EXTENSIONS OF SHEAVES OF COMMUTATIVE ALGEBRAS BY NONTRIVIAL KERNELS

D. H. Van Osdol

Abstract

Let A, M, and R be sheaves of commutative algebras on a topological space. Given a surjection from R to M there is associated a cohomology class in $H^{2}(R, Z A)$, the second bicohomology group of R with coefficients in the center of A. This cohomology class is zero if and only if the original surjection arises from an extension of R by A.

Introduction. Let X be a topological space, R a sheaf of commutative algebras on X, and A a sheaf of R-modules considered as an algebra with trivial multiplication. It was shown in [5] that the group of equivalence classes of commutative algebra extensions of R with A as kernel is isomorphic to $H^{1}(R, A)$, the first bicohomology group of R with coefficients in A. In this paper we will not assume that A has trivial multiplication; we will find that, if $Z A$ is the center of A, then $H^{2}(R, Z A)$ contains all of the obstructions to the existence of extensions of R by A which "realize" a given morphism. This will generalize the results of [1] to the category of sheaves, and of [4] in that no assumptions need be made on X or R.

In order to keep this paper as short as possible, we shall follow the format of [1]. We shall not, however, generalize §4 of [1]. There are two reasons for this: first, we do not know how to globalize Barr's theory, although we can do his §4 locally using only tripletheoretic techniques (and then the underlying set of A is $Z \times K$ where K is the kernel of R 's structure morphism); secondly, the correct setting for completely characterizing the bicohomology $H^{n}, n>1$, will not be known until Duskin writes up his results [3].

Let Sets be the category of pointed sets. The distinguished point of a set will be the zero of any corresponding algebra. Let Λ be a sheaf of commutative rings on $X, \mathscr{F}(X, A l g)$ the category of sheaves of commutative Λ-algebras on $X, \Pi \Lambda_{x}-a l g$ the product over $x \in X$ of the categories of Λ_{x}-algebras ($\Lambda_{x}=$ stalk of Λ at $x \in X$), and $\mathscr{F}(X$, Sets) the category of sheaves of pointed sets. We should stress that our algebras need not have unit elements. It is easy to verify that we have a bicohomology situation [5]:
where the horizontal arrows are adjoint resolutions of the Godement standard construction, and the vertical ones are the obvious free and forgetful functors. Given a sheaf R of Λ-algebras and a sheaf Z of R-modules, the bicohomology theory we use is that arising from the above picture and the functor Der_{A}. Hence we take a "free" simplicial resolution of R, a Godement cosimplicial resolution of Z, and examine the cohomology groups of the double complex gotten by looking at Λ-derivations of the resolution over R into the resolution under Z.
I. The Class E. There is no problem in globalizing $\S 1$ of [1], but we will give a brief outline in order to fix notation. Let A be a sheaf of ideals in C and for each $x \in X$ let $Z\left(A_{x}, C_{x}\right)=\left\{c \in C_{x} \mid c A_{x}=\right.$ $0\}$. Define the centralizer of A in C to be the pullback

and the center of A to be $Z A=Z(A, A)$. Then $Z(A, C)$ is a sheaf of ideals in C and we let $E(A)$ denote the set of equivalence classes of exact sequences of sheaves of commutative algebras

$$
0 \longrightarrow Z A \longrightarrow A \longrightarrow C / Z(A, C) \longrightarrow C / A+Z(A, C) \longrightarrow 0 .
$$

Here equivalence is by isomorphisms which fix $Z A$ and A.
On the other hand, let E be any sheaf of subalgebras of the sheaf of germs of endomorphisms of A such that E contains the image of $\omega: A \rightarrow \operatorname{Hom}_{A}(A, A)$. For each $a \in A$ and open U in $X, \omega U(\alpha)$: $\left.\left.A\right|_{U} \longrightarrow A\right|_{U}$ is defined by $[\omega U(\alpha)] V\left(a^{\prime}\right)=[A(i) a] \cdot a^{\prime}$ where i is the inclusion of V in $U, a^{\prime} \in A(V)$, and "." represents multiplication. Let E^{\prime} be the set of all such E.

Proposition 1.1. There is a natural one-one correspondence $E(A) \cong E^{\prime}$.

Proof. As in [1]. Here we also construct the truncated simplicial algebra

$$
B \underset{d^{2}}{\stackrel{d^{0}}{\Longrightarrow}} P \underset{d_{s^{0}}}{\stackrel{d^{0}}{\Longrightarrow}} E \xrightarrow{\pi} M .
$$

Proposition 1.2. The above simplicial algebra is exact.
Proposition 1.3. There is a derivation $\hat{\partial}: B \rightarrow Z A$ given by $\hat{o}=$
$\left(P-s^{0} \cdot d^{0}\right) \cdot\left(d^{0}-d^{1}+d^{2}\right)$.
II. The obstruction to a morphism. Let R be a sheaf of commutative algebras, $p: R \rightarrow M$ a surjection, and $0 \rightarrow A \rightarrow C \rightarrow R \rightarrow 0$ an exact sequence (extension) of commutative algebras. We say that p arises from this extension if there is a commutative diagram:

Given a surjection p, we wish to determine if there are any extensions from which it arises.

