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ENGEL LIE RINGS WITH CHAIN CONDITIONS

RALPH K. AMAYO

A result of Max Zorn states that if a Lie ring satisfies
the maximal condition for subrings and if each element is
a bounded left Engel element then the Lie ring is nilpotent.
The purpose of this paper is to extend this result to Lie
rings satisfying the general Engel condition and with no
infinite strictly ascending chains of abelian subrings. A
similar result was obtained by I. N. Stewart for locally nil-
potent Lie algebras.

2* Notation and terminology* Let x be a noetherian ring
(i.e., commutative associative ring with unit and satisfying the
ascending chain condition on ideals). Following Barnes [1, 2] we
define a Lie algebra over x to be an x-module which is a Lie ring
and satisfies for x, y in the Lie ring and r e r ,

Φ, y] = [rx, y] = [x, ry] .

(Here [, ] denotes Lie multiplication.) Let L be a Lie algebra over x.
If A is a subset of L we write A g L ; if in addition A is an

x-submodule and a Lie subring we write A ^ L and call A a sub-
algebra of L. In general <A> will denote the subalgebra of L
generated by A. If A = {a} then

<α> = τa = {ra \ r e x} = <{α}> ,

and we call <α> a cyclic x-module. An x-module A is said to be
finite dimensional over x if it is a sum of finitely many cyclic
x-modules. If A — {al9 , an} we define (au , an} = (A).

Let A, B g L. We define [A, B] to be the x-submodule spanned
by the products [a, b] for aeA and be B. We also define in-
ductively, [A, 0B] - A and [A, n+1B] = [[A, nB], B]. If x,yeL then
[%, oV] = x and [x, n+1y] = [[x, ny], y]. An x-submodule H is said to
be an ideal if [H, L] <Ξ L; in this case we write H <\ L. If A g L
then

and

CL(A) - {x e L I [A, x] - 0} .

If A is an x-submodule then

l
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CL(A) < IL(A) ^ L

and IL(A)/CL(A) is isomorphic to a subalgebra of End, (A); if also A
is finite dimensional then (since x is noetherian) Endt(A) is finite
dimensional and so IL(A)/CL(A) is finite dimensional over x.

We will employ the notation of Stewart [3], with the under-
standing that by Lie algebra we now understand a Lie algebra
over x. So concepts like subideal, ascendant subalgebra, class of
Lie algebras, need no further explanation.

We say that L is finitely generated if L = (A) for some finite
subset A of L; we denote by (S the class of finitely generated Lie
algebras over x. We define

& 21, % LK

to be (respectively) the classes of finite dimensional, abelian, nilpotent
and locally nilpotent Lie algebras over x. Then we have as is well
known,

Let ϊ be a class of Lie algebras over x and let A be any of the
relations ^ , <],<*, si, asc (see Stewart [3, p. 334-335]). We say
that

L e Fin-Δdi

if and only if HAL and HeX implies that i ϊ e g . (For Fin-^ 36 we
write Fin-3£.) As is mentioned in [3] the following assertions are
equivalent:

(1) Every infinite dimensional X-algebra L (over x) has an
infinite dimensional abelian subalgebra A, with AΔL.

( 2 ) Ϊ Π Fin-zM ̂  %.
We say that L satisfies the (general) Engel condition if to each

pair x9 y of elements of L there corresponds a positive integer
n — n(x, y) such that [x, ny] = 0.

We denote by @ the class of Lie algebras over x which satisfy
the Engel condition. (An element y is said to be a bounded left
Engel element if [L, ny] = 0 for some n = n(y).)

If X and 3) are classes of Lie algebras over x then £2) denotes
the class of Lie algebras L (over x) which have an ϊ-ideal H such
that L/Hety.

3* Preliminary results* The first half of this section is devoted
to proving the result:

THEOREM 3.1. Let x be a noetherian ring and let L be a Lie
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algebra over x. Then the following assertions are equivalent:
(a) To each finite subset A and each @ Π yi-subalgebra H of L

there corresponds a nonnegative integer n = n(A, H) such that

[Ay nH] = 0 .

