ON THE IRRATIONALITY OF CERTAIN SERIES

P. ERDÖS AND E. G. STRAUS

A criterion is established for the rationality of series of the form $\sum b_n/(a_1, \dots, a_n)$ where a_n, b_n are integers, $a_n \ge 2$ and $\lim b_n/(a_{n-1}a_n) = 0$. This criterion is applied to prove irrationality and rational independence of certain special series of the above type.

1. Introduction. In an earlier paper [2] we proved the following result:

THEOREM 1.1. If $\{a_n\}$ is a monotonic sequence of positive integers with $a_n \ge n^{11/12}$ for all large n, then the series

(1.2)
$$\sum_{n=1}^{\infty} \frac{\varphi(n)}{a_1 a_2 \cdots a_n} \quad and \quad \sum_{k=1}^{\infty} \frac{\sigma(n)}{a_1 a_2 \cdots a_n}$$

are irrational.

We conjectured that the series (1.2) are irrational under the single assumption that $\{a_n\}$ is monotonic and we observed that some such condition is needed in view of the possible choices $a_n = \varphi(n) + 1$ or $a_n = \sigma(n) + 1$. These particular choices do not satisfy the hypothesis $\lim \inf a_{n+1}/a_n > 0$ but we do not know whether that hypothesis which is weaker than that of the monotonicity of a_n would suffice.

In this note we obtain various improvements and generalizations of Theorem 1.1, in particular by relaxing the growth conditions on the a_n and using more precise results in the distribution of primes.

In § 2 we obtain some general conditions for the rationality of series of the form $\sum b_n/(a_1, \dots, a_n)$ which are modifications of [2, Lemma 2.29]. In § 3 we use a result of A. Selberg [3] on the regularity of primes in intervals to obtain improvements and generalizations of Theorem 1.1.

2. Criteria for rationality.

THEOREM 2.1. Let $\{b_n\}$ be a sequence of integers and $\{a_n\}$ a sequence of positive integers with $a_n > 1$ for all large n and

(2.2)
$$\lim_{n=1} \frac{|b_n|}{a_{n-1}a_n} = 0.$$

Then the series

$$(2.3) \qquad \sum_{n=1}^{\infty} \frac{b_n}{a_1 \cdots a_n}$$

is rational if and only if there exists a positive integer B and a sequence of integers $\{c_n\}$ so that for all large n we have

$$(2.4) Bb_n = c_n a_n - c_{n+1}, |c_{n+1}| < a_n/2.$$

Proof. Assume that (2.4) holds beyond N. Then

$$egin{aligned} Ba_1 & \cdots & a_{N-1} \sum_{n=1}^\infty rac{b_n}{a_1 & \cdots & a_n} & = ext{integer} + \sum_{n=N}^\infty rac{c_n a_n - c_{n+1}}{a_N & \cdots & a_n} \ & = ext{integer} + c_N & = ext{integer} \,. \end{aligned}$$

Thus condition (2.4) is sufficient for the rationality of the series (2.3). To prove the necessity of (2.4) assume that the series (2.3) equals A/B and that N is so large that $a_n \ge 2$ and $|b_n/(a_{n-1}a_n)| < 1/(4B)$ for all $n \ge N$. Then

$$(2.5) Aa_1 \cdots a_{N-1} = Ba_1 \cdots a_{N-1} \sum_{n=1}^{\infty} \frac{b_n}{a_1 \cdots a_n}$$

$$= \text{integer} + \frac{Bb_N}{a_N} + \sum_{n=N+1}^{\infty} \frac{Bb_n}{a_N \cdots a_n}.$$

If we call the last sum R_N we get

$$egin{align} |R_N| & \leq \max_{n>N} rac{|Bb_n|}{a_{n-1}a_n} \sum_{n=N+1}^\infty rac{1}{a_N \cdots a_{n-2}} \ & < rac{1}{4} \sum_{k=0}^\infty rac{1}{2^k} = rac{1}{2} \; . \end{align}$$

Thus, if we choose c_N to be the integer nearest to Bb_N/a_N and write $Bb_N = c_N a_N - c_{N+1}$ then (2.5) yields that $-c_{N+1}/a_N + R_N$ is an integer of absolute value less than 1 and hence 0, so that

(2.7)
$$\frac{c_{N+1}}{a_N} = R_N = \frac{Bb_{N+1}}{a_N a_{N+1}} + \frac{1}{a_N} R_{N+1}$$

or

$$\frac{Bb_{_{N+1}}}{a_{_{N+1}}}=c_{_{N+1}}-R_{_{N+1}}\;.$$

From (2.8) it follows that c_{N+1} is the integer nearest to Bb_{N+1}/a_{N+1} and if we write $Bb_{N+1}=c_{N+1}a_{N+1}-c_{N+2}$ we get

$$\frac{Bb_{N+2}}{a_{N+2}} = c_{N+2} - R_{N+2} .$$

Proceeding in this manner we get the desired sequence $\{c_n\}$.