Since $\pi: E \rightarrow M$ is surjective, there is a map $s: S U M \rightarrow S U E$ such that $S U \pi \cdot s=S U M$. By adjointness we get $s^{\prime}: F U M \rightarrow Q S E$ such that the diagram

commutes. Let $p_{0}=s^{\prime} \cdot F U p$. Then

$$
\begin{aligned}
Q S \pi \cdot p_{0} \cdot \varepsilon F U R & =\eta M \cdot p \cdot \varepsilon R \cdot \varepsilon F U R \\
& =\eta M \cdot p \cdot \varepsilon R \cdot F U \varepsilon R \\
& =Q S \pi \cdot p_{0} \cdot F U \varepsilon R
\end{aligned}
$$

so there exists a unique $\widetilde{p}_{1}:(F U)^{2} R \rightarrow Q S \widetilde{P}$ such that

$$
Q S \widetilde{d}^{0} \cdot \widetilde{p}_{1}=p_{0} \cdot \varepsilon F U R, Q S \widetilde{d}^{1} \cdot \widetilde{p}_{1}=p_{0} \cdot F U \varepsilon R .
$$

Here ($\widetilde{P}, \widetilde{d}^{i}$) is the kernel pair of π, and $Q S$ preserves finite limits. Now the unique map $u: P \rightarrow \widetilde{P}$ such that $\widetilde{d}^{i} \cdot u=d^{i}$ is surjective, so there is $t: S U \widetilde{P} \rightarrow S U P$ splitting it. Using this map and adjointness we produce $t^{\prime}: F U Q S \widetilde{P} \rightarrow(Q S)^{2} P$ such that $(Q S)^{2} u \cdot t^{\prime}=\eta Q S \widetilde{P} \cdot \varepsilon Q S \widetilde{P}$.

Define $\bar{p}_{1}:(F U)^{3} R \rightarrow(Q S)^{2} P$ by $\bar{p}_{1}=t^{\prime} \cdot F U \widetilde{p}_{1}$ and then

$$
p_{1}=\mu P \cdot \bar{p}_{1} \cdot \delta^{\prime} G R
$$

where $\mu=$ multiplication for $Q S, \delta^{\prime}=$ comultiplication for $F U$. One computes that $Q S u \cdot p_{1}=\widetilde{p}_{1}$, from which it follows that there is a unique $p_{2}:(F U)^{3} R \rightarrow Q S B$ such that $d^{i} \cdot p_{2}=p_{1} \cdot \varepsilon^{i}, 0 \leqq i \leqq 2$ where $\varepsilon^{i}=$ $(F U)^{i} \varepsilon(F U)^{2-i} R$. By the naturality of $\varepsilon, T \partial \cdot p_{2} \cdot \sum_{i=0}^{3}(-1)^{i} \varepsilon^{i}=0$.

On the other hand,

$$
\begin{aligned}
(Q S)^{2} \pi \cdot \eta Q S E \cdot p_{0} & =\eta Q S M \cdot Q S \pi \cdot p_{0} \\
& =\eta Q S M \cdot \eta M \cdot p \cdot \varepsilon R \\
& =Q S \eta M \cdot \eta M \cdot p \cdot \varepsilon R \\
& =Q S \eta M \cdot Q S \pi \cdot p_{0} \\
& =(Q S)^{2} \pi \cdot Q S \eta E \cdot p_{0}
\end{aligned}
$$

so there is a unique $\widetilde{q}_{1}: F U R \rightarrow(Q S)^{2} \widetilde{P}$ such that $(Q S)^{2} \widetilde{d}^{i} \cdot \widetilde{q}_{1}=\eta^{i} E \cdot p_{0}$, $i=0,1$, where $\eta^{i} E$ is defined as was ε^{i} above. Let as before $t^{\prime \prime}$: $F U(Q S)^{2} \widetilde{P} \rightarrow(Q S)^{3} P$ be such that $(Q S)^{3} u \cdot t^{\prime \prime}=\eta(Q S)^{2} \widetilde{P} \cdot \varepsilon(Q S)^{2} \widetilde{P}$. Define $\widetilde{q}_{1}=t^{\prime \prime} \cdot F U \widetilde{q}_{1}$ and $q_{1}=\mu Q S P \cdot \bar{q}_{1} \cdot \delta^{\prime} R$. Then $(Q S)^{2} u \cdot q_{1}=\widetilde{q}_{1}$ and q_{1} induces $q_{2}: F U R \rightarrow(Q S)^{3} B$ such that $(Q S)^{3} d^{i}=\eta^{i} P \cdot q_{1}, 0 \leqq i \leqq 2$. The induced derivation $(Q S)^{3} \delta \cdot q_{2}$ has the property that $\sum_{i=0}^{3}(-1)^{i} \eta^{i} \cdot T^{3} \partial \cdot q_{2}=0$.

Finally, for $i=0,1$ consider $(Q S)^{2} \widetilde{d}^{i} \cdot \eta^{i} \cdot \widetilde{p}_{1}:(F U)^{2} R \rightarrow(Q S)^{2} E$. One computes that $(Q S)^{2} \pi \cdot(Q S)^{2} \widetilde{d}^{0} \cdot \eta Q S \widetilde{P} \cdot \widetilde{p}_{1}=(Q S)^{2} \pi \cdot(Q S)^{2} \widetilde{d}^{1} \cdot Q S \eta \widetilde{P} \cdot \widetilde{p}_{1}$ and concludes that there exists $\tilde{v}:(F U)^{2} R \rightarrow(Q S)^{2} \widetilde{P}$ such that $(Q S)^{2} \widetilde{d}^{i} \cdot \widetilde{v}=$ $(Q S)^{2} \widetilde{d}^{i} \cdot \eta^{i} \cdot \widetilde{p}_{1}$ for $i=0,1$. As before, the fact that $u: P \rightarrow \widetilde{P}$ is surjective allows us to define $v:(F U)^{2} R \rightarrow(Q S)^{2} P$ such that $(Q S)^{2} u \cdot v=$ \widetilde{v}. Let $r_{1}:(F U)^{2} R \rightarrow(Q S)^{2} B$ be the unique map such that $(Q S)^{2} d^{0} \cdot r_{1}=$ $\eta Q S P \cdot p_{1},(Q S)^{2} d^{1} \cdot r_{1}=v,(Q S)^{2} d^{2} \cdot r_{1}=q_{1} \cdot F U \varepsilon R$ (it is easy to see that such r_{1} exists, because $(Q S)^{2} B$ is the kernel triple of $(Q S)^{2} d^{0}$ and $\left.(Q S)^{2} d^{1}\right)$. Similarly let $(Q S)^{2} d^{0} \cdot r_{2}=q_{1} \cdot \varepsilon F U R,(Q S)^{2} d^{1} \cdot r_{2}=v$, and $(Q S)^{2} d^{2} \cdot r_{2}=$ $Q S \eta P \cdot p_{1}$. Now we have:

