ON THE IRRATIONALITY OF CERTAIN SERIES

P. Erdös and E. G. Straus

A criterion is established for the rationality of series of the form $\sum b_{n} /\left(a_{1}, \cdots, a_{n}\right)$ where a_{n}, b_{n} are integers, $a_{n} \geqq 2$ and $\lim b_{n} /\left(a_{n-1} a_{n}\right)=0$. This criterion is applied to prove irrationality and rational independence of certain special series of the above type.

1. Introduction. In an earlier paper [2] we proved the following result:

Theorem 1.1. If $\left\{a_{n}\right\}$ is a monotonic sequence of positive integers with $a_{n} \geqq n^{11 / 12}$ for all large n, then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\varphi(n)}{a_{1} a_{2} \cdots a_{n}} \quad \text { and } \quad \sum_{k=1}^{\infty} \frac{\sigma(n)}{a_{1} a_{2} \cdots a_{n}} \tag{1.2}
\end{equation*}
$$

are irrational.

We conjectured that the series (1.2) are irrational under the single assumption that $\left\{a_{n}\right\}$ is monotonic and we observed that some such condition is needed in view of the possible choices $a_{n}=\varphi(n)+1$ or $a_{n}=\sigma(n)+1$. These particular choices do not satisfy the hypothesis $\lim \inf a_{n+1} / a_{n}>0$ but we do not know whether that hypothesis which is weaker than that of the monotonicity of a_{n} would suffice.

In this note we obtain various improvements and generalizations of Theorem 1.1, in particular by relaxing the growth conditions on the a_{n} and using more precise results in the distribution of primes.

In § 2 we obtain some general conditions for the rationality of series of the form $\sum b_{n} /\left(a_{1}, \cdots, a_{n}\right)$ which are modifications of [2, Lemma 2.29]. In § 3 we use a result of A. Selberg [3] on the regularity of primes in intervals to obtain improvements and generalizations of Theorem 1.1.
2. Criteria for rationality.

Theorem 2.1. Let $\left\{b_{n}\right\}$ be a sequence of integers and $\left\{a_{n}\right\}$ a sequence of positive integers with $a_{n}>1$ for all large n and

$$
\begin{equation*}
\lim _{n=1} \frac{\left|b_{n}\right|}{a_{n-1} a_{n}}=0 \tag{2.2}
\end{equation*}
$$

Then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}} \tag{2.3}
\end{equation*}
$$

is rational if and only if there exists a positive integer B and a sequence of integers $\left\{c_{n}\right\}$ so that for all large n we have

$$
\begin{equation*}
B b_{n}=c_{n} a_{n}-c_{n+1}, \quad\left|c_{n+1}\right|<a_{n} / 2 \tag{2.4}
\end{equation*}
$$

Proof. Assume that (2.4) holds beyond N. Then

$$
\begin{aligned}
B a_{1} \cdots a_{N-1} \sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}} & =\text { integer }+\sum_{n=N}^{\infty} \frac{c_{n} a_{n}-c_{n+1}}{a_{N} \cdots a_{n}} \\
& =\text { integer }+c_{N}=\text { integer }
\end{aligned}
$$

Thus condition (2.4) is sufficient for the rationality of the series (2.3).
To prove the necessity of (2.4) assume that the series (2.3) equals A / B and that N is so large that $a_{n} \geqq 2$ and $\left|b_{n} /\left(a_{n-1} a_{n}\right)\right|<1 /(4 B)$ for all $n \geqq N$. Then

$$
\begin{align*}
A a_{1} \cdots a_{N-1} & =B a_{1} \cdots a_{N-1} \sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}} \\
& =\text { integer }+\frac{B b_{N}}{a_{N}}+\sum_{n=N+1}^{\infty} \frac{B b_{n}}{a_{N} \cdots a_{n}} \tag{2.5}
\end{align*}
$$

If we call the last sum R_{N} we get

$$
\begin{aligned}
\left|R_{N}\right| & \leqq \max _{n>N} \frac{\left|B b_{n}\right|}{a_{n-1} a_{n}} \sum_{n=N+1}^{\infty} \frac{1}{a_{N} \cdots a_{n-2}} \\
& <\frac{1}{4} \sum_{k=0}^{\infty} \frac{1}{2^{k}}=\frac{1}{2}
\end{aligned}
$$

Thus, if we choose c_{N} to be the integer nearest to $B b_{N} / a_{N}$ and write $B b_{N}=c_{N} a_{N}-c_{N+1}$ then (2.5) yields that $-c_{N+1} / a_{N}+R_{N}$ is an integer of absolute value less than 1 and hence 0 , so that

$$
\begin{equation*}
\frac{c_{N+1}}{a_{N}}=R_{N}=\frac{B b_{N+1}}{a_{N} a_{N+1}}+\frac{1}{a_{N}} R_{N+1} \tag{2.7}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{B b_{N+1}}{a_{N+1}}=c_{N+1}-R_{N+1} \tag{2.8}
\end{equation*}
$$

From (2.8) it follows that c_{N+1} is the integer nearest to $B b_{N+1} / a_{N+1}$ and if we write $B b_{N+1}=c_{N+1} a_{N+1}-c_{N+2}$ we get

$$
\begin{equation*}
\frac{B b_{N+2}}{a_{N+2}}=c_{N+2}-R_{N+2} \tag{2.9}
\end{equation*}
$$

Proceeding in this manner we get the desired sequence $\left\{c_{n}\right\}$.
Remark. Since (2.2) implies $R_{n} \rightarrow 0$ it follows that for rational values of the series (2.3) we get $c_{n+1} / a_{n} \rightarrow 0$. Thus either $a_{n} \rightarrow \infty$ or $c_{n}=0$ and hence $b_{n}=0$ for all large n.

Corollary 2.10. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ satisfy the hypotheses of Theorem 2.1 and in addition the conditions that for all large n we have $b_{n}>0, a_{n+1} \geqq a_{n}, \lim \left(b_{n+1}-b_{n}\right) / a_{n} \leqq 0$ and $\lim \inf a_{n} / b_{n}=0$. Then the series (2.3) is irrational.

Proof. According to Theorem 2.1 the rationality of (2.3) implies the existence of a positive integer B and a sequence of integers $\left\{c_{n}\right\}$ so that

$$
B b_{n}=c_{n} a_{n}-a_{n+1}
$$

for all large n where $c_{n+1} / a_{n} \rightarrow 0$. Thus

$$
\frac{b_{n+1}}{b_{n}}=\frac{c_{n+1} a_{n+1}-c_{n+2}}{c_{n} a_{n}-c_{n+1}}>\frac{\left(c_{n+1}-\varepsilon\right)}{c_{n} a_{n}} \geqq \frac{c_{n+1}-\varepsilon}{c_{n}}
$$

for all $\varepsilon>0$ and sufficiently large n. Thus $c_{n+1}>c_{n}$ would lead to

$$
\begin{align*}
b_{n+1} & >\left(1+\frac{1-\varepsilon}{c_{n}}\right) b_{n}>b_{n}+(1-\varepsilon)\left(a_{n}-\frac{c_{n+1}}{c_{n}}\right) / B \tag{2.11}\\
& >b_{n}+(1-\varepsilon)^{2} a_{n} / B
\end{align*}
$$

This contradicts our hypothesis for sufficiently large n. Thus we get $0<c_{n+1} \leqq c_{n}$ for all large n and hence b_{n} / a_{n} is bounded contrary to the hypothesis that $\lim \inf a_{n} / b_{n}=0$.

In fact, if we omit the hypothesis $\lim \inf a_{n} / b_{n}=0$ then we get rational values for the series (2.3) only when $B b_{n}=C\left(a_{n}-1\right)$ with positive integers B, C for all large n.
3. Some special sequences.

Theorem 3.1. Let p_{n} be the nth prime and let $\left\{a_{n}\right\}$ be a monotonic sequence of positive integers satisfying $\lim p_{n} / a_{n}^{2}=0$ and $\lim \inf a_{n} / p_{n}=$ 0 . Then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{p_{n}}{a_{1} \cdots a_{n}} \tag{3.2}
\end{equation*}
$$

is irrational.
Proof. Since the series (3.2) satisfies the hypotheses of Theorem
2.1 it follows that there is a sequence $\left\{c_{n}\right\}$ and an integers B so that for all large n we have

$$
\begin{equation*}
B p_{n}=c_{n} a_{n}-c_{n+1} \tag{3.3}
\end{equation*}
$$

For large n an equality $c_{n}=c_{n+1}$ would imply $c_{n} \mid B$ and $a_{n}>p_{n}$. Since $\left\{c_{n}\right\}$ is unbounded there must exist an index $m \geqq n$ so that $c_{m} \leqq c_{n}<c_{m+1}$. But this implies by an argument analogous to (2.11) that

$$
\begin{equation*}
p_{m+1}>p_{m}+a_{m} /(2 B)>\left(1+\frac{1}{2 B}\right) p_{m} \tag{3.4}
\end{equation*}
$$

which is impossible for large m. Thus we may assume that $c_{n} \neq c_{n+1}$ for all large n. Now consider an interval $N \leqq n \leqq 2 N$. If $c_{n+1}>c_{n}$ then as in (3.4) we get

$$
p_{n+1}>p_{n}+a_{n} /(2 B)>p_{n}+\sqrt{p_{n}}
$$

which therefore happens for fewer than $\left(p_{2 N}-p_{N}\right) / \sqrt{p_{N}}<N^{1 / 2+\varepsilon}$ values in the interval $(N, 2 N)$. If $c_{n+1}<c_{n}$ then we get

$$
1>\frac{c_{n} a_{n}-c_{n+1}}{c_{n+1} a_{n+1}-c_{n+2}}>\frac{c_{n}\left(a_{n}-1\right)}{c_{n+1} a_{n+1}}>\left(1+\frac{1}{c_{n+1}}\right) \frac{a_{n}-1}{a_{n+1}}
$$

so that

$$
\begin{equation*}
a_{n+1}>a_{n}+\frac{a_{n}-1}{c_{n+1}}>a_{n}+1 \tag{3.5}
\end{equation*}
$$

Since case (3.5) holds for more than $N / 2$ values of n in ($N, 2 N$) we get $a_{2 N}>N / 2$ and thus for all large n we have $a_{n}>n / 4, c_{n}<$ $p_{n} / a_{n}+1<\sqrt{n} / 4$. Substituting these values in (3.5) we get

$$
\begin{equation*}
a_{n+1}>a_{n}+\sqrt{n} \quad \text { when } \quad c_{n+1}<c_{n}, n \text { large ; } \tag{3.6}
\end{equation*}
$$

so that $a_{2 N}>N^{3 / 2} / 2$, contradicting the hypothesis that $\lim \inf a_{n} / p_{n}=0$.
Theorem 3.7. Let $\left\{a_{n}\right\}$ be a monotonic sequence of positive integers with $a_{n}>n^{1 / 2+\delta}$ for some positive $\delta>0$ and all large n. Then the numbers $1, x, y, z$ are rationally independent. Here

$$
x=\sum_{n=1}^{\infty} \frac{\varphi(n)}{a_{1} \cdots a_{n}}, \quad y=\sum_{n=1}^{\infty} \frac{\sigma(n)}{a_{1} \cdots a_{n}}
$$

and

$$
z=\sum_{n=1}^{\infty} \frac{d_{n}}{a_{1} \cdots a_{n}}
$$

where $\left\{d_{n}\right\}$ is any sequence of integers satisfying $\left|d_{n}\right|<n^{1 / 2-\delta}$ for all large n and infinitely many $d_{n} \neq 0$.

Proof. Assume that there exist integers A, B, C not all 0 so that setting $b_{n}=A \varphi(n)+B \sigma(n)+C d_{n}$ we get that $S=\sum_{n=1}^{\infty} b_{n} /\left(a_{1}, \cdots, a_{n}\right)$ is an integer.

From Theorem 2.1 it follows directly that z is irrational and thus not both A and B can be zero. We consider first the case $A+B \neq 0$ so that without loss of generality we may assume $A+B=D>0$. Since S satisfies the hypotheses of Theorem 2.1 there exist integers $\left\{c_{n}\right\}$ so that

$$
b_{n}=c_{n} a_{n}-c_{n+1} \text { for all large } n .
$$

Since $\left|b_{n}\right|<n^{1+\delta / 2}$ for all large n we get

$$
\left|c_{n}\right|<n^{(1-\delta) / 2} \text { for all large } n \text {. }
$$

Let p_{n} be the nth prime and set

$$
a_{n}^{\prime}=a_{p_{n}}, b_{n}^{\prime}=b_{p_{n}}, c_{n}^{\prime}=c_{p_{n}}, c_{n}^{\prime \prime}=c_{p_{n}+1}
$$

then

$$
b_{n}^{\prime}=A\left(p_{n}-1\right)+B\left(p_{n}+1\right)+C d_{p_{n}}=D_{p_{n}}+d_{n}^{\prime}
$$

where

$$
d_{n}^{\prime}=C d_{p_{n}}-A+B \quad \text { with } \quad\left|d_{n}^{\prime}\right|<n^{(1-\delta) / 2} \quad \text { for all large } n
$$

Now

$$
\begin{aligned}
b_{n}^{\prime} & =c_{n}^{\prime} a_{n}^{\prime}-c_{n}^{\prime \prime} \\
b_{n+1}^{\prime} & =c_{n+1}^{\prime} a_{n+1}^{\prime}-c_{n+1}^{\prime \prime}
\end{aligned}
$$

so that from

$$
\begin{aligned}
\frac{b_{n+1}^{\prime}}{b_{n}^{\prime}} & =\frac{D p_{n+1}+d_{n+1}^{\prime}}{D p_{n}+d_{n}^{\prime}}=\frac{p_{n+1}}{p_{n}} \frac{1+d_{n+1}^{\prime} /\left(D p_{n+1}\right)}{1+d_{n}^{\prime} /\left(D p_{n}\right)} \\
& =\frac{p_{n+1}}{p_{n}}\left(1+o\left(n^{-(1+\delta) / 2}\right)\right)
\end{aligned}
$$

we get

$$
\begin{align*}
\frac{p_{n+1}}{p_{n}} & =\frac{c_{n+1}^{\prime} a_{n+1}^{\prime}-c_{n+1}^{\prime \prime}}{c_{n}^{\prime} a_{n}^{\prime}-c_{n}^{\prime \prime}}\left(1+o\left(n^{-(1+\delta) / 2}\right)\right) \\
& =\frac{c_{n+1}^{\prime}}{c_{n}^{\prime}} \frac{1-c_{n+1}^{\prime \prime} /\left(a_{n+1}^{\prime} c_{n+1}^{\prime}\right)}{1-c_{n}^{\prime \prime} /\left(a_{n}^{\prime} c_{n}^{\prime}\right)}\left(1+o\left(n^{-(1+\delta / 2)}\right)\right) \tag{3.8}\\
& =\frac{c_{n+1}^{\prime}}{c_{n}^{\prime}}\left(1+o\left(n^{-(1+\delta) / 2}\right)\right)
\end{align*}
$$

Here the last inequality follows from the fact that

$$
\begin{aligned}
\left|\frac{c_{n+1}}{c_{n}}\right| & =\left|\frac{\left(b_{n+1}+c_{n+2}\right) / a_{n+1}}{\left(b_{n}+c_{n+1}\right) / a_{n}}\right|=\frac{|A \varphi(n+1)+B \sigma(n+1)|+O\left(n^{(1-\delta) / 2}\right)}{|A \varphi(n)+B \sigma(n)|+O\left(n^{(1-\delta / / 2}\right)} \\
& =o\left(n^{\delta / 2}\right) .
\end{aligned}
$$

From (3.8) we get that $c_{n+1}^{\prime}>c_{n}^{\prime}$ implies

$$
\begin{equation*}
p_{n+1}>p_{n}+\frac{p_{n}}{c_{n}^{\prime}}-p_{n}^{1 / 2-\delta / 4}>p_{n}+\frac{1}{2} p_{n}^{1 / 2+\delta} \tag{3.9}
\end{equation*}
$$

for all large n.
We now use the following result of A. Selberg [3, Theorem 4].
Theorem 3.10. Let $\Phi(x)$ be positive and increasing and $\Phi(x) / x$ decreasing for $x>0$, further suppose

$$
\Phi(x) / x \rightarrow 0 \quad \text { and } \quad \lim \inf \log \Phi(x) / \log x>19 / 77 \quad \text { for } \quad x \rightarrow \infty
$$

Then for almost all $x>0$,

$$
\pi(x+\Phi(x))-\pi(x) \sim \frac{\Phi(x)}{\log x}
$$

We now apply this theorem with the choice $\Phi(x)=x^{1 / 2+\delta}$ to inequality (3.9) and consider the primes $N \leqq p_{m}<p_{m+1}<\cdots<p_{n}<2 N$ in an interval ($N, 2 N$) with N large. According to Theorem 3.10 the union of the set of intervals (p_{i}, p_{i+1}) where p_{i}, p_{i+1} satisfy (3.9) and $m \leqq i<n$, form a set of total length $<\varepsilon N$ where $\varepsilon>0$ is arbitrarily small. Also the number of indices i for which (3.9) holds is $o(\sqrt{N})$. Thus by (3.8) and (3.9) we have

$$
\begin{aligned}
\frac{c_{n}^{\prime}}{c_{m}^{\prime}} & =\prod_{i=m}^{n-1} \frac{c_{i+1}^{\prime}}{c_{i}^{\prime}}=\prod_{\substack{i=m \\
c_{i+1}^{\prime}{ }^{\prime} i}}^{n-1} \frac{c_{i+1}^{\prime}}{c_{i}^{\prime}}<\frac{N+\varepsilon N}{N}\left(1+o\left(N^{-(+\delta) / 2}\right)\right)^{\sqrt{N}} \\
& <1+2 \varepsilon<2^{2 \varepsilon} .
\end{aligned}
$$

From the monotonicity of a_{n} it now follows that for any $\varepsilon>0$ we have

$$
\begin{equation*}
\left|c_{n}\right|<n^{s} \text { for all large } n \tag{3.11}
\end{equation*}
$$

Substituting this inequality in (3.9) we get that $c_{n+1}^{\prime}>c_{n}^{\prime}$ would imply

$$
\begin{equation*}
p_{n+1}>p_{n}+\frac{p_{n}}{c_{n}^{\prime}}-p^{1 / 2+\delta / 4}>p_{n}+\frac{1}{2} p_{n}^{1-\varepsilon} \tag{3.12}
\end{equation*}
$$

which is impossible for large n when $\varepsilon<5 / 12$. Thus $\left\{c_{n}^{\prime}\right\}$ becomes nonincreasing for large n and hence constant, $c_{n}^{\prime}=c$, for large n.

This implies $a_{p}>p /(c+1)$ for large primes p and by the monotonicity of a_{n} we get

$$
\frac{a_{n}}{n}>\frac{a_{p}}{2 p}>\frac{1}{4 c}
$$

where p is the largest prime $\leqq n$.
Now consider the successive equations

$$
\begin{aligned}
b_{p} & =c a_{p}-c_{p+1} \\
b_{p+1} & =c_{p_{+1}} a_{p_{+1}}-c_{p_{+2}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
A \varphi(p+1) & +B \sigma(p+1)+O\left(p^{1 / 2-\delta}\right)=c_{p+1} a_{p+1} \\
D p & +O\left(p^{1 / 2-\delta}\right)=c a_{p}
\end{aligned}
$$

for all large primes p. This leads to

$$
\begin{equation*}
\left|\frac{A}{D} \frac{\varphi(p+1)}{p+1}+\frac{B}{D} \frac{\sigma(p+1)}{p+1}-\frac{c_{p+1}}{c}\right|<p^{-1 / 2} \tag{3.13}
\end{equation*}
$$

and hence to the conclusion that the only limit points of the sequence

$$
\left\{\left.\frac{A}{D} \frac{\varphi(p+1)}{p+1}+\frac{B}{D} \frac{\sigma(p+1)}{p+1} \right\rvert\, p=\text { prime }\right\}
$$

are rational numbers with denominator c. To see that this is not the case, consider first the case $B \neq 0$. Then by Dirichlet's theorem about primes in arithmetic progressions we see that $\sigma(p+1) /(p+1)$ is everywhere dense in $(1, \infty)$. Thus we can choose p so that the distance of $B \sigma(p+1) / D(p+1)$ to the nearest fraction with denominator c is greater that $1 /(3 c)$ while at the same time $\sigma(p+1) /(p+1)$ is so large that $|A \varphi(p+1) / D(p+1)|<1 /(3 c)$, contradicting (3.13). If $B=0$ we use the fact that $\varphi(p+1) /(p+1)$ is dense in $(0,1)$ to get the same contradiction.

Finally we must consider the case $A+B=0$. Here we can go through the same argument as before except that we consider the subsequence $b_{2 p}=A \varphi(2 p)+B \sigma(2 p)+C d_{2 p}=2 B p+\left(3 B+C d_{2 p}\right)=2 B p+$ $O\left(p^{1 / 2-\delta}\right)$. As before we get

$$
b_{2 p}=c \alpha_{2 p}-c_{2 p+1} \quad \text { for all large primes } p
$$

which leads to the wrong conclusion that

$$
\left\{\left.\frac{\sigma(2 p+1)}{2 p+1}-\frac{\varphi(2 p+1)}{2 p+1} \right\rvert\, p=\text { prime }\right\}
$$

has rational numbers with denominator c as its only limit points.

References

1. P. Erdös, Sur certaines series a valeur irrationelle, Enseignment Math., 4 (1958), 93-100.
2. P. Erdös and E. G. Straus, Some number theoretic results, Pacific J. Math., 36 (1971), 635-646.
3. A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid., 47 (1943), 87-105.

Received April 16, 1974. This work was supported in part under NSF Grant No. GP-28696.

University of California, Los Angeles