REMARK. Since (2.2) implies $R_n \to 0$ it follows that for rational values of the series (2.3) we get $c_{n+1}/a_n \to 0$. Thus either $a_n \to \infty$ or $c_n = 0$ and hence $b_n = 0$ for all large n.

COROLLARY 2.10. Let $\{a_n\}$, $\{b_n\}$ satisfy the hypotheses of Theorem 2.1 and in addition the conditions that for all large n we have $b_n > 0$, $a_{n+1} \ge a_n$, $\lim (b_{n+1} - b_n)/a_n \le 0$ and $\lim \inf a_n/b_n = 0$. Then the series (2.3) is irrational.

Proof. According to Theorem 2.1 the rationality of (2.3) implies the existence of a positive integer B and a sequence of integers $\{c_n\}$ so that

$$Bb_n = c_n a_n - a_{n+1}$$

for all large n where $c_{n+1}/a_n \rightarrow 0$. Thus

$$\frac{b_{n+1}}{b_n} = \frac{c_{n+1}a_{n+1} - c_{n+2}}{c_na_n - c_{n+1}} > \frac{(c_{n+1} - \varepsilon)}{c_na_n} \ge \frac{c_{n+1} - \varepsilon}{c_n}$$

for all $\varepsilon>0$ and sufficiently large n. Thus $c_{n+1}>c_n$ would lead to

$$(2.11) b_{n+1} > \Big(1 + \frac{1-\varepsilon}{c_n}\Big)b_n > b_n + (1-\varepsilon)\Big(a_n - \frac{c_{n+1}}{c_n}\Big)/B$$
$$> b_n + (1-\varepsilon)^2a_n/B .$$

This contradicts our hypothesis for sufficiently large n. Thus we get $0 < c_{n+1} \le c_n$ for all large n and hence b_n/a_n is bounded contrary to the hypothesis that $\liminf a_n/b_n = 0$.

In fact, if we omit the hypothesis $\liminf a_n/b_n = 0$ then we get rational values for the series (2.3) only when $Bb_n = C(a_n - 1)$ with positive integers B, C for all large n.

3. Some special sequences.

THEOREM 3.1. Let p_n be the nth prime and let $\{a_n\}$ be a monotonic sequence of positive integers satisfying $\lim p_n/a_n^2 = 0$ and $\lim \inf a_n/p_n = 0$. Then the series

$$(3.2) \sum_{n=1}^{\infty} \frac{p_n}{a_1 \cdots a_n}$$

is irrational.

Proof. Since the series (3.2) satisfies the hypotheses of Theorem

2.1 it follows that there is a sequence $\{c_n\}$ and an integers B so that for all large n we have

$$(3.3) Bp_n = c_n a_n - c_{n+1}.$$

For large n an equality $c_n = c_{n+1}$ would imply $c_n \mid B$ and $a_n > p_n$. Since $\{c_n\}$ is unbounded there must exist an index $m \ge n$ so that $c_m \le c_n < c_{m+1}$. But this implies by an argument analogous to (2.11) that

(3.4)
$$p_{m+1} > p_m + a_m/(2B) > \left(1 + \frac{1}{2B}\right)p_m$$

which is impossible for large m. Thus we may assume that $c_n \neq c_{n+1}$ for all large n. Now consider an interval $N \leq n \leq 2N$. If $c_{n+1} > c_n$ then as in (3.4) we get

$$p_{n+1} > p_n + a_n/(2B) > p_n + \sqrt{p_n}$$

which therefore happens for fewer than $(p_{2N}-p_N)/\sqrt{p_N} < N^{1/2+\epsilon}$ values in the interval (N,2N). If $c_{n+1} < c_n$ then we get

$$1>\frac{c_{\scriptscriptstyle n}a_{\scriptscriptstyle n}-c_{\scriptscriptstyle n+1}}{c_{\scriptscriptstyle n+1}a_{\scriptscriptstyle n+1}-c_{\scriptscriptstyle n+2}}>\frac{c_{\scriptscriptstyle n}(a_{\scriptscriptstyle n}-1)}{c_{\scriptscriptstyle n+1}a_{\scriptscriptstyle n+1}}>\left(1+\frac{1}{c_{\scriptscriptstyle n+1}}\right)\!\!\frac{a_{\scriptscriptstyle n}-1}{a_{\scriptscriptstyle n+1}}$$

so that

$$a_{n+1} > a_n + \frac{a_n - 1}{c_{n+1}} > a_n + 1.$$

Since case (3.5) holds for more than N/2 values of n in (N, 2N) we get $a_{2N} > N/2$ and thus for all large n we have $a_n > n/4$, $c_n < p_n/a_n + 1 < \sqrt{n}/4$. Substituting these values in (3.5) we get

(3.6)
$$a_{n+1} > a_n + \sqrt{n}$$
 when $c_{n+1} < c_n, n$ large;

so that $a_{2N} > N^{3/2}/2$, contradicting the hypothesis that $\liminf a_n/p_n = 0$.