$$
\begin{aligned}
&\left((Q S)^{2} \partial \cdot r_{2}-(Q S)^{2} \partial \cdot r_{1}\right) \cdot \sum_{i=0}^{2}(-1)^{i} \varepsilon^{i} \\
&=(Q S)^{2}\left(P-s^{0} \cdot d^{0}\right) \cdot\left(q_{1} \cdot \varepsilon^{0}-v+Q S \eta P \cdot p_{1}\right) \cdot \sum_{i=0}^{2}(-1)^{i} \varepsilon^{i} \\
&-(Q S)^{2}\left(P-s^{0} \cdot d^{0}\right) \cdot\left(\eta Q S P \cdot p_{1}-v+q_{1} \cdot \varepsilon^{1}\right) \cdot \sum_{i=0}^{2}(-1)^{i} \varepsilon^{i} \\
&=-(Q S)^{2}\left(P-s^{0} \cdot d^{0}\right) \cdot\left(\sum_{j=0}^{1}(-1)^{i} \eta^{j}\right) \cdot p_{1} \cdot\left(\sum_{i=0}^{2}(-1)^{i} \varepsilon^{i}\right) \\
&=\left(\sum_{j=0}^{1}(-1)^{j} \eta^{j}\right) \cdot Q S \delta \cdot p_{2},
\end{aligned}
$$

and similarly

$$
\left(\sum_{j=0}^{2}(-1)^{i} \eta^{j}\right) \cdot\left((Q S)^{2} \delta \cdot r_{2}-(Q S)^{2} \delta \cdot r_{1}\right)=(Q S)^{3} \delta \cdot q_{2} \cdot \sum_{i=0}^{1}(-1)^{i} \varepsilon^{i}
$$

Hence $\left(Q S \partial \cdot p_{2},(Q S)^{2} \partial \cdot r_{2}-(Q S)^{2} \partial \cdot r_{1},(Q S)^{3} \partial \cdot q_{2}\right)$ is a cocycle in the bicohomology double complex; we will denote its cohomology class by [p] and call [p] the obstruction of p. We say p is unobstructed if $[p]=0$. This terminology is justified by the next two results.

Proposition 2.1. The cohomology class of $\left(Q S \partial \cdot p_{2},(Q S)^{2} \partial \cdot r_{2}-\right.$ $\left.(Q S)^{2} \partial \cdot r_{1},(Q S)^{3} \partial \cdot q_{2}\right)$ is independent of the choices of $s: S U M \rightarrow S U E$
and $t: S U \widetilde{P} \rightarrow S U P$.
Proof. Once we have p_{1}, q_{1}, and v the maps p_{2}, q_{2}, r_{1}, and r_{2} are uniquely determined. So suppose $\sigma_{0}, \sigma_{1}, \tau_{1}, \rho_{1}, \rho_{2}$ are different choices of $p_{0}, p_{1}, q_{1}, r_{1}, r_{2}$ and construct simplicial homotopies as in [1]. Specifically let $Q S \tilde{d}^{0} \cdot \widetilde{h}^{0}=p_{0}, Q S \widetilde{d}^{1} \cdot \widetilde{h}^{0}=\sigma_{0}, T u \cdot h^{0}=\widetilde{h}^{0}$, and

$$
Q S d^{0} \cdot v^{\prime}=Q S d^{0} \cdot p_{1}, Q S d^{1} \cdot v^{\prime}=Q S d^{1} \cdot \sigma_{1}
$$

Considering the maps p_{1}, v^{\prime}, and $h^{0} \cdot \varepsilon^{1}$ from $(F U)^{2} R$ to $Q S P$ we see that there exists $h^{0}:(F U)^{2} R \rightarrow Q S B$ such that $Q S d^{0} \cdot h^{0}=p_{1}, Q S d^{1} \cdot h^{0}=$ v^{\prime}, and $Q S d^{2} \cdot h^{0}=h^{0} \cdot \varepsilon^{1}$. Similarly there exists $h^{1}:(F U)^{2} R \rightarrow Q S B$ such that $Q S d^{0} \cdot h^{1}=h^{0} \cdot \varepsilon^{0}, Q S d^{1} \cdot h^{1}=v^{\prime}$, and $Q S d^{2} \cdot h^{1}=\sigma_{1}$. From these relations it is easy to compute that $\left(Q S \partial \cdot h_{0}-Q S \partial \cdot h_{1}\right) \cdot \sum_{i=0}^{2}(-1)^{i} \varepsilon^{i}=$ $Q S \partial \cdot p_{2}-Q S \partial \cdot \sigma_{2}$.