(b) LeQ.

That (a) implies (b) is trivial. To show that (b) implies (a) we
make use of some results below most of which appear in some form
in Zorn [4].

Let L be a Lie algebra over x and let A, B, C be subsets of L.

LEMMA 3.2. If C ^ IL(B) then [A, B, C] S [A, B] + [A, C, B].

Proof. Immediate from the Jacobi identity and the fact that
{B, C]^τB= {ΣrA \rtex and b, e B).

COROLLARY 3.3. If C S h(B) and ml9 , mk9 nl9 * -,nk are

nonnegative integers then
( a ) [A, mrB, niC] s Σ^o [A, tC, mβ\ and
( b ) [A, WiB, Λ1C, , nkB, nkC] S Σ S o - + ^ [ A , fC, «1+...+»ΛB].

Proof. ( a ) By induction on m : + ^ and by Lemma 3.2, noting
that for any i if At = [A, ,C] then

[A,, niB, C] s [At, miB] + [A,, mL_λB9 Cy B] .

( b ) follows from (a) and induction on k.
Let q be a nonnegative integer and let A, 5, C be subsets of L.

Then clearly

( * ) [A, qB + C] S ^[A, WlB f n iC, - , βjfcB, . ; C] ,

where the summation is taken over all sets of nonnegative integers
ml9 , mA, nl9 , % for which Σ m< + Σ <̂ = 9 ( a n ( i ^ > 0 and
mly % may be zero but m2, '"9mkfnlf •• ,^fc_1 (if they exist) are
nonzero).

For subsets A and B of L we define A 5 to be the smallest
x-submodule containing A and invariant under Lie multiplication by
the elements of B. Clearly

AB = τA + ± [A, <B] .
ΐ = l

Evidently if A and i? are contained in some finite dimensional x-
submodule of L (and x is noetherian) and for some i [A, tB\ S
χA + Σ^l [̂ » j-B] then AB is finite dimensional.
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We remark that if C S IL(B) then [A, C, 5] s [A, 5, C] + [A, 5]
and so

[A, n(C, mβ\ S Σ [A, Wl.B, ,C] .

( + ) Thus if [A, mβ] - 0 then [Ac, mB\ = 0 and conversely.

LEMMA 3.4. Let L be a Lie algebra over a noetherίan ring x
and let A, B, C be subsets of L with C £ IL(B). If m, n are non-
negative integers such that [AB

y mB] — 0 — [AB, %C\ then

[A\ mnB+C] = 0.

Proof. If m = 0 or n = 0 then AB = 0 and the result holds
trivially. Thus suppose that m > 0 and % > 0. Put At = A5.
From (*) we have

[A19 mnB + C ] £ ^ [Au miB, niC, , WAJ5, WA.C] ,

where & > 0, m2, , mΛ, %, , %-_! > 0 and Im^ 4- 2% = m%, Con-
sider a typical term

X = [Au mιB, %ίC, , mjfcJ5, WfcC] .

By Corollary 3.3(b) we have

Hence if Σm^m, then X = 0 (see remark ( + ) above). Thus
assume that Im^ < m; then as m2f , mk are nonzero we must have
k — 1 ^ I'm, < m and so fc < m + 1.

Suppose then that each nt < n. Then Σnt <̂  fe(^ — 1) ^ m(n — 1)
and so Σmt = mn — Int Ξ> m^ — m(w — 1) = m, a contradiction. Thus
some rii^n. If ΐ = 1, then as [Ax, WlJB] S A1 we have X = 0.
Suppose i > 1; then [Aί9 mβ, WlC, , miB] S Af and [Af, nC] - 0 so
X = 0.

Hence X = 0 in all cases and so [Al9 mnB + C] = 0. This proves
the required result.

Evidently the conclusion [A, mnB + C] = 0 holds for [A, m £] =
[A, ΛC] = 0 provided that B S IL(A) and C S h(B).

