ON GRAPHICAL REGULAR REPRESENTATIONS OF CYCLIC EXTENSIONS OF GROUPS

Wilfried Imrich and Mark E. Watkins

Abstract

A simple graph X is said to be a graphical regular representation (GRR) of an abstract group G if the automorphism group of X is a regular permutation group and is isomorphic to G. If a group G_{1} is a cyclic extension of a group G which admits a GRR, the question is posed whether G_{1} also admits a GRR. Nowitz and Watkins have given an affirmative answer if G_{1} is non-abelian and finite and the index $\left[G_{1}: G\right] \geqq 5$. This paper applies some new graph theoretical techniques to investigate the problem if $\left[G_{1}: G\right]=2,3$ or 4 , whether or not G_{1} is finite. As long as G_{1} is non-abelian, an affirmative answer can again be given except in only finitely many unresolved cases.

1. Introduction. A simple graph X with vertex set $V(X)$ and automorphism group $A(X)$ is a graphical regular representation $(G R R)$ of the group G if (i) $G \cong A(X)$ and (ii) $A(X)$ acts on $V(X)$ as a regular permutation group; that is, given $u, v \in V(X)$, there exists a unique $\varphi \in A(X)$ such that $\varphi(u)=v$. The graph X is a $G R R$ if it is a GRR of some group.

A number of authors have investigated the question as to which finite groups G admit a GRR. A complete and easily stated solution is known in case G is abelian (see [10], [1], and [4]). If G is non-abelian, the problem is more difficult and the results that have emerged to date seem to fall far less readily into a neat pattern, (see [6], [11], [7], [8], [12], and [13]). Nonetheless certain general principles appear to take form. For example, we are tempted to conjecture that if G admits a GRR and $G \triangleleft G_{1}$ where G is non-abelian, then G_{1} admits a GRR. In particular, it has been shown [7, Theorem 1] that:

If G admits a $G R R$ and if the non-abelian group G_{1} is a cyclic extension of G such that the index $\left[G_{1}: G\right] \geqq 5$, then G_{1} admits a GRR.

The techniques of [7] are inadequate, however, if $\left[G_{1}: G\right]=2,3$ or 4 , which is the task of the present paper. Elements of orders 2 and 3 have generally posed extra difficulties in the work on this problem. Thus [8, Theorem 2]:

Every non-abelian finite group whose order is coprime to 6 admits a GRR.

Only affirmative answers are obtained for the existence of a GRR if $\left[G_{1}: G\right]=2,3$ or 4 . While the results are not complete, as in [7] and [8], the number of unresolved cases is finite, the results being "complete" if $|G|$ is sufficiently large. This fits in with another emerging principle that the only "large" groups not admitting a GRR are either abelian or generalized dicyclic (see [6] and [11]).

In § 2 notation will be introduced. The main result of the section (Theorem 1) is a graph theoretical result that bypasses the obstacles due to elements of orders 2 and 3 encountered in [7].

In §3 existence of a GRR is demonstrated when G (a group with a GRR) is extended to a non-abelian group by the cyclic groups C_{2} and C_{4}, provided G satisfies any of a variety of conditions. One such sufficient condition is simply that $|G|>32$.

In $\S 4$ the group G is extended by C_{3}. The existence of a GRR follows when $|G|>36$ as well as when $|G|$ assumes certain smaller values and satisfies certain conditions.
2. Preliminaries. The letter X will always denote a finite simple graph (except as noted in Corollary 1A below, where X is infinite) with vertex set $V(X)$, edge set $E(X)$, and automorphism group $A(X)$. The complementary graph of X relative to the complete graph on $|V(X)|$ vertices will be denoted by X^{\prime}. Thus $A(X)$ and $A\left(X^{\prime}\right)$ are identical, even as permutation groups. If $u \in V(X)$, the stabilizer of u is the subgroup

$$
A_{u}(X)=\{\varphi \in A(X) \mid \varphi(u)=u\}
$$

The valence (degree) of the vertex u is denoted $\rho(u)$. The graph X is said to be ρ-valent if $\rho(u) \equiv \rho$ for all $u \in V(X)$, and X is isovalent if X is ρ-valent for some cardinal ρ. (We depart here from the more conventional term "regular", which serves in another capacity in this paper.)

The letter G (with or without a subscript) will always denote a finite group. Its automorphism group will be denoted by Aut (G), its center by $Z(G)$, and its identity element by e. The cyclic group of order n will be denoted by C_{n} and the dihedral group of order $2 n$ by D_{n}. If K is a subset of G, then $\langle K\rangle$ represents the subgroup of G generated by K. If $g \in G$, the order of g is $o(g)=|\langle g\rangle|$. The exponent of G, abbreviated by $\exp (G)$, is the least common multiple of the orders of the elements of G.

The letter H (with or without a subscript) will always denote a subset of the group G (bearing the same subscript, if any) with the following three properties: (i) $e \notin H$, (ii) $h \in H \Rightarrow h^{-1} \in H$, (iii) $\langle H\rangle=G$.

The Cayley graph $X_{G, H}$ of G with respect to H is the graph with $V\left(X_{G, H}\right)=G$, and $[x, y] \in E\left(X_{G, H}\right)$ if and only if $y=x h$ for some $h \in$
H. A Cayley graph $X=X_{G, H}$ is always connected, and since $A(X)$ contains all left-multiplications by elements of G, it is transitive on $V(X)$. If X is a GRR of G and $|G|>2$, then X must be a Cayley graph $X_{G, H}$ for some H, (see [9, Theorem 2]). Moreover, if X is a GRR of G, then so is X^{\prime}, and X is ρ-valent with $3 \leqq \rho \leqq|V(X)|-4$, (see [13, Lemma 1]).

The group G is in Class I if G admits a GRR. It is in Class II if for each H there exists $\varphi \in \operatorname{Aut}(G)$ such that $\varphi[H]=H$ but φ is not the identity. These two classes are disjoint [11, Theorem 1], and it has been conjectured that every finite group is in one of these two classes.