Now let $w: F U R \rightarrow(Q S)^{2} P$ be such that $(Q S)^{2} d^{0} \cdot w=(Q S)^{2} d^{0} \cdot q_{1}$ and $(Q S)^{2} d^{1} \cdot w=(Q S)^{2} d^{1} \cdot \tau_{1}$ where τ_{1} "lifts" σ_{0}. As above let k^{0}, k^{1} : $F U R \rightarrow(Q S)^{2} B$ be determined by the conditions

$$
\begin{aligned}
& (Q S)^{2} d^{0} \cdot k^{0}=q_{1},(Q S)^{2} d^{1} \cdot k^{0}=w,(Q S)^{2} d^{2} \cdot k^{0}=Q S \eta P \cdot h^{0}, \\
& (Q S)^{2} d^{0} \cdot k^{1}=\eta Q S P \cdot h^{0},(Q S)^{2} d^{1} \cdot k^{1}=w,
\end{aligned}
$$

and $(Q S)^{2} d^{2} \cdot k^{1}=\tau_{1}$. Again one finds that $\left(\sum_{j=0}^{2}(-1)^{j} \cdot \eta^{j}\right) \cdot\left((Q S)^{2} \partial \cdot k^{0}-\right.$ $\left.(Q S)^{2} \partial \cdot k^{1}\right)=(Q S)^{3} \partial \cdot q_{2}-(Q S)^{3} \partial \cdot \tau_{2} . \quad$ Finally,

$$
\begin{aligned}
& \left((Q S)^{2} \partial \cdot k^{0}-(Q S)^{2} \partial \cdot k_{1}\right) \cdot \sum_{i=0}^{1}(-1)^{i} \varepsilon^{i}-\left(\sum_{j=0}^{1}(-1)^{j} \eta^{j}\right) \cdot\left(Q S \partial \cdot h^{0}-Q S \partial \cdot h^{1}\right) \\
= & (Q S)^{2} \partial \cdot \rho_{1}-(Q S)^{2} \partial \cdot \rho_{2}-(Q S)^{2} \partial \cdot r_{1}+(Q S)^{2} \partial \cdot r_{2} .
\end{aligned}
$$

Hence the cohomology class of $\left(Q S \partial \cdot p_{2},(Q S)^{2} \partial \cdot r_{2}-(Q S)^{2} \partial \cdot r_{1},(Q S)^{3} \partial \cdot q_{2}\right)$ agrees with that of $\left(Q S \partial \cdot \partial_{2},(Q S)^{2} \partial \cdot \rho_{2}-(Q S)^{2} \partial \cdot \rho_{1},(Q S)^{3} \partial \cdot \tau_{2}\right)$, as was to be shown.

Theorem 2.2. A surjection $p: R \rightarrow M$ arises from an extension if and only if p is unobstructed.

Proof. Suppose p arises from an extension $0 \rightarrow A \rightarrow C \xrightarrow{\theta} R \rightarrow$ 0 and let K be the kernel pair of θ. Then we have a commutative diagram:

Moreover we can find $\sigma_{0}: F U R \rightarrow Q S C$ such that $Q S \theta \cdot \sigma_{0}=\eta R \cdot \varepsilon R$. If we let $\sigma_{1}:(F U)^{2} R \rightarrow Q S K$ be such that $Q S e^{i} \cdot \sigma_{1}=\sigma_{0} \cdot \varepsilon^{i}$ and $\tau_{1}: F U R \rightarrow$ $(Q S)^{2} K$ such that $(Q S)^{2} e^{i} \cdot \tau_{1}=\eta^{i} \cdot \sigma_{0}$ for $i=0,1$ then $Q S \nu_{0} \cdot \sigma_{0}$ serves as $p_{0}, Q S \nu_{1} \cdot \sigma_{1}$ as p_{1}, and $(Q S)^{2} \nu_{1} \cdot \tau_{1}$ as q_{1}. By 2.1 we can assume that things have been so arranged. But then using the fact that $(Q S)^{i} e^{0}$, $(Q S)^{j} e^{1}$ is a kernel pair for each $j \geqq 0$, one can show that

$$
\begin{gathered}
Q S\left(K-t^{0} \cdot e^{0}\right) \cdot \sigma_{1} \cdot \sum_{i=0}^{2}(-1)^{i} \varepsilon^{i}=0, \\
(Q S)^{2}\left(K-t^{0} \cdot e^{0}\right) \cdot\left[\left(\sum_{j=0}^{1}(-1)^{i} \eta^{j}\right) \cdot \sigma_{1}-\tau_{1} \cdot\left(\sum_{j=0}^{1}(-1)^{i} \varepsilon^{i}\right)\right]=0, \text { and } \\
(Q S)^{3}\left(K-t^{0} \cdot e^{0}\right) \cdot\left(\sum_{j=0}^{2}(-1)^{i} \eta^{j}\right) \cdot \tau_{1}=0 .
\end{gathered}
$$

From this it follows that $Q S \partial \cdot p_{2}=0,(Q S)^{2} \partial \cdot r_{2}-(Q S)^{2} \partial \cdot r_{1}=0$, and $(Q S)^{3} \partial \cdot q_{2}=0$. Thus $[p]=0$.

Conversely, suppose $[p]=0$. Then there exist $\tau:(F U)^{2} R \rightarrow Q S(Z A)$, $\rho: F U R \rightarrow(Q S)^{2} Z A$ with $\tau \cdot \varepsilon=Q S \partial \cdot p_{2}, \eta \cdot \rho=(Q S)^{3} \partial \cdot q_{2}$, and $\rho \cdot \varepsilon-\eta \cdot \tau=$ $(Q S)^{2} \partial \cdot r_{2}-(Q S)^{2} \partial \cdot r_{1}$. Here we abbreviate $\sum_{i=0}^{n}(-1)^{i} \varepsilon^{i}=\varepsilon$ and similarly for η. Now $\bar{p}_{1}=p_{1}-\tau, \bar{q}_{1}=q_{1}-\rho$ serve as new p_{1}, q_{1} and also give $\bar{p}_{2}, \bar{q}_{2}, \bar{r}_{1}, \bar{r}_{2}$. We have