Let 5, C be subsets of L such that [B, C] £ x(B Π C). Let
mL, ^ , , mk9 nk be nonnegative integers with mf — Σ?=i m ί a n ^
%' = Σ*=! %• Then it follows from Corollary 3.3 that for any sub-
set A of L,
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[A, mβ, %ιC, , m]B, nkC] £ ( Σ [A, A m.B]) Π ( £ [4, ,5, ,,C]) .

Thus by (*) and the remarks preceding Lemma 3.4 it follows that
if [A, mB] = [A, nC] = 0 then [4, ^ ^ 5 + C] = 0 (where we interpret
[A, m+n-i-B + C] as 0 in case m = n = 0). Inducting on & we now
have:

If A, Bx, « , f t S L such that [A, m.BJ = 0 for i = 1, , & and
[Bt + . . - + B,, Bi+1] S x((Bi + + B<) Γl Bt+1) for i - 1, - , k - 1,
then

(**) [A, ^ . . , + ^ ^ A + . . . + Bfc] = 0 .

Proof of Theorem 3.1. We want to prove that (b) implies (a).
So let L e 6 and let A be a finite subset of L. Suppose that H —
(x19 •••, %) ^ L and JEZ" is nilpotent of class c. We induct on c to
show that [A, nH] — 0 for some n — n(A, H). Suppose that c — 1.
Then H — τx1Λ- + τ%. As A is a finite set we can find nt such
that [A, n.xz] ~ 0, whence [A, Λixa?J = 0 for i = 1, •••,&. Further-
more, [ZZ, xa J = 0 for all ΐ and so by (**), [A, Λ£Γ] — 0, where n —
J ^ — k + 1. So the result holds for c = 1.

Suppose that c > 1 and the result holds for c — 1. For each i
let Bt = H2 + τxt. Evidently Bt is nilpotent of class not exceeding
c — 1 and is finitely generated as a subalgebra of L. Hence we can
find nt such that [A, ^BJ = 0, by the inductive hypothesis on c — 1.
Now Bt<\H for each i and so by (**) [A, Λ£Γ] = 0, where n = Σnt-
k + 1, since H — B1-\- + Bfc. This completes our induction on c
and the proof of Theorem 3.1.

REMARK. Evidently Theorem 3.1 holds for Lie algebras defined
over an arbitrary commutative ring x.

Define the classes Or* and @n (n > 0) of left Engel algebras and
n-Engel algebras respectively by:

L G G?* is and only if to each x e L there corresponds m — m(x)
such that [y, mx] — 0 for all y e L (equivalently, [L, nx] = 0);

LeQ?n if and only if [x, ny] = 0 for all x, y e L. Clearly

U* ©. ̂  ©* ^ e»

and @* is the class of algebras in which each element is a bounded
left Engel element.

Let &k be the class of Lie algebras which can be generated by
k elements and 5Jic the class of Lie algebras which are nilpotent of
class ^ c.
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In much the same way as the proof of Theorem 3.1 we can
prove:

THEOREM 3.5. Let L be a Lie algebra over a commutative ring
x. Then

(1) L e 6 * if and only if to each ® Π ̂ subalgebra H of L
there corresponds m — m(H) such that [L, mH] = 0.

(2) Le&n if and only if there exists h — h(n, m, c) such that
for any ®m Π %lc-subalgebra H of L, [L, hH] = 0. (h(n, m, 1) =
m(n — 1) + 1 and h(n, m, c) — m(h(n, mlf c — 1) — 1) with mλ =
m(mc - l)/(m - 1).)

The following result is probably well known:

LEMMA 3.6. Let L e g and H be a © Π 9Ϊ subalgebra of L.
( a ) If Ke ® n 9i and K ^ IL(H) then H+ Ke®Γ\$l.
(b) If H< L then there exists Ke®f]3l with

H<K^ IL(H) .

