'anneau des fonctions de Nash globales, C. R. Acad. Sci., Paris, 276 (1973), A1513-1516.

Received April 16, 1973 and in revised form September 18, 1973.

THE UNIVERSITY OF NEW MEXICO