$$
\begin{aligned}
Q S\left(P-s^{0} \cdot d^{0}\right) \cdot Q S d \cdot \bar{p}_{2}= & Q S\left(P-s^{0} \cdot d^{0}\right) \cdot \bar{p}_{1} \cdot \varepsilon \\
= & Q S\left(P-s^{0} \cdot d^{0}\right) \cdot p_{1} \cdot \varepsilon-Q S\left(P-s^{0} \cdot d^{0}\right) \cdot \tau \cdot \varepsilon \\
= & Q S\left(P-s^{0} \cdot d^{0}\right) \cdot p_{1} \cdot \varepsilon \\
& -\tau \cdot \varepsilon+Q S s^{0} \cdot Q S d^{0} \cdot \tau \cdot \varepsilon \\
= & Q S \delta \cdot p_{2}-\tau \cdot \varepsilon \\
= & 0
\end{aligned}
$$

because the kernel of $Q S d^{0}$ is $Q S(Z(A, P)$) which contains $Q S(Z A)$. Similar computations yield $(Q S)^{3}\left(P-s^{0} \cdot d^{0}\right) \cdot(Q S)^{3} d \cdot \bar{q}_{2}=0$ and

$$
(Q S)^{2}\left(P-s^{0} \cdot d^{0}\right) \cdot(Q S)^{2} d \cdot \bar{r}_{2}-(Q S)^{2}\left(P-s^{0} \cdot d^{0}\right) \cdot(Q S)^{2} d \cdot \bar{r}_{1}=0 .
$$

Hence we can assume that $(Q S)^{3} \partial \cdot q_{2}, Q S \partial \cdot p_{2},(Q S)^{2} \partial \cdot r_{2}-(Q S)^{2} \partial \cdot r_{1}$ are all zero (by Prorosition 2.1). We now go over to the equivalent category $\left(\text { Sets }{ }^{\mid x}\right)_{G}^{T}$ where $T=U F, G=S Q$. The reader is referred to [6] for a clarification of what this means, and to [5] for an introduction to the techniques to be used below. Let $R, M, E, \widetilde{P}, P, B, A, Z A$ be translated respectively into $\left\{R_{x}, \xi_{1}, \xi_{2}\right\},\left\{M_{x}, \beta_{1}, \beta_{2}\right\},\left\{E_{x}, \gamma_{1}, \mathcal{\gamma}_{2}\right\},\left\{\widetilde{P}_{x}, \overline{\mathcal{L}}_{1}, \bar{\nu}_{2}\right\}$, $\left\{A_{x} \times E_{x}, \nu_{1}, \nu_{2}\right\},\left\{B_{x},-,-\right\},\left\{A_{x}, \alpha_{1}, \alpha_{2}\right\},\left\{Z A_{x},-,-\right\}$. Since we want to use the symbols p_{i} for projections from a product, we let our old p_{i} be $u_{i}, 0 \leqq i \leqq 2$.

For notational convenience, we drop all subscripts x and say once and for all that an equation will stand for the same equation with
subscripts adjoined. For example, $\theta \cdot s=M$ means $\theta_{x} \cdot s_{x}=M_{x}$ for each x in X. Our assumption that $(Q S)^{3} \partial \cdot q_{2}$ e.t.c. are all zero translates into the following three equations in $\left(\operatorname{Sets}^{|X|}\right)_{G}^{T}$:
(i) $p_{1} \cdot u_{1} \cdot T \xi_{1}-p_{1} \cdot u_{1} \cdot \mu R+p_{1} \cdot \nu_{1} \cdot T u_{1}=0$
(ii) $G^{2} p_{1} \cdot G \nu_{2} \cdot q_{1}-G^{2} p_{1} \cdot \delta^{\prime}(A \times E) \cdot q_{1}+G^{2} p_{1} \cdot G q_{1} \cdot \xi_{2}=0$
(iii) $G p_{1} \cdot q_{1} \cdot \xi_{1}-G p_{1} \cdot G \nu_{1} \cdot \lambda P \cdot T q_{1}=G p_{1} \cdot G u_{1} \cdot \lambda R \cdot T \xi_{2}-G p_{1} \cdot \nu_{2} \cdot u_{1} \cdot$ Here $\lambda: T G \rightarrow G T$ is the distributive law (see [5]), and p_{1} (or p_{2}) is the first (or second) projection from the appropriate product. Since our presentation has now begun to differ significantly from that of Barr [1], we will provide more detail than earlier in the paper. Let $C=A \times R$, and define $\zeta_{1}: T C \rightarrow C, \zeta_{2}: C \rightarrow G C$ by the conditions $p_{1} \cdot \zeta_{1}=$ $p_{1} \cdot \boldsymbol{\nu}_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right)+p_{1} \cdot u_{1} \cdot T p_{2}, p_{2} \cdot \zeta_{1}=\xi_{1} \cdot T p_{2}, G p_{1} \cdot \zeta_{2}=\alpha_{2} \cdot p_{1}+G p_{1} \cdot q_{1} \cdot p_{2}$, $G p_{2} \cdot \zeta_{2}=\xi_{2} \cdot p_{2}$. We claim that $\left(C, \zeta_{1}, \zeta_{2}\right)$ is in $\left(\operatorname{Sets}^{|X|}\right)_{G}^{T}$. Besides the "cocycle identities" listed above, the only fact we need is that