To prove that a given Cayley graph $X=X_{G, H}$ is a GRR of G, it suffices to show (see [7, Corollary 2.4]) that for some set $K \subset H$ such that $\langle K\rangle=G$,

$$
\varphi \in A_{e}(X), h \in K \Longrightarrow \varphi(h)=h .
$$

The only abelian groups in Class I are the elementary abelian 2 -groups $\left(C_{2}\right)^{n}$ for $n \neq 2,3,4$. (See [4] and [10].)

For integers $n \geqq 2, k \geqq 1$, a graph X will belong to the class $\mathscr{P}_{n, k}$ if it is isovalent and if there exists a partition [$V_{1}, V_{2}, \cdots, V_{p}$] of $V(X)$ with $2 \leqq p \leqq n$ such that every $x \in V_{i}$ is adjacent to $\leqq k$ elements of $V_{j},(i \neq j)$. Such a partition $\left[V_{1}, \cdots, V_{p}\right]$ is called a $\mathscr{P}_{n, k^{-}}$ partition. We also allow $\left[V_{1}, \cdots, V_{p}\right.$] to denote a $\mathscr{P}_{n, k}$-partition when as many as $p-2$ cells are empty.

It is an immediate consequence of these definitions that if [V_{1}, $\left.\cdots, V_{p}\right]$ is a $\mathscr{P}_{n, k}$-partition of X and if a vertex u of X is adjacent to $>k$ elements of V_{i}, then $u \in V_{i}$. Also, if $n \leqq n^{\prime}$ and $k \leqq k^{\prime}$, then $\mathscr{P}_{n, k} \subset \mathscr{P}_{n^{\prime}, k^{\prime}}$.

Theorem 1. Let $X \in \mathscr{P}_{n, k}$ and suppose $|V(X)|>n(m h+2 k)$, where m, h are integers such that $m \geqq 2, h \geqq 1$. Then $X^{\prime} \notin \mathscr{P}_{m, h}$.

Proof. Suppose X satisfies the hypothesis of the theorem but not the conclusion. Let $\left[V_{1}, \cdots, V_{p}\right]$ be a $\mathscr{P}_{n, k}$-partition of $V(X)$ where the cells have been indexed so that

$$
\left|V_{i}\right| \geqq\left|V_{i+1}\right| \quad(i=1, \cdots, p-1)
$$

Then $n\left|V_{1}\right| \geqq p\left|V_{1}\right| \geqq|V(X)|>n(m h+2 k)$, and so

$$
\begin{equation*}
\left|V_{1}\right|>m h+2 k . \tag{2.1}
\end{equation*}
$$

Arbitrarily choose and fix $a \in V(X) \backslash V_{1}$, and let

$$
N_{1}=\left\{x \mid x \in V_{1},[a, x] \in E(X)\right\}
$$

Then $\left|N_{1}\right| \leqq k$, since $X \in \mathscr{P}_{n, k}$.
By assumption there exists a $\mathscr{P}_{m, h}$-partition [W_{1}, \cdots, W_{q}] of X^{\prime}. Define $U_{i}=W_{i} \cap\left(V_{1} \backslash N_{1}\right)$. Without loss of generality we may assume that $\left|U_{1}\right| \geqq\left|U_{i}\right|(i=2, \cdots, q)$.

By (2.1), $m h+k<\left|V_{1}\right|=\left|N_{1}\right|+\sum_{i=1}^{q}\left|U_{i}\right| \leqq k+m\left|U_{1}\right|$, and so $h<\left|U_{1}\right|$. Since the vertex a is adjacent in X^{\prime} to all vertices of U_{1}, we have $a \in W_{1}$. Moreover, a is adjacent to $\leqq h$ vertices in each cell $W_{i}(i=2, \cdots, q)$. Hence $\left|U_{i}\right| \leqq h$, and so $\left|N_{1}\right|+\sum_{i=1}^{q}\left|U_{i}\right| \leqq$ $k+\left|U_{1}\right|+(m-1) h$. By (2.1), $\left|U_{1}\right|>h+k$. Since each vertex in $V(X) \backslash V_{1}$, is adjacent to $\leqq k$ and nonadjacent to $>h$ vertices in U_{1},

$$
\begin{equation*}
V(X) \backslash V_{1} \subset W_{1} \tag{2.2}
\end{equation*}
$$

Arbitrarily choose and fix $c \in V_{1} \backslash U_{1}$. It will be shown that $c \in W_{1}$, which together with (2.2) implies that $W_{1}=V(X)$, contrary to the assumption that $\left[W_{1}, \cdots, W_{q}\right]$ is nontrivial, and the theorem will follow.

Suppose $c \notin W_{1}$. By (2.2), $c \in V_{1}$ and so c is adjacent in X to $\leqq(p-1) k$ vertices of $V(X) \backslash V_{1}$. Hence c is adjacent in X^{\prime} to $\geqq\left|V(X) \backslash V_{1}\right|-(p-1) k$ vertices of $V(X) \backslash V_{1}$. But c is adjacent in X^{\prime} to $\leqq h$ vertices of W_{1}. Hence $h \geqq\left|V(X) \backslash V_{1}\right|-(p-1) k$. This implies $h \geqq(p-1)\left(\left|V_{p}\right|-k\right)$, whence $h+k \geqq\left|V_{p}\right|$, since $p-1 \geqq 1$.

Suppose X is ρ-valent. Then by consideration of a vertex in V_{p} it is easily seen that

$$
\begin{equation*}
\rho \leqq(p-1) k+\left|V_{p}\right|-1 \leqq p k+h-1 \tag{2.3}
\end{equation*}
$$

Also, in the light of (2.2),

$$
\begin{equation*}
\left|V(X) \backslash W_{1}\right| \leqq\left|N_{1}\right|+\sum_{i=2}^{q}\left|U_{i}\right| \leqq k+(m-1) h \tag{2.4}
\end{equation*}
$$

Now c is adjacent in X to $\leqq \rho$ vertices in W_{1}. Hence by (2.1), (2.3), and (2.4), the number of vertices of W_{1} to which c is adjacent in X^{\prime} is at least

$$
\begin{aligned}
\left|W_{1}\right|-\rho & =|V(X)|-\left|V(X) \backslash W_{1}\right|-\rho \\
& \geqq n(m h+2 k)-[k+(m-1) h]-(p k+h-1) \\
& =(n-1) m h+(2 n-p-1) k+1>h
\end{aligned}
$$

which implies that $c \in W_{1}$.
Corollary 1A. Let $X \in \mathscr{P}_{n, k}$ be a infinite graph. Then X^{\prime} belongs to no class $\mathscr{P}_{m, h}$.

Proof. Let X be infinite and let $\left[V_{1}, \cdots, V_{p}\right]$ be a $\mathscr{P}_{n, k}$-partition of X. Suppose $X^{\prime} \in \mathscr{P}_{m, h}$ and let $\left[W_{1}, \cdots, W_{q}\right.$] be a $\mathscr{P}_{m, h}$-partition of X^{\prime}. Without loss of generality, we can assume that $V_{1} \cap W_{1}$ is
infinite. Since each vertex in $V(X) \backslash V_{1}$ is adjacent in X to $\leqq k$ vertices of $V_{1} \cap W_{1}$, it is adjacent in X^{\prime} to infinitely many vertices of $V_{1} \cap W_{1}$ and is therefore in W_{1}. Thus $V(X) \backslash V_{1} \subset W_{1}$.

If V_{i} were infinite for some $i \neq 1$, then each vertex of V_{1}-and hence each vertex of $V(X) \backslash W_{1}$-would be adjacent in X^{\prime} to infinitely many vertices of V_{i}. That is to say, each vertex in each $W_{j}(j \neq 1)$ would be adjacent in X^{\prime} to infinitely many vertices of W_{1}, contrary to assumption. Hence V_{2}, \cdots, V_{p} are each finite sets. Consideration of a vertex, say in V_{p}, yields that X is ρ-valent for some finite cardinal ρ. But then the valence ρ^{\prime} of X^{\prime} is infinite. A vertex in, say, W_{q} is therefore adjacent in X^{\prime} to infinitely many vertices of W_{q} which is absurd, for W_{q} is finite since each vertex of W_{1} is adjacent to $\leqq \rho$ vertices of W_{q} and nonadjacent to $\leqq h$ vertices of W_{q}.

For integers $n \geqq 2, k \geqq 1$, define $\nu(n, k)$ to be the smallest integer for which it holds that whenever $X \in \mathscr{P}_{n, k}, X$ is a GRR, and $|V(X)|>$ $\nu(n, k)$, then $X^{\prime} \notin \mathscr{P}_{n, k}$. The following is immediate.

Corollary 1B. If $n \geqq 2$ and $k \geqq 1$, then

$$
\nu(n, k) \leqq k n(n+2) .
$$

The inequality in Corollary 1 B is not necessarily as strong as possible. While the authors have no uniform procedure for determining $\nu(n, k)$ in general, improvements over the corollary exist in special cases. For example, Corollary 1 B gives only $\nu(3,1) \leqq$ 15 and $\nu(2,2) \leqq 16$. The following stronger results will be used in §§3 and 4.

Lemma 1. $\quad \nu(3,1) \leqq 11$.
Proof. Let $\left[V_{1}, V_{2}, V_{3}\right.$] be a $\mathscr{P}_{3,1}$-partition of a GRR X where $|V(X)| \geqq 12$, and suppose $\left|V_{1}\right| \geqq\left|V_{2}\right| \geqq\left|V_{3}\right|$. Clearly $\left|V_{1}\right| \geqq 4$. Note that $\rho \geqq 3$, since X is a GRR. Supposing the corollary false, let [W_{1}, W_{2}, W_{3}] be a $\mathscr{P}_{3,1}$-partition of X^{\prime}.

Suppose $\left|V_{1}\right|=4$ or 5 . Clearly then $\left|V_{2}\right| \geqq 4$ and $\left|V_{3}\right| \geqq 2$. Also V_{1} must intersect some cell of [W_{1}, W_{2}, W_{3}] in at least two vertices; say $a_{1}, a_{2} \in V_{1} \cap W_{1}$. With $k=1$, at least two vertices $b_{1}, b_{2} \in V_{2}$ are adjacent in X to neither a_{1} nor a_{2} and so they are adjacent in X^{\prime} to both a_{1} and a_{2}. Hence $b_{1}, b_{2} \in W_{1}$. If $c \in V_{3}$, then c is adjacent in X to at most one of a_{1}, a_{2} and at most one of b_{1}, b_{2}. So c is adjacent in X^{\prime} to at least two of these four vertices. Hence $c \in W_{1}$. We now have that

$$
\left|V_{i} \cap W_{1}\right| \geqq 2 \quad(i=1,2,3)
$$

Moreover, any vertex $d \in V_{i}$ is adjacent in X^{\prime} to at least one vertex in $V_{j} \cap W_{1}$ for both values of $j \neq i$, whence $d \in W_{1}$. We infer the contradiction that $W_{1}=V(X)$.

Now suppose $\left|V_{1}\right| \geqq 6$. We assert that the inequality

$$
\begin{equation*}
\left|V_{1} \cap W_{j}\right| \geqq 2 \tag{2.5}
\end{equation*}
$$

can hold for at most two values of $j=1,2,3$. For if (2.5) held for $j=1,2,3$, then any vertex $b \in V_{2}$, being adjacent in X to at most one vertex of V_{1}, is adjacent in X^{\prime} to at least two vertices in each of two of the sets $V_{1} \cap W_{j}$, implying that b is in two different cells of [W_{1}, W_{2}, W_{3}]. Since $\left|V_{1}\right| \geqq 6$, we may say for definiteness that $\mid V_{1} \cap$ $W_{1} \mid \geqq 3$.

If $c \in V_{2} \cup V_{3}$, then c is adjacent in X^{\prime} to at least two vertices in $V_{1} \cap W_{1}$, and so $c \in W_{1}$. Thus $V_{2} \cup V_{3} \subset W_{1}$.