Proof. (a ) Evidently H + K is a finite dimensional subalgebra
of L. By Theorem 3.1 we can find m and n such that

Thus by Lemma 3.4 we have

and so H + Ke® n9lmn+1.
(b) If H < L then we can find a finite subset A of L with

A£H. By Theorem 3.1 we can find m such that [A, mH\ = 0 S # .
Let & be minimal with respect to [A, kH] g H. If & = 0 then A =
[A, off] £ H, a contradiction. So & > 0. Now by the definition of
k we have [A, ^H] £ H and [A, ̂ J ϊ ] ^IL(H). Pick α efA, ̂ i ί ]
with α?$ H and let K = H+ < » . Then H< K ^ IL(H) and by part
(a) jSΓeΘnSft (for <#> is abelian and 1-dimensional and contained in

Let A, i? be closure operations (see Stewart [3]) and let X be a
class of Lie algebras (over x). Define the class (A5)ϊ by

- A{BH) .

If α: is an ordinal and (AB)a% has been defined, let

= (AB)((AB)aX) .
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If λ is a limit ordinal and {AB)aH has been defined for all ordinals
a < λ, define

Let

{ABYH = U (AB)*X .

{A, B}Tί = U (AB)a3ί . ((AS)°ϊ = X .)
all ordinals or

Define the closure operation E by LeEl iί L has an ascending
series (from 0 to L) with 36-factors (see Stewart [3]).

THEOREM 3.7. @ n {£, L}% = VSί.

Proof. Use transfinite induction on a to show that

for all α. Evidently (') will hold for a limit ordinal λ provided it
holds for all ordinals a < λ. Thus we need only verify the induc-
tive step from a to α: + 1. Since subalgebras and quotients of
Engel algebras are also Engel algebras this boils down to proving
that

Now the union on an ascending chain of .Lϋlϊ-subalgebras is locally
nilpotent and so (") will follow from showing that whenever Le@,
H<] L and H, L/He L9Ϊ then Le L9Ϊ.

This will follow from the following results: Let L e ©.
( a ) If H, KG L31 and if ^ /Z(£Γ) then H+ KeLVl. For every

finitely generated subalgebra of if + if is contained in one of the
form C — {A, B} where A and B are finite subsets of H, K re-
spectively. Now <£>e©n$ft (for KeL%ΐ) and so by Theorem 3.1
we can find n such that

[A, n(B)] = 0 .

Therefore, A<B> = x(Σ?=o [A, XB>]) is a finite dimensional submodule
of H (for K ^ IL(ίf)) and so Ao - <A<5>> e © n 5» (since fΓe L31). By
Lemm 3.6, C = Ao + <S> 6 © n Sϊϊ and (a) is proved.

(b) If iJe L5JI, X g /L(U) and X2 ^ H then l e L9ΐ and so

H+ XeLϊfl.

For let xlf « , % 6 l and define Xo = X2, Xi+1 = X, + <αi+1> for
i - 0, 1, , k - 1. Clearly X, < X for all X,. Now Xo = X2 ̂  H
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and so Xo e 9ΐ. If X, e L9ί then by (a) we have Xi+1 e LSfl. So by
induction Xk e L% whence (xu , xk} e SR and Xe U$l. By (a) H +
XeLϊί .

From (a) and (b) it follows by induction on c that if He L%
X^ IL{H) and I / I n H is nilpotent of class c then Xe Lfll and so
H+ XeLΪSl. In particular let H <\ L with JGΓ, L/HeLVl and let X
be a finitely generated subalgebra of L. Then X/Xf] H is nilpotent
so X is locally nilpotent and thus nilpotent. Hence L e L9ΐ as
required. This completes the proof of the inductive step for ('). We
note that for a = 0 we have (#L)°2t = a ^ LSJί. So (') holds for all
α: and @n {#, £}2t ^ Llfl. Evidently L9ΐ ^ @ and L9ΐ ^ L ŜI ̂  {£, L}§I.
This completes the proof of Theorem 3.7.

Clearly {E, L}% contains the class EL"il and the class of Lie
algebras with an ascending series whose factors are locally soluble.
So Theorem 3.7 includes the well known result of Gruenberg that a
locally soluble algebra with Engel condition is locally nilpotent. It
also shows that if L e © and P is the sum of all the locally nilpotent
ideals of L then P is locally nilpotent, and L/P has no nontrivial
locally nilpotent ideals. This latter property is the basis of the
solution of the restricted Burnside problem by A. I. Kostrikin.