$$
\nu_{1}: T(A \times E) \longrightarrow A \times E
$$

has the following property: For each $g: X \rightarrow A$ and $f: X \rightarrow A \times E$ we have
(iv) $p_{1} \cdot \nu_{1} \cdot T\left(\left[g+p_{1} \cdot f\right] \times d^{1} \cdot f\right)=p_{1} \cdot \nu_{1} \cdot T\left(g \times d^{0} \cdot f\right)+p_{1} \cdot \nu_{1} \cdot T f$. Since this amounts to a combinatorial identity, we relegate its proof to the Appendix. Using (i) and (iv) we can prove that ζ_{1} is associative:

$$
\begin{aligned}
p_{1} \cdot \varsigma_{1} \cdot & T \zeta_{1}=\left[p_{1} \cdot \nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right)+p_{1} \cdot u_{1} \cdot T p_{2}\right] \cdot T \zeta_{1} \\
= & p_{1} \cdot \nu_{1} \cdot T\left(\left[p_{1} \cdot \nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right)+p_{1} \cdot u_{1} \cdot T p_{2}\right] \times s \cdot p \cdot \xi_{1} \cdot T p_{2}\right) \\
& +p_{1} \cdot u_{1} \cdot T \xi_{1} \cdot T^{2} p_{2} \\
= & p_{1} \cdot \nu_{1} \cdot T\left(\left[p_{1} \cdot \nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right)\right] \times \gamma_{1} \cdot T s \cdot T p \cdot T p_{2}\right) \\
& +p_{1} \cdot \nu_{1} \cdot T u_{1} \cdot T^{2} p_{2}+p_{1} \cdot u_{1} \cdot T \xi_{1} \cdot T^{2} p_{2} \\
= & p_{1} \cdot \nu_{1} \cdot T\left(\nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right)\right)+p_{1} \cdot u_{1} \cdot \mu R \cdot T^{2} p_{2} \\
= & p_{1} \cdot \nu_{1} \cdot \mu(A \times E) \cdot T^{2}\left(p_{1} \times s \cdot p \cdot p_{2}\right)+p_{1} \cdot u_{1} \cdot \mu R \cdot T^{2} p_{2} \\
= & p_{1} \cdot \zeta_{1} \cdot \mu(A \times R)
\end{aligned}
$$

the fact that $p_{2} \cdot \zeta_{1} \cdot T \zeta_{1}=p_{2} \cdot \zeta_{1} \cdot \mu(A \times R)$ is an easy computation. Notice that in the above computation we have taken

$$
g=p_{1} \cdot \nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right)
$$

and $f=u_{1} \cdot T p_{2}$ in (iv). Before proving that ζ_{1} is unitary, we show that u_{1} is "normalized":

$$
\begin{aligned}
0 & =\left(p_{1} \cdot u_{1} \cdot T \xi_{1}-p_{1} \cdot u_{1} \cdot \mu R+p_{1} \cdot \nu_{1} \cdot T u_{1}\right) \cdot \eta T R \\
& =p_{1} \cdot u_{1} \cdot \eta R \cdot \xi_{1}-p_{1} \cdot u_{1}+p_{1} \cdot \nu_{1} \cdot \eta R \cdot u_{1} \\
& =p_{1} \cdot u_{1} \cdot \eta R \cdot \xi_{1} .
\end{aligned}
$$

But composing this equation with ηR gives $p_{1} \cdot u_{1} \cdot \eta R=0$, and from
this it follows that ζ_{1} is unitary:

$$
\begin{aligned}
\zeta_{1} \cdot \eta & (A \times R)=\left[p_{1} \cdot \nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right) \cdot \eta(A \times R)\right. \\
& \left.+p_{1} \cdot u_{1} \cdot T p_{2} \cdot \eta(A \times R)\right] \times \xi_{1} \cdot T p_{2} \cdot \eta(A \times R) \\
= & {\left[p_{1} \cdot\left(\left[p_{1} \times s \cdot p \cdot p_{2}\right]\right)+p_{1} \cdot u_{1} \cdot \eta R \cdot T^{2} p_{2}\right] \times \xi_{1} \cdot \eta R \cdot T^{2} p_{2} } \\
= & p_{1} \times p_{2} .
\end{aligned}
$$

The computations which show that ζ_{2} is counitary and coassociative use only (ii) above, and will be omitted. The "compatibility" of ζ_{1} and ζ_{2} uses (iii) and (iv) above, and proceeds as follows:

$$
\begin{aligned}
& G p_{1} \cdot G \zeta_{1} \cdot \lambda(A \times R) \cdot T \zeta_{2} \\
&= G\left(p_{1} \cdot \nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right)+p_{1} \cdot u_{1} \cdot T p_{2}\right) \cdot \lambda(A \times R) \cdot T \zeta_{2} \\
&= G p_{1} \cdot G \nu_{1} \cdot G T\left(p_{1} \times s \cdot p \cdot p_{2} \cdot \lambda(A \times R) \cdot T \zeta_{2}\right. \\
&+G p_{1} \cdot G u_{1} \cdot G T p_{2} \cdot \lambda(A \times R) \cdot T \zeta_{2} \\
&= G p_{1} \cdot G \nu_{1} \cdot \lambda(A \times E) \cdot T G\left(p_{1} \times s \cdot p \cdot p_{2}\right) \cdot T \zeta_{2} \\
&+G p_{1} \cdot G u_{1} \cdot \lambda R \cdot T G p_{2} \cdot T \zeta_{2} \\
&= G p_{1} \cdot G \nu_{1} \cdot \lambda(A \times E) \cdot T\left(\left[\alpha_{2} \cdot p_{1}+G p_{1} \cdot q_{1} \cdot p_{2}\right] \times G s \cdot G p \cdot \xi_{2} \cdot p_{2}\right) \\
&+G p_{1} \cdot G u_{1} \cdot \lambda R \cdot T\left(\xi_{2} \cdot p_{2}\right) \\
&= G p_{1} \cdot G \nu_{1} \cdot \lambda(A \times E) \cdot T\left(\alpha_{2} \cdot p_{1} \times \gamma_{2} \cdot s \cdot p \cdot p_{2}\right) \\
&+G p_{1} \cdot G \nu_{1} \cdot \lambda(A \times E) \cdot T q_{1} \cdot T p_{2}+G p_{1} \cdot G u_{1} \cdot \lambda R \cdot T \xi_{2} \cdot T p_{2} \\
&= G p_{1} \cdot G \nu_{1} \cdot \lambda(A \times E) \cdot T \nu_{2} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right) \\
&+G p_{1} \cdot q_{1} \cdot \xi_{1} \cdot T p_{2}+G p_{1} \cdot \nu_{2} \cdot u_{1} \cdot T p_{2} \\
&= G p_{1} \cdot \nu_{2} \cdot \nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right)+\alpha_{2} \cdot p_{1} \cdot u_{1} \cdot T p_{2}+G p_{1} \cdot q_{1} \cdot \xi_{1} \cdot T p_{2} \\
&= \alpha_{2} \cdot p_{1} \cdot \zeta_{1}+G p_{1} \cdot q_{1} \cdot p_{2} \cdot \zeta_{2} \\
&= G p_{1} \cdot \zeta_{2} \cdot \zeta_{1} ;
\end{aligned}
$$

here, again, that $G p_{2} \cdot G \zeta_{1} \cdot \lambda(A \times R) \cdot T \zeta_{2}=G p_{2} \cdot \zeta_{2} \cdot \zeta_{1}$ is obvious. Notice that we have not used (iv) as it stands, but rather the analog of (iv) for $G P=G(A \times E)$. We have taken $g=\alpha_{2} \cdot p_{1}$ and $f=q_{1} \cdot p_{2}$. At any rate, $\left(C, \zeta_{1}, \zeta_{2}\right)$ is in $\left(\text { Sets }^{|X|}\right)_{G}^{T}$ and the first injection, second projection give us an exact sequence $0 \rightarrow A \xrightarrow{i} A \times R=C \xrightarrow{p_{2}} R \rightarrow 0$ in $\left(\text { Sets }{ }^{\mid T X}\right)_{G}^{T}$. Define $h: C \rightarrow E$ by $h=\omega \cdot p_{1}+s \cdot p \cdot p_{2}$. Clearly $\pi \cdot h=p \cdot p_{2}$ and $h \cdot i=$ ω, so that if h is a morphism in $\left(\operatorname{Sets}^{1 x}\right)_{G}^{T}$ then we will have produced an extension from which p arises, and the proof will be complete. But we have:

$$
\begin{aligned}
h \cdot \zeta_{1}= & \omega \cdot\left(p_{1} \cdot \nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right)+p_{1} \cdot u_{1} \cdot T p_{2}\right)+s \cdot p \cdot \xi_{1} \cdot T p_{2} \\
= & \omega \cdot p_{1} \cdot \nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right) \\
& +\gamma_{1} \cdot T s \cdot T p \cdot T p_{2}-s \cdot p \cdot \xi_{1} \cdot T p_{2}+s \cdot p \cdot \xi_{1} \cdot T p_{2} \\
= & \omega \cdot p_{1} \cdot \nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right)+p_{2} \cdot \nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right) \\
= & d^{0} \cdot \nu_{1} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\gamma_{1} \cdot T d^{0} \cdot T\left(p_{1} \times s \cdot p \cdot p_{2}\right) \\
& =\gamma_{1} \cdot T\left(\omega \cdot p_{1}+s \cdot p \cdot p_{2}\right) \\
& =\gamma_{1} \cdot T h,
\end{aligned}
$$

and

$$
\begin{aligned}
G h \cdot \zeta_{2} & =G \omega \cdot\left(\alpha_{2} \cdot p_{1}+G p_{1} \cdot q_{1} \cdot p_{2}\right)+G s \cdot G p \cdot \xi_{2} \cdot p_{2} \\
& =\gamma_{2} \cdot \omega \cdot p_{1}+\gamma_{2} \cdot s \cdot p \cdot p_{2}-G s \cdot G p \cdot \xi_{2} \cdot p_{2}+G s \cdot G p \cdot \xi_{2} \cdot p_{2} \\
& =\gamma_{2} \cdot h .
\end{aligned}
$$

III. The Action of H^{1}.

Theorem 3.1. Let $p: R \rightarrow M$ be unobstructed, and let Σ denote the equivalence classes of extensions of R by A which induce p. Then the group $H^{1}(R, Z A)$ acts on Σ as a principal homogeneous representation.

Proof. It is shown in [5] that $H^{1}(R, Z A)$ is in one-one correspondence with the set of equivalence classes of singular extensions of R by $Z A$. Once this is known, Barr's proof of this proposition [1] translates almost verbatum into a proof for sheaves.

Appendix. In this appendix we give a proof of equation (iv) above (§II), and compare Barr's constructions [1] to our own. To dispose of equation (iv), recall that given a commutative algebra A, its structure map $\alpha: T A \rightarrow A$ takes a polynomial in elements of A to the "value" of the polynomial. That is, α remembers that A is an algebra and uses the algebra operations in A to compute the polynomial. Now multiplication in $P=A \times E$ is defined by $\left(a_{1}, x_{1}\right)\left(a_{2}, x_{2}\right)=$ $\left(a_{1} a_{2}+x_{1} a_{2}+a_{1} x_{2}, x_{1} x_{2}\right)$ where $x_{1} a_{2}$ and $a_{1} x_{2}$ denote the value of x on a.

Proposition A.1. Given $a_{i} \in A, x_{i} \in E$ for $1 \leqq i \leqq n$ we have $\prod_{i=1}^{n}\left(a_{i}, x_{2}\right)=\left(\Sigma f(1)_{1} \cdots f(n)_{n}, x_{1} \cdots x_{n}\right)$ where the sum is taken over all functions $f: n=\{1,2, \cdots, n\} \rightarrow\{a, x\}$ such that f is not identically equal to x.

Proof. By induction on n. We have

$$
\begin{aligned}
& \prod_{i=1}^{n}\left(a_{i}, x_{2}\right) \\
&=\left(\Sigma f(1)_{1} \cdots f(n-1)_{n-1}, x_{1} \cdots x_{n-1}\right)\left(a_{n}, x_{n}\right) \\
&=\left(\Sigma f(1)_{1} \cdots f(n-1)_{n-1} a_{n}+\Sigma f(1)_{1} \cdots f(n-1)_{n-1} x_{n}\right. \\
&\left.+x_{1} \cdots x_{n-1} a_{n}, x_{1} \cdots x_{n}\right) \\
&=\left(\Sigma f(1)_{1} \cdots f(n)_{n}, x_{1} \cdots x_{n}\right)
\end{aligned}
$$

where the indexing sets for the sums are clear.
Proposition A.2. Given $a_{i}, b_{i} \in A, x_{i} \in E$ for $1 \leqq i \leqq n$ we have that $\prod_{i=1}^{n}\left(a_{i}+b_{i}, x_{i}\right)$ and $\prod_{i=1}^{n}\left(b_{i}, \omega a_{i}+x_{i}\right)+\prod_{i=1}^{n}\left(a_{i}, x_{i}\right)$ have the same first coordinates.

Proof. Induction on n and Proposition A.1.

$$
\begin{aligned}
& \prod_{i=1}^{n}\left(a_{i}+b_{i}, x_{i}\right) \\
& =\left(\Sigma g(1)_{1} \cdots g(n-1)_{n-1}+\Sigma h(1)_{1} \cdots h(n-1)_{n-1}\right. \\
& \left.\quad x_{1} \cdots x_{n-1}\right)\left(a_{n}+b_{n}, x_{n}\right)
\end{aligned}
$$

where the g 's run through the set of functions from $n-1 \rightarrow\{b$, $\omega a+x\}$ which are not identically $\omega a+x$ and the h 's through all $n-1 \rightarrow\{a, x\}$ which are not identically x. Hence we get as first coordinate

$$
\begin{aligned}
\Sigma g(1)_{1} & \cdots g(n-1)_{n-1} a_{n}+\Sigma g(1)_{1} \cdots g(n-1)_{n-1} b_{n} \\
& +\Sigma h(1)_{1} \cdots h(n-1)_{n-1} a_{n}+\Sigma h(1)_{1} \cdots h(n-1)_{n-1} b_{n} \\
& +\Sigma g(1)_{1} \cdots g(n-1)_{n-1} x_{n}+\Sigma h(1)_{1} \cdots h(n-1)_{n-1} x_{n} \\
& +x_{1} \cdots x_{n-1} a_{n}+x_{1} \cdots x_{n-1} b_{n} .
\end{aligned}
$$

The third, sixth, and seventh terms of this sum give us

$$
\Sigma h(1)_{1} \cdots h(n)_{n}
$$

Since $\Sigma h(1)_{1} \cdots h(n-1)_{n-1} b_{n}=\prod_{i=1}^{n-1}\left(\omega a_{i}+x_{i}\right) b_{n}-x_{1} \cdots x_{n-1} b_{n}$ the remaining terms give us $\Sigma g(1)_{1} \cdots g(n)_{n}$. This completes the proof.

Taking into account the remarks preceding Proposition A.1, equation (iv) follows immediately from A.2.

In [1] Barr constructs the extension which realizes an unobstructed p as a certain coequalizer. In the notation of our §II, his diagram on page 365 would look like:

He uses the coequalizer $\left(p_{1}+p_{1} \cdot u_{1} \cdot p_{2}\right) \times \xi_{1} \cdot p_{2}$ to define the algebra which gives the extension, and then must make some rather tedious computations to verify that all requirements are met. One knows that if an extension exists, then its underlying set will have to be $A \times R$: the only question is how the algebra structure on $A \times R$ is "twisted". By passing to the equivalent category of T-algebras it becomes clear exactly how the cocycle should be used to produce this twisted structure. All of this was first noticed by Beck in the case of singular extensions [2]. At any rate, the "globalization" of Barr's results seems to require that we pass to $\left(\text { Sets }^{|X|}\right)_{G}^{T}$.

References

1. M. Barr, Cohomology and Obstructions: Commutative Algebras, in B. Eckmann, editor, Seminar on Triples and Categorical Homology Theory, Springer-Verlag, 1969. 2. J. Beck, Triples, Algebras, and Cohomology, (1967), Dissertation submitted to Columbia University.
2. J. Duskin, Nonabelian triple cohomology: extensions and obstructions and A re-presentability-classification theorem for triple cohomology, Notices of the Amer. Math. Soc., 19 (1972), A-383 and A-501.
3. J. W. Gray, Extensions of sheaves of associative algebras by nontrivial kernels, Pacific J. Math., 11 (1961), 909-917.
4. D. H. Van Osdol, Bicohomology theory, Trans. Amer. Math. Soc., 183 (1973), 449476.
5. -, Sheaves in Regular Categories, in M. Barr, et. al., Exact Categories and Categories of Sheaves, Springer-Verlag, 1971.

Received January 16, 1973. Research supported by NSF Grant GP-29067. The author would like to thank the University of Oslo for providing the pleasant atmosphere under which part of this work was carried out.

University of New Hampshire