Pick $a \in W_{2} \cup W_{3}$. Then a is adjacent in X to all but at most one vertex in W_{1}. But since $a \in V_{1}, a$ is adjacent to at most one vertex in each of V_{2} and V_{3}. Hence $\left|V_{2}\right| \leqq 2$ and $\left|V_{3}\right| \leqq 1$. But $\left|V_{3}\right| \neq$ 1, or else the lone vertex in V_{3} would be adjacent in X to two vertices in V_{1} or in V_{2} since $\rho \geqq 3$. Hence $V_{3}=\varnothing$. But then a vertex in V_{2} would be adjacent (in X) to at least two vertices in V_{1}, giving a contradiction. It follows that $W_{2} \cup W_{3}=\varnothing$, and no $\mathscr{P}_{3,1}$-partition of X^{\prime} exists.

Lemma 2. $\quad \nu(2,2) \leqq 15$.
Proof. Since $\nu(2,2) \leqq 16$ by Corollary 1B, it may be assumed that $X=X_{G, H}$ is a GRR where $|G|=16$. Let [V_{1}, V_{2}] be a $\mathscr{P}_{2,2-}$ partition of X, and suppose $\left[W_{1}, W_{2}\right.$] is a $\mathscr{P}_{2,2}$-partition of X^{\prime}. We show first that

$$
\begin{equation*}
\left|V_{i} \cap W_{j}\right|=4, \quad i, j=1,2 \tag{2.6}
\end{equation*}
$$

Supposing (2.6) false, we may assume without loss of generality that $\left|V_{1} \cap W_{1}\right| \geqq 5$. Then each vertex in $V(X) \backslash V_{1}$ is adjacent in X^{\prime} to at least three vertices of $V_{1} \cap W_{1}$ and is therefore in W_{1}. Thus $V_{2} \subset W_{1}$.

If $\left|V_{2}\right| \geqq 5$ we conclude by similar argument that V_{1} is also contained in W_{1}, which is not possible. If $\left|V_{2}\right| \leqq 4$, then X is ρ-valent for $\rho \leqq 5$, and $\left|V_{1}\right| \geqq 12$. Now $\left|V_{1} \cap W_{2}\right| \leqq 4$ or else $V_{2} \subset W_{2}$, which is absurd. But then $\left|V_{1} \cap W_{1}\right| \geqq 8$ and, as every vertex in W_{2} can be adjacent in X to at most 5 vertices of $V_{1} \cap W_{1}$, it is adjacent in X^{\prime} to at least three vertices in $V_{1} \cap W_{1}$ and hence is in W_{1}. This proves (2.6).

Each vertex $a \in V_{1} \cap W_{1}$ must be adjacent in X to exactly two
vertices in $V_{2} \cap W_{2}$; a cannot have more than two neighbors in $V_{2} \cap W_{2}$ since $X \in \mathscr{P}_{2,2}$, while if there were fewer than two, a would be adjacent in X^{\prime} to at least three vertices of $V_{2} \cap W_{2}$, in contradiction to the assumption that $a \in W_{1}$. Furthermore, a must be adjacent in X to all vertices in $V_{1} \cap W_{2}$. Otherwise a would be adjacent in X^{\prime} to at least one vertex in $V_{1} \cap W_{2}$ and to two vertices in $V_{2} \cap W_{2}$, making a adjacent in X^{\prime} to at least three vertices in W_{2}, which is not possible. In summary, with $i \neq i^{\prime}$ and $j \neq j^{\prime}$, each vertex in $V_{i} \cap W_{j}$ is adjacent to all vertices in $V_{i} \cap W_{j^{\prime}}$, to exactly two vertices in $V_{i^{\prime}} \cap W_{j^{\prime}}$, and to no vertices of $V_{i^{\prime}} \cap W_{j},\left(i, i^{\prime}, j, j^{\prime}=1,2\right)$.

Thus $\rho \geqq 6$. It may be assumed that $\rho \leqq 7$; otherwise X and X^{\prime} can be interchanged.

The eight edges joining $V_{1} \cap W_{1}$ with $V_{2} \cap W_{2}$ span a 2 -valent subgraph on eight vertices which must be either the union of two disjoint 4 -gons or a single 8 -gon. In the first case let $\left[v_{1}, \cdots, v_{4}\right]$ and [v_{5}, \cdots, v_{8}] denote the two 4 -gons. In the second case let $\left[v_{1}, \cdots, v_{8}\right.$] denote the 8 -gon. In either case, one may suppose that the vertices with odd index lie in $V_{1} \cap W_{1}$.

Let T_{i} denote the subgraph of X induced by the vertices in $V_{i} \cap$ $W_{i}(i=1,2)$. If $\rho=6$, then T_{i} is totally disconnected. If $\rho=7$, then each T_{i} consists of two edges without common end-point.

Consider the permutation β on $V(X)$ whose cyclic decomposition is given by

$$
\beta=\left(v_{1} v_{5}\right)\left(v_{2} v_{6}\right)\left(v_{3} v_{7}\right)\left(v_{4} v_{8}\right) .
$$

Since β has fixed-points without being the identity, $\beta \notin A(X)$, for $A(X)$ is a regular permutation group. But clearly $\beta \in A(X)$ when $\rho=6$, and the verification is straightforward when $\rho=7$.

The result in Theorem 1 is far more general than is required for the applications in the next two sections. Actually, a rather narrow formulation is involved repeatedly. In the interest ultimately of economy, we here formulate that application in the following way:

Lemma 3. Let G be a group in Class I. Let $n \geqq 2$ and $k \geqq 1$ be given and suppose $|G|>\nu(n, k)$. Then G has a $G R R X=X_{G, H} \notin$ $\mathscr{P}_{n, k}$. Moreover, let $G \triangleleft G_{1}$ and suppose that for some $b \in G_{1} \backslash G, G_{1}$ admits the coset decomposition $G_{1}=G \cup b G \cup \cdots \cup b^{n-1} G$. Let H_{1} be a set of generators of G_{1} such that
(i) $e \notin H_{1}=H_{1}^{-1}$,
(ii) $H_{1} \cap G=H$,
(iii) $k \geqq\left|H_{1} \cap b^{i} G\right|,(i=1, \cdots, n-1)$.

Form the Cayley graph $Y=X_{G_{1}, H_{1}}$, and let X_{i} be the subgraph of Y induced by vertices in the coset $b^{i} G$. Then $X_{i} \cong X$ and the sets
$\left\{V\left(X_{i}\right) \mid i=0, \cdots, n-1\right\}$ form a complete system of imprimitivity for the permutation group $A(Y)$. Finally, if $\varphi \in A(Y)$ satisfies $\varphi x_{0}=$ x_{0} for some $x_{0} \in V\left(X_{i}\right)$, then $\varphi x=x$ for all $x \in V\left(X_{i}\right)$.

Proof. If $X=X_{G, H}$ is a GRR of G, then so is X^{\prime}. Since $|V(X)|=$ $|G|>\nu(n, k)$, at most one of X and X^{\prime} belongs to $\mathscr{P}_{n, k}$ by definition of $\nu(n, k)$. For definiteness, suppose $X \notin \mathscr{P}_{n, k}$.

Assume the remainder of the hypothesis. That $X_{i} \cong X$ is immediate from the definition of a Cayley graph. Let $\varphi \in A(Y)$. Choose one of the subgraphs X_{j} and let $V_{i}=V\left(X_{i}\right) \cap \varphi\left[V\left(X_{j}\right)\right]$. If $i \neq j$, each vertex of X_{i} is adjacent to at most k vertices of X_{j}. If more than one of the sets V_{i} are nonempty, the sets V_{i} form a $\mathscr{P}_{n, k}{ }^{-}$ partition of $\varphi\left[X_{j}\right]$. But $\varphi\left[X_{j}\right] \cong X_{j} \cong X \notin \mathscr{P}_{n, k}$. Hence $\varphi\left[X_{j}\right]=X_{i}$ for some i. Since Y is a Cayley graph, $A(Y)$ is transitive, and the assertion concerning imprimitivity is proved.

Now suppose $\varphi x_{0}=x_{0}$ for some $x_{0} \in V\left(X_{i}\right)$. Since $V\left(X_{i}\right)$ is a block of imprimitivity, $\varphi\left[X_{i}\right]=X_{i}$. Hence the restriction φ_{i} of φ to X_{i} belongs to $A\left(X_{i}\right)$. But $X_{i} \cong X$ and so $A\left(X_{i}\right)$ is a regular permutation group. Since φ_{i} has a fixed-point x_{0}, φ_{i} is the identity of $A\left(X_{i}\right)$, which proves the lemma.

Lemma 4. Every non-abelian group G of square-free order $|G|>$ 10 is Class I.

Proof. Since $|G|$ is square-free, G is generated by two elements a and b satisfying relations of the form

$$
\begin{equation*}
\left\langle a, b \mid a^{r}=b^{s}=e, b^{-1} a b=a^{m}\right\rangle \tag{2.7}
\end{equation*}
$$

where $|G|=r s$ and $m^{s} \equiv 1(\bmod r)$. (See [5, p. 261].) All groups (2.7) have been classified [7, Theorem 2]. Except for the groups D_{3} and D_{5}, the only groups (2.7) not in Class I are either abelian or have order divisible by 4 .
3. Classification of Extensions by C_{2} and C_{4}. The main result of this section is:

THEOREM 2. Let the non-abelian group G_{1} contain a subgroup G of index 2, and suppose that G is in Class I. Then each of the following conditions is sufficient for G_{1} to be in Class I :
(a) $|G|>2$ and G_{1} is a semi-direct product of G by C_{2}.
(b) $|G|>12$ but $|G| \neq 16$ or 32 .
(c) $|G|=16$ or 32 , and either:
(i) there exists an element $b \in G_{1} \backslash G$ such that $o(b) \neq 4$, or
(ii) $Z(G)$ does not contain $C_{2} \times C_{2}$ as a subgroup.

Remark. The reader should not infer that condition (c) is necessary if $|G|=16$ or 32 , but merely that the profusion of groups of orders 16 and 32 not satisfying (ii) and of their cyclic extensions not satisfying (i) renders a case-by-case study inordinately tedious and without anticipation of surprising outcome. Theorem 2 is stated in the given form merely to convey as much information as possible.

Groups of order 16 have been classified (see [12]) and exactly two such groups both are in Class I and fail to satisfy (ii). There are six groups G_{1} of order 32 failing to satisfy (i) which are extensions of these two exceptional groups of order 16. There are more than 100 groups G_{1} of order 64 failing to satisfy (i) which are extensions of those groups G of order 32 failing to satisfy (ii). For a complete list of such groups, see [3].

Proof. First consider the case where there exists an element $b \in G_{1} \backslash G$ of order 2. Since G is in Class I and $G \nsupseteq C_{2}$, we have $|G| \geqq$ 12 (see [7, 1.10]). By Corollary 1B and Lemma 3, G has a GRR $X=$ $X_{G, H} \notin \mathscr{P}_{2,1}$. If $H_{1}=H \cup\{b\}$, one may form the Cayley graph $Y_{0}=$ $X_{G_{1}, H_{1}}$. Let $\varphi \in A_{e}\left(Y_{0}\right)$. With X_{0} and X_{1} defined as in Lemma 3, it is immediate that φ fixes each vertex of X_{0}. Hence $\varphi(b)=b$, and φ is the identity on all of $V\left(Y_{0}\right)$, whence Y_{0} is a GRR of G_{1}. It has been shown that (a) is a sufficient condition.

Suppose now that $b^{2} \neq e$ for all $b \in G_{1} \mid G$. If $|G|=14$, then $G \cong$ D_{7}. Of the two non-abelian groups of order 28 [2, p. 135], only one contains D_{7} as a subgroup, namely D_{14} which is known to be in Class I, [11, Theorem 2]. Since no group in Class I has order 13 or 15 we now let $|G| \geqq 16$. By Lemmas 2 and $3, G$ has a GRR $X=X_{G, H} \in \mathscr{P}_{2,2}$, as before. Arbitrarily choose then fix $b \in G_{1} \backslash G$. Let $H_{1}=H \cup\left\{b, b^{-1}\right\}$, and form $Y_{1}=X_{G_{1}, H_{1}}$. Let $\varphi \in A_{e}\left(Y_{1}\right)$. As before, φ fixes each vertex of X_{0}, and the theorem is proved unless φ has no fixed-point in X_{1}, which we now assume to be the case. In particular, φ interchanges b and b^{-1}.

The vertices in X_{0} adjacent to b are e and b^{2} while those in X_{0} adjacent to b^{-1} are e and b^{-2}. Thus $b^{2}=b^{-2}$, and $b^{4}=e$. Since the choice of $b \in G_{1} \backslash G$ was arbitrary, it follows that $o(b)=4$ for all $b \in$ $G_{1} \backslash G$.

We next show that $b^{2} \in Z\left(G_{1}\right)$ for all $b \in G_{1} \backslash G$. Let $h \in H$. Since b^{-1} is adjacent to $b^{-1} h, b=\varphi\left(b^{-1}\right)$ must be adjacent to $\varphi\left(b^{-1} h\right)$. The neighbors in X_{1} of $b^{-1} h b \in V\left(X_{0}\right)$ are $b^{-1} h$ and $b^{-1} h b^{2}$. Thus $\varphi\left(b^{-1} h\right)=$ $b^{-1} h b^{2}$. There exists some $h^{\prime} \in H$ such that $b h^{\prime}=b^{-1} h b^{2}$, i.e., $h^{\prime}=b^{-2} h b^{2}$. This implies that the set H is fixed under conjugation by b^{2}, but since X is a GRR, the automorphism $x \mapsto b^{-2} x b^{2}$ in Aut (G) must be the identity. Thus $b^{2} \in Z(G)$. But for any $x \in G,(b x) b^{2}=b\left(b^{2} x\right)=b^{2}(b x)$,
so $b^{2} \in Z\left(G_{1}\right)$, as required.
Recalling that the choice of $b \in G_{1} \backslash G$ was arbitrary, we have that the set

$$
K=\left\{c^{2}\left|c \in G_{1}\right| G\right\}
$$

generates an elementary abelian 2-group contained in $Z\left(G_{1}\right) \cap G$. If K consists of a single element, then $b^{2}=(b x)^{2}$ for all $x \in G, b \in G_{1} \backslash G$. This implies that

$$
\begin{equation*}
b^{-1} x b=x^{-1} ; \quad x \in G, b \in G_{1} \mid G . \tag{3.1}
\end{equation*}
$$

Thus G is abelian. Since the only abelian groups in Class I are elementary abelian 2 -groups, (3.1) implies that G_{1} is abelian, contrary to the hypothesis of this theorem. Hence

$$
\begin{equation*}
|K| \geqq 2 \tag{3.2}
\end{equation*}
$$

At this point condition (c) has been shown sufficient.
Having obtained the foregoing information about G_{1}, we continue to prove the sufficiency of (b) by first supposing that $|G|>32$. By Corollary 1B and Lemma 3 we may assume that $X=X_{G, H} \notin \mathscr{P}_{2,4}$. By (3.2), there exist $b, c \in G_{1} \backslash G$ such that $b^{2} \neq c^{2}$. Redefine $H_{1}=H \cup$ $\left\{b, b^{-1}, c, c^{-1}\right\}$, and form $Y_{2}=X_{G_{1}, H_{1}}$. As before, let $\varphi \in A_{e}\left(Y_{2}\right)$. Again, φ fixes each vertex of X_{0}, and we may assume that φ fixes no vertex of X_{1}. For each $x \in V\left(X_{0}\right)$, its neighbors in X_{1} are $x b, x b^{-1}, x c, x c^{-1}$ while the neighbors in X_{1} of $x b^{2}$ are $x b^{-1}, x b, x b^{2} c, x b^{2} c^{-1}$. Since $b^{2} \neq$ c^{2} (and so $b \neq c^{-1}$), the vertices x and $x b^{2}$ have precisely two common neighbors in X_{1}, namely $x b$ and $x b^{-1}$. They must be interchanged by φ, as are $x c$ with $x c^{-1}$. This is so for all $x \in V\left(X_{0}\right)$. In particular, for $x=e$ or $b^{-1} c$ we obtain

$$
b=\varphi\left(b^{-1}\right)=\varphi\left(\left(b^{-1} c\right) c^{-1}\right)=b^{-1} c^{2},
$$

implying that $b^{2}=c^{2}$, a contradiction. Hence Y_{2} is a GRR of G_{1}.
It remains only to consider the cases where $16<|G|<32$. Because of (3.2), G contains the central subgroup $M=\langle K\rangle$ of order divisible by 4 , leaving only 20,24 , and 28 as possible orders of G. If $|G|=$ 20 or 28 , then G / M is cyclic. But then G is abelian but not an elementary abelian 2 -group, contrary to the hypothesis that G is in Class I.

Suppose finally that $|G|=24$. It suffices to prove that G is abelian, for then it cannot be in Class I. There exists an element $a \in G$ of order 3. We show first that

$$
\begin{equation*}
a^{-1}=d^{-1} a d \equiv a^{d} \quad \text { for all } d \in b G \tag{3.3}
\end{equation*}
$$

Since $d^{2},(d \alpha)^{2} \in K$, one has immediately that

$$
d^{2} a a^{d}=a d^{2} a^{d}=(a d)^{2}=d^{-1}(d a)^{2} d=(d a)^{2}=d^{2} d^{-1} a d a=d^{2} a^{d} a
$$

It follows that a and a^{d} commute and that $\left(a a^{d}\right)^{2}=\left[d^{-2}(d a)^{2}\right]^{2}=$ $d^{-4}(d a)^{4}=e . \quad$ Since $o\left(a^{d}\right)=3$,

$$
a a^{d}=\left(a a^{d}\right)^{2} \alpha a^{d}=a^{3}\left(a^{d}\right)^{3}=e,
$$

and hence (3.3) holds. Now write $d=x b$ for arbitrary $x \in G$. By (3.3), for any $x \in G$,

$$
a x b=(x b) a^{-1}=x\left(b a^{-1}\right)=x a b
$$

This shows that $a \in Z(G)$. Therefore, the subgroup $\langle M \cup\{a\}\rangle$ is central and has order 12, which is possible only if G is abelian. This concludes the proof of the theorem.

Remarks. 1. Except in the case where G is abelian, Theorem 2 generalizes the result of Watkins and Nowitz [13] that the direct product of C_{2} with any group in Class I other than C_{2} is also in Class I.
2. In addition to the special cases of groups of orders 16 and 32 previously remarked upon, the question remains open concerning the classification of extensions by C_{2} (other than semi-direct products) of the one group in Class I of order 12, namely D_{6}.

Corollary 2A. Let the non-abelian group G_{1} contain a normal subgroup G such that $G_{1} / G \cong C_{4}$, and suppose that G is in Class I. If $|G|>32$, then G_{1} is in Class I.

Proof. Let π be the projection morphism of G_{1} onto $G_{1} / G \cong C_{4}=$ $\langle a\rangle$. If $\pi(b)=a$, we have the coset decomposition

$$
G_{1}=G \cup b G \cup b^{2} G \cup b^{3} G .
$$

Furthermore, $G_{0}=G \cup b^{2} G$ is a subgroup of G_{1} and $\left[G_{0}: G\right]=\left[G_{1}: G_{0}\right]=$ 2. If G_{0} is non-abelian, it is in Class I by Theorem 2, and therefore so is G_{1}.

We have only to consider the case where G_{0} is abelian. Then G is abelian, and since G is in Class I, we have $G \cong\left(C_{2}\right)^{k+1}$ with $k \geqq 5$ because $|G|>32$. If $b^{4}=e$, the group G_{0} is an elementary abelian 2 -group and so is in Class I. Then G_{1} is also in Class I by Theorem 2. We can therefore assume that $b^{4} \neq e$. As $b^{4} \in G$ and $\exp (G)=2$, we have $o(b)=8$.

Denote by K the subgroup of G such that $G=K \times\left\langle b^{4}\right\rangle$. Note that $K \cong\left(C_{2}\right)^{k}$ is in Class I since $k \geqq 5$. If $K \triangleleft G_{1}$, then G_{1} is an extension of K by C_{8} and is in Class I by [7, Theorem 1]. Otherwise $b K \neq K b$, and there exists an element $c \in K$ such that $b c \neq c b$. Using
this c we shall construct a GRR of G_{1}.
Since $|G| \geqq 64>48 \geqq \nu(4,2), G$ admits a GRR $X=X_{G, H} \notin \mathscr{P}_{4,2}$, by Lemma 3. The set

$$
H_{1}=H \cup\left\{b, b^{-1}, b^{2}, b^{-2}, b c, c b^{-1}\right\}
$$

generates G_{1}. We shall demonstrate that the Cayley graph $Y_{1}=X_{G_{1}, H_{1}}$ is a GRR.

First observe the distribution of elements of $H_{1} \backslash H$ amongst the cosets of G :

$$
b, b c \in b G ; b^{2}, b^{-2} \in b^{2} G ; b^{-1}, c b^{-1} \in b^{3} G .
$$

Let $\varphi \in A_{e}\left(Y_{1}\right)$. By Lemma 3 (and in the same notation as in the lemma), φ fixes each vertex of X_{0}. In particular, φ fixes the four distinct vertices $b^{4}, b c b^{-1}, c$, and e. The only neighbors of b and $b c$ in X_{0} are e and $b c b^{-1}$; the vertices b^{2} and b^{-2} have the neighbors e and $b^{4} \in V\left(X_{0}\right)$; and b^{-1} and $c b^{-1}$ are each adjacent to e and $c \in V\left(X_{0}\right)$. Therefore, φ fixes each $V\left(X_{i}\right)$ setwise. As b is adjacent to b^{2} but not to b^{-2}, while $b c$ is adjacent to neither b^{2} nor b^{-2}, it is clear that φ cannot interchange b with $b c$. Hence $\varphi(b)=b$. As φ fixes every element of the generating set $\{b\} \cup H$ of G_{1}, it fixes every element of G_{1}. This proves the corollary.

4. Classification of extensions by C_{3}.

Theorem 3. Let the non-abelian group G_{1} contain a normal subgroup G of index 3 , and suppose $G \not \equiv C_{2}$ is in Class I. Then each of the following conditions is sufficient for G_{1} to be in Class I:
(a) There exists an element $b \in G_{1} \backslash G$ such that $b^{6} \neq e$.
(b) $|G|>30$ and either:
(i) $G \not \approx\left(C_{2}\right)^{5}$,
or
(ii) if $|G|=36$, then $\exp (G) \neq 6$.
(c) $G_{1}=G \times C_{3}$, and if $|G|=24$ or 36 , then $\exp (G) \neq 6$.

Proof. (a) By hypothesis, $|G| \geqq 12$. Lemmas 1 and 3 imply that G has a GRR $X=X_{G, H} \notin \mathscr{P}_{3,1}$. Assuming condition (a), let $H_{1}=$ $H \cup\left\{b, b^{-1}\right\}$ and form $Y_{0}=X_{G_{1}, H_{1}}$. Let $\varphi \in A_{e}\left(Y_{0}\right)$. By Lemma 3 (and in the same notation as in the lemma), φ fixes each vertex of X_{0}. It suffices to prove that φ fixes b (and hence b^{-1}). We suppose not, and so φ interchanges b with b^{-1}. Lemma 3 further implies that φ maps the subgraphs X_{1} and X_{-1} isomorphically onto each other.