Finally we remark that all the results in this section hold for
Lie algebras defined over an arbitrary commutative ring.

Let Δ be one of the relations ^ , <\" (a > 0), si, asc and let 36
be a class of Lie algebras. We define

to be the class of Lie algebras L with an ascending series {Lβ: O^/S^λ}
with Lβ+1jLβeH for all β < λ and LβAL for all β ^ λ. (Note that
Lβ <\ Lβ+1 for all β < λ and Lμ = \Jβ<μ Lβ for all limit ordinals
μ ^ λ.) If Δ is a transitive relation e.g. ^ , si, asc, then E(A) is a
closure operation. We normally write EH for E{<^)Tί. We also write
LeE% when LeEH and λ is a finite ordinal. Clearly E is also a
closure operation.

4* The main result*

THEOREM 4.1. Over any noetherian ring x,

<g Π Fin-E = g n 31 .

That g n $ft ^ © (Ί Fin-St (for as x is noetherian then every sub-
module of a finitely generated x-module is also finitely generated) is
trivial. We will prove the reverse inclusion later on.
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First we need a result of Stewart [3, Corollary 1, p. 337] (there it is
stated for Lie algebras defined over a field, but holds as well for
Lie algebras over any noetherian ring x). Define the classes

of Lie algebras over x by L G O if L e g or L£Fin-2l (i.e., L has an
infinite dimensional abelian subalgebra); L e 3ΐ if L e % or CL(x) g %
for some x e L (x φ 0). Thus JQ ̂  9ΐ and O n Fin-3ί = g.

For a Lie algebra L over x we define Z0(L) = 0, Z^L) = CL(L);
if a is an ordinal and Za(L) has been defined then Za+1(L)/Za(L) =

for limit ordinals λ, Zλ{L) = \Ja<λZa(L).
We define the class 3 by L e 3 if L = Za(L) for some a.
We denote by

the class of Lie algebras which have an ascending series of ideals
with abelian factors.

PROPOSITION 4.2. (Stewart [3]). Over any noetherian ring x,

and in particular L%1 n Fin-Si = g Π 9Z.

Proo/. Sketch.
( i ) If L e 3 and 0 ^ J V < L then ΛΓ n ^i(L) Φ 0. (Let α be

minimal Λvith respect to N f] Za(L) Φ 0; then a is not a limit ordinal,
so α - 1 exists. Then [N Π Za(L), L] S iV Π ̂ α-i(^) = 0 and so

(ii) If L G 3 and A is a maximal abelian ideal of L then
CL(A) = A.
(CL(A)/A <1 LI A e 3; thus if CL(A)/A Φ 0 then by (i) we have a α
such that K - <x> + A/A ^ CL(A)/A n Z^L/A); hence JB = <x> + A <
L and B2 = 0, a contradiction.)

(iii) 3 π F i n - < ] 2 l - δ n 9 ϊ .
Let L G 3 ΓΊ Fin-0 SX and let A be a maximal abelian ideal of L
(existence by Zorn's lemma); then A e g and so L/CL(A) e %; but
by (ii) CL(A) = A and so L e % n 3 = % Π 9Ϊ. The converse is
trivial.)

(iv) i?«j)2XnFin-<i22l^g.
Let Le^«l)2 ln Fin-<]22X and let {La\0 ^cc ^ σ} be an ascending
series of ideals of L with abelian factors in which all the terms are
distinct. Consider two cases:

( a ) For some finite n, Ln $ g; if so let m be minimal with



10 RALPH K. AMAYO

respect to Lm ί g. Then m > 0 and Lm_, e % and so Um e %. Now
C = CLm{Um) < L and Ce %. Thus Ce 3 Π Fin-< SI ύ %. We also
have LJCe%, whence Lme%$, a contradiction.