THEOREM 3.7. Let $\{a_n\}$ be a monotonic sequence of positive integers with $a_n > n^{1/2+\delta}$ for some positive $\delta > 0$ and all large n. Then the numbers 1, x, y, z are rationally independent. Here

$$x = \sum_{n=1}^{\infty} \frac{\varphi(n)}{a_1 \cdots a_n}$$
, $y = \sum_{n=1}^{\infty} \frac{\sigma(n)}{a_1 \cdots a_n}$

and

$$z=\sum_{n=1}^{\infty}\frac{d_n}{a_1\cdots a_n}$$

where $\{d_n\}$ is any sequence of integers satisfying $|d_n| < n^{1/2-\delta}$ for all large n and infinitely many $d_n \neq 0$.

Proof. Assume that there exist integers A, B, C not all 0 so that setting $b_n = A\varphi(n) + B\sigma(n) + Cd_n$ we get that $S = \sum_{n=1}^{\infty} b_n/(a_1, \dots, a_n)$ is an integer.

From Theorem 2.1 it follows directly that z is irrational and thus not both A and B can be zero. We consider first the case $A+B\neq 0$ so that without loss of generality we may assume A+B=D>0. Since S satisfies the hypotheses of Theorem 2.1 there exist integers $\{c_n\}$ so that

$$b_n = c_n a_n - c_{n+1}$$
 for all large n .

Since $|b_n| < n^{1+\delta/2}$ for all large n we get

$$|c_n| < n^{(1-\delta)/2}$$
 for all large n .

Let p_n be the *n*th prime and set

$$a'_n = a_{p_n}, b'_n = b_{p_n}, c'_n = c_{p_n}, c''_n = c_{p_{n+1}},$$

then

$$b'_n = A(p_n - 1) + B(p_n + 1) + Cd_{p_n} = D_{p_n} + d'_n$$

where

$$d_{\it n}' = C d_{\it p_n} - A + B$$
 with $|\, d_{\it n}'\,| < n^{\scriptscriptstyle (1-\delta)/2}$ for all large $\it n$.

Now

$$b'_n = c'_n a'_n - c''_n \ b'_{n+1} = c'_{n+1} a'_{n+1} - c''_{n+1}$$

so that from

$$egin{aligned} rac{b_{n+1}'}{b_n'} &= rac{Dp_{n+1} + d_{n+1}'}{Dp_n + d_n'} = rac{p_{n+1}}{p_n} rac{1 + d_{n+1}'(Dp_{n+1})}{1 + d_n'(Dp_n)} \ &= rac{p_{n+1}}{p_n} (1 + o(n^{-(1+\delta)/2})) \end{aligned}$$

we get

$$\frac{p_{n+1}}{p_n} = \frac{c'_{n+1}a'_{n+1} - c''_{n+1}}{c'_n a'_n - c''_n} (1 + o(n^{-(1+\delta)/2}))$$

$$= \frac{c'_{n+1}}{c'_n} \frac{1 - c''_{n+1}/(a'_{n+1}c'_{n+1})}{1 - c''_n/(a'_n c'_n)} (1 + o(n^{-(1+\delta)/2}))$$

$$= \frac{c'_{n+1}}{c'_n} (1 + o(n^{-(1+\delta)/2})) .$$

Here the last inequality follows from the fact that

$$igg|rac{c_{n+1}}{c_n}igg| = igg|rac{(b_{n+1}+c_{n+2})/a_{n+1}}{(b_n+c_{n+1})/a_n}igg| = rac{|Aarphi(n+1)+B\sigma(n+1)|+O(n^{(1-\delta)/2})}{|Aarphi(n)+B\sigma(n)|+O(n^{(1-\delta)/2})} = o(n^{\delta/2}) \; .$$

From (3.8) we get that $c'_{n+1} > c'_n$ implies

$$(3.9) p_{n+1} > p_n + \frac{p_n}{c'_n} - p_n^{1/2-\delta/4} > p_n + \frac{1}{2} p_n^{1/2+\delta}$$

for all large n.

We now use the following result of A. Selberg [3, Theorem 4].

THEOREM 3.10. Let $\Phi(x)$ be positive and increasing and $\Phi(x)/x$ decreasing for x > 0, further suppose

$$\Phi(x)/x \to 0$$
 and $\liminf \log \Phi(x)/\log x > 19/77$ for $x \to \infty$.

Then for almost all x > 0,

$$\pi(x + \Phi(x)) - \pi(x) \sim \frac{\Phi(x)}{\log x}$$
.

We now apply this theorem with the choice $\Phi(x) = x^{1/2+\delta}$ to inequality (3.9) and consider the primes $N \leq p_m < p_{m+1} < \cdots < p_n < 2N$ in an interval (N, 2N) with N large. According to Theorem 3.10 the union of the set of intervals (p_i, p_{i+1}) where p_i, p_{i+1} satisfy (3.9) and $m \leq i < n$, form a set of total length $< \varepsilon N$ where $\varepsilon > 0$ is arbitrarily small. Also the number of indices i for which (3.9) holds is $o(\sqrt{N})$. Thus by (3.8) and (3.9) we have

$$egin{aligned} rac{c'_n}{c'_m} &= \prod_{i=m}^{n-1} rac{c'_{i+1}}{c'_i} = \prod_{\substack{i=m \ c'_{i+1}c'_i \ c'_{i+1}c'_i}}^{n-1} rac{c'_{i+1}}{c'_i} < rac{N+arepsilon N}{N} (1+o(N^{-(+\delta)/2}))^{\sqrt{N}} \ &< 1+2arepsilon < 2^{2arepsilon} \,. \end{aligned}$$

From the monotonicity of a_n it now follows that for any $\varepsilon > 0$ we have

$$|c_n| < n^{\varepsilon} \quad \text{for all large} \quad n.$$

Substituting this inequality in (3.9) we get that $c'_{n+1} > c'_n$ would imply

$$(3.12) p_{n+1} > p_n + \frac{p_n}{c'_n} - p^{1/2 + \delta/4} > p_n + \frac{1}{2} p_n^{1-\epsilon}$$

which is impossible for large n when $\varepsilon < 5/12$. Thus $\{c'_n\}$ becomes nonincreasing for large n and hence constant, $c'_n = c$, for large n.

This implies $a_p > p/(c+1)$ for large primes p and by the monotonicity of a_n we get

$$\frac{a_n}{n} > \frac{a_p}{2p} > \frac{1}{4c}$$

where p is the largest prime $\leq n$.

Now consider the successive equations

$$egin{aligned} b_{\it p} &= c a_{\it p} - c_{\it p+1} \ b_{\it p+1} &= c_{\it p+1} a_{\it p+1} - c_{\it p+2} \ . \end{aligned}$$

Thus

$$A \varphi(p+1) + B \sigma(p+1) + O(p^{1/2-\delta}) = c_{p+1} a_{p+1}$$

 $D p + O(p^{1/2-\delta}) = c a_p$

for all large primes p. This leads to

$$\left| \frac{A}{D} \frac{\varphi(p+1)}{p+1} + \frac{B}{D} \frac{\sigma(p+1)}{p+1} - \frac{c_{p+1}}{c} \right| < p^{-1/2},$$

and hence to the conclusion that the only limit points of the sequence

$$\left\{rac{A}{D}rac{arphi(p+1)}{p+1}+rac{B}{D}rac{\sigma(p+1)}{p+1}
ight|p= ext{prime}
ight\}$$

are rational numbers with denominator c. To see that this is not the case, consider first the case $B \neq 0$. Then by Dirichlet's theorem about primes in arithmetic progressions we see that $\sigma(p+1)/(p+1)$ is everywhere dense in $(1, \infty)$. Thus we can choose p so that the distance of $B\sigma(p+1)/D(p+1)$ to the nearest fraction with denominator c is greater that 1/(3c) while at the same time $\sigma(p+1)/(p+1)$ is so large that $|A\varphi(p+1)/D(p+1)| < 1/(3c)$, contradicting (3.13). If B=0 we use the fact that $\varphi(p+1)/(p+1)$ is dense in (0,1) to get the same contradiction.

Finally we must consider the case A+B=0. Here we can go through the same argument as before except that we consider the subsequence $b_{2p}=A\varphi(2p)+B\sigma(2p)+Cd_{2p}=2Bp+(3B+Cd_{2p})=2Bp+O(p^{1/2-\delta})$. As before we get

$$b_{zp} = ca_{zp} - c_{zp+1}$$
 for all large primes p

which leads to the wrong conclusion that

$$\left.\left\{rac{\sigma(2p+1)}{2p+1}-rac{arphi(2p+1)}{2p+1}
ight|p= ext{prime}
ight\}$$

has rational numbers with denominator c as its only limit points.

REFERENCES

- 1. P. Erdös, Sur certaines series a valeur irrationelle, Enseignment Math., 4 (1958), 93-100.
- 2. P. Erdös and E. G. Straus, Some number theoretic results, Pacific J. Math., 36 (1971), 635-646.
- 3. A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid., 47 (1943), 87-105.

Received April 16, 1974. This work was supported in part under NSF Grant No. GP-28696.

University of California, Los Angeles