Since the only neighbor of b^{-1} lying in X_{1} is $b^{-2}, \varphi\left(b^{-2}\right)$ must be the unique neighbor of $b=\varphi\left(b^{-1}\right)$ lying in X_{-1}, namely b^{2}. But $b^{3} \in$
$V\left(X_{0}\right)$ is fixed by φ, and so φ interchanges its neighbors $b^{4} \in V\left(X_{1}\right)$ with $b^{2} \in V\left(X_{-1}\right)$. Thus $\varphi\left(b^{4}\right)=b^{2}=\varphi\left(b^{-2}\right)$, whence $b^{4}=b^{-2}$, or $b^{6}=e$, contrary to assumption.
(b) In the light of (a) above, it may be assumed that

$$
\begin{equation*}
o(u)=3 \text { or } 6 \quad \text { for all } u \in G_{1} \backslash G \tag{4.1}
\end{equation*}
$$

If $o(u)=6$, then $o\left(u^{2}\right)=3$. So we may always select an element $d \in G_{1} \backslash G$ of order 3. Write the coset decomposition $G_{1}=G \cup d G \cup d^{-1} G$.

We shall now prove that:

$$
\begin{equation*}
\exists b, c \in d G \text { such that } b^{3}=e \text { and } b c \neq c b . \tag{4.2}
\end{equation*}
$$

If G contains an element g such that $g^{6} \neq e$, let $c=g b$, where $b \in d G$ has order 3. If b commutes with c, then b commutes with g, and

$$
c^{6}=(g b)^{6}=g^{6} b^{6}=g^{6} \neq e,
$$

contrary to (4.1).
Suppose then that $g^{6}=e$ for all $g \in G$ and that (4.2) fails. Since $d^{3}=e, d$ commutes with every element of $G_{1} \backslash G$. Thus, for all $g \in G$ $(d g) d=d(d g)$, and $d \in Z\left(G_{1}\right)$. Define

$$
K=\{x \in G \mid o(d x)=3\}
$$

Then $x \in G$ implies $x^{3}=(d x)^{3}$, while $(d x)^{3}=e$ if and only if $x \in K$. Thus for $x \in G$,

$$
\begin{gather*}
x \in K \Longleftrightarrow o(x)=1 \text { or } 3 ; \tag{4.3}\\
x \in G \backslash K \Longleftrightarrow o(x)=2 \text { or } 6 . \tag{4.4}
\end{gather*}
$$

If $x \in K$ and $g \in G$, then since (4.2) is assumed false, $(d x)(d g)=(d g)(d x)$. Since d is central we have $x g=g x$, and so $K \subset Z(G)$. If $x_{1}, x_{2} \in K$, then $\left(d x_{1} x_{2}\right)^{3}=d^{3} x_{1}^{3} x_{2}^{3}=e$, so $x_{1} x_{2} \in K$, and K is a normal subgroup of G.

Consider the cosets of G with respect to K. Since by (4.3) and (4.4) $x^{2} \in K$ for all $x \in G$, the quotient group G / K is an elementary abelian 2-group. Moreover, if $x_{1}=x_{2} k$ for some $x_{1}, x_{2} \in G$ and $k \in K$, then

$$
x_{1} x_{2}=x_{2} k x_{2}=x_{2}\left(x_{2} k\right)=x_{2} x_{1} .
$$

That is to say, any two elements of the same coset with respect to K commute.

Let $L=\left\{x \in G \mid x^{2}=e\right\}$, and let $y, z \in L$. If $o(y z)=3$ or 6 , then $o\left((y z)^{2}\right)=3$ whence $(y z)^{2} \in K$ and is therefore central. Hence

$$
e=(y z y z) y^{2}(z y z y)=(y z)^{2} y(y z)^{2} y=(y z)^{4} y^{2}=(y z)^{4}
$$

As no element of G has order $4,(y z)^{2}=e$ and $y z \in L$. Hence L is a subgroup of G. In particular, L is an elementary abelian 2 -group.

Let $g \in G$. If $o(g)=1,2$ or 3 , clearly $g \in L K$. If $o(g)=6$, then $g=g^{3} g^{-2} \in L K$, and so $G=L K$. Since K is central and L is abelian, G is abelian. But $G_{1}=\langle G \cup\{d\}\rangle$. We have a contradiction, since G_{1} is non-abelian by hypothesis. This proves (4.2).

We now assume the hypothesis (b). By Corollary 1B and Lemma 3, G has a GRR $X=X_{G, H} \notin \mathscr{P}_{3,2} \quad$ Select b, c fulfilling (4.2). Let $H_{1}=$ $H \cup\left\{b, b^{-1}, c, c^{-1}\right\}$ and form the Cayley graph $Y_{1}=X_{G_{1}, H_{1}}$. Let $\varphi \in$ $A_{e}\left(Y_{1}\right)$. As in all the previous cases, φ fixes each vertex of X_{0}, in particular $b c^{-1}$.

The neighbors in X_{-1} of e are of course b^{-1} and c^{-1}; those of $b c^{-1}$ are $b c^{-1} b^{-1}$ and $b c^{-2}$. Since $b \neq c$, certainly $b^{-1} \neq b c^{-1} b^{-1}$ and $c^{-1} \neq b c^{-2}$. If $c^{-1}=b c^{-1} b^{-1}$, then $b c=c b$, contrary to assumption. Also the equality $b^{-1}=b c^{-2}$ implies, since $b^{3}=e$, that $b=c^{-2}$ which in turn implies that b and c commute. Hence e and $b c^{-1}$ have no common neighbors in X_{-1}.

The vertex $b \in V\left(X_{1}\right)$ is a common neighbor of e and $b c^{-1}$. Thus $\varphi(b) \in V\left(X_{1}\right)$, and by Lemma 3, $\varphi\left[X_{i}\right]=X_{i}(i= \pm 1)$. If b is the only such common neighbor, then $\varphi(b)=b, \varphi$ is necessarily the identity, and (b) is proved. Suppose that b is not the sole common neighbor. This is possible only if $c=\left(b c^{-1}\right) b$, which implies

$$
\begin{equation*}
\left(c b^{-1}\right)^{2}=e, \tag{4.5}
\end{equation*}
$$

which we assume to hold.
If G contains an element g such that $g^{6} \neq e$, then, as previously noted, we may choose $c=g b$. Substitution into (4.5), however, implies that $g^{2}=e$. Assume that $g^{6}=e$ for all $g \in G$. Inasmuch as the group $\left(C_{2}\right)^{5}$ and all groups of order 36 with exponent 6 are exempted from consideration, no cases are lost if one assumes that $|G|>45$. Thus it