(b) So assume that Lne% for all n < ω, and K = Lω g %%

Now K = \Jn<ω Ln; suppose that H, < L, fζ.6 g Π 91 and ίZ* ̂  if.
Then C4 = C j r(fl;)ig (since K/C.e^ and JSΓgg) and Ct<\L. We
have Ci = U ^ Π Q and so there exists nt minimal with respect to
Cn. = C< n Ln. S Hu whence Cl. ^ Ct Π Ln._, ^ H, and Cw. e %; further-
more, Cn. < L and C%. 6 g. Set iϊ"i+1 = Jϊ, + C%i and fli = L,. Then
ί/;. < JEZi+l. Define H= VT^Hi. We note that*C%.+fc centralizes Hi+1

for all k ^ 1; and iZ?+1 ^ i/ .̂ Finally for any i we have Jϊ =
(Hi+1, C. m , C%ί+2, •> and so [JEΓ<+lf HJ £ fl?+1 ^ H<β Therefore, Ht £
Zt(H) for all i and fΓe^. But f f< L, whence iΪ6Fin-<] 21 and by
(iii) He%, a contradiction since we would have H = Ht for some ΐ
and so Cn. ^ ίZ .̂

The rest of the proof follows along the lines of Stewart [3,
Lemmas 3.1 and 3.2, p. 336-337].

Proof of Theorem 4.1. Let Le @ ΓΊ Fin-21. Let H be a maximal
locally nilpotent subalgebra of L (existence by Zorn's lemma, since
the zero subalgebra and the union of any well ordered chain of
locally nilpotent subalgebras are locally nilpotent). Then He Fin-α
and so He 131 f] Fin-3L Hence He%n%l by Proposition 4.2. If
HΦL then by Lemma 3.6 there exists Ke%{\^ ( = © 0 ^ ) with
H < K ^ IL(H). But this contradicts the choice of H as a maximal
locally nilpotent subalgebra. Hence H = L and L e % Π 91. Thus
© Π Fin-2C ̂  g Π 9i and our proof is complete.

Trivially g ^ Fin-2l (strict inclusion since any free x-Lie algebra
with more than one generator is in Fin-Si but infinite dimensional)
and if H^ LeFin-Sl then HeFm-^.

Evidently E% is the class of soluble algebras and

E% n Fin-a = % n # a ,

by part (iv) of the proof of Proposition 4.2. Thus if HeE% and
H<\L then LeFin-Sl if and only if H, L/H eFin-2L

Suppose that LeE(<\)& n Fin-Si. Then L has an ascending (g~
series of ideals,

0 = Lo < Lx < Lλ = L

for some ordinal λ. Suppose if possible that L $ g Π E%>- Then we
can find an ordinal a <Ξ λ, minimal with respect to La $ % Π #21.
Now Li 6 ® Π Fin-SI = % n 9Ϊ by Theorem 4.1 so a > 1.

If α is not a limit ordinal then a — 1 exists and if = Lα_t e



ENGEL LIE RINGS WITH CHAIN CONDITIONS 11

% Γ\ E$L. Now Lαe Fin-a and so by our remark above L J i ί e Fin-St.
But LJHe® and so by Theorem 4.1 LJHeft Γiϊfl, whence Lae
g Π ̂ §ί, a contradiction. So α is a limit ordinal. By definition
£« = Lb«* ^> and by the definition of α Lβ e g n # a for each β < α.
Thus Lα G #(<φ(g n #21) ^ E(<\)%. Since also Lαe Fin-a then by
part (iv) of the proof of Proposition 4.2 we have Lα e g n E$L,
another contradiction. Therefore L e g n #3X.

The first part of our proof above shows that EQί n Fin-a =
§ Π #21. So we have:

COROLLARY 4.3. Over any noetherian ring x,

( a ) @ n g = g n 9 ΐ .
(b ) Fin-© - Fin-L9^ = Fin-9ί = Fin-91.
(c ) E&f) Fin-St = ^«!)@ Π Fin-a = g Π -E721.

REMARK. Let Max and Min denote respectively the classes of
Lie algebras over x (a commutative ring with unit) satisfying the
maximal and minimal condition on subalgebras. Clearly Max ^
Fin-δl. However, if x is not a field we do not necessarily have Min <J
Fin-2l: e.g., let L = Cpoo, considered as an abelian Lie algebra over
the ring of integers. Then L e 21 n Min but L $ g.

Now suppose that ϊ is a class of Lie algebras over x (a noe-
therian ring with unit). Then

( § ) ETί n Fin-3l^g ΓΊ Ell if and only if 3c n Fin-SX ^ g π ^Sl .

The implication in one direction is clear. For the reverse implica-
cation we evidently need only consider the case L = JJΞU Ln e
Fin-a, with Ln <\ Ln+1 and Lne%f]E% for each n. For this we note
that Ln asc L for each # and so hy Proposition 4.5 (below) we have
Hn = L°:<\L and Hne%n E% for each n. Thus H=\JHne
E(<])(% n 7̂31) g ί « ) e and i ϊ e Fin-a and so by Corollary 4.3, i ϊ e
gΠ #21. Since also H <\ L we have L/ίfeFin-21 and clearly L/Jϊe
LSB. Thus by Proposition 4.2, L/He%O%l and so L e g n ^ a and
(§) is proved.

Next if X is a class of Lie algebras over a noetherian ring x
then

( β) X n © ̂  L$l if and only if {E, L}H n @ ̂  L3Ϊ .

(i3) follows from the fact that © Γί ̂ 9 2 ^ ^92 and for each ordinal a,

e π i5L((#L)*£) - © n ^^(© n

From (§), (β), and Corollary 4.3 we have:
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THEOREM 4.4. Over any noetherίan ring x,

( i) m n Fin-a = g n ^a.
( 2) ® n {£, L}(Fin-a) = L$l.
Evidently % ^ Fin-Si and §1 ̂  E% and so {#, L}21 ^ {#, L}g ^

{Ef L) Fin-ϊl. Thus Theorem 4.4 is a generalization of Theorem 3.7.
If L is a Lie algebra we define the transfinite lower central

series inductively by: U = L, La+1 = [L", L] and at limit ordinals μ,
Lμ — Γ\a<μLa. The transfinite derived series is defined by: L{0) — L,

L(α+i) = [L(«)f L{a)], and at limit ordinals μ, L^ - Πα<^ ( α )

PROPOSITON 4.5. Let L be a Lie algebra over a commutative
ring x. If H asc L and there exists Ho <[ H such that H/HQ e g
and [L, Ho] g f ί iftera Hω <\ L and H{ω) <\ L.

Proof. Let if — <X, Jϊo> where X is a finite dimensional x-
submodule and let H = Ko <| Kλ <\ Kp = L be an ascending series
from if to L. Suppose that A is a finite dimensional x-submodule
of L.

For each nonnegative integer n let an be the least ordinal such
that [A, nX] S Kan. As [A, nX] is finite dimensional for each n it
is clear that an is not a nonzero limit ordinal. Furthermore, as
H^Kttn^<]Kan9 then αΛ > an - 1 ^ an+1 (if αΛ ^ 0). We cannot
have an infinite strictly descending chain of ordinals and so an = 0
for some n, whence [A, ΛX] S Ko = if and [A, if(%)] S [A, ifw+1] £
[A, n+1JGΓ] £ if2. Thus for each m, [A, ifw+m] £ [A, , + J Ϊ ] £ ifm+1 and
so [A, ifω] £ ( I . Hm+1 = i?ω . We also have [A, jgrc*+»+D] g [Af 2H

in+m)] c
j ^ ^-c+1)] £ #<•+»>, whence [A, if (ω)] £ Πmif(?ι+W) - H ( ω ) . Since A
was arbitrarily chosen we see that Hω <\ L and H{ω) <\ L. (ω is the
first infinite ordinal.) This proves Proposition 4.5.

For the proof of (§) we take H{Q = 0 and note that % ̂  ©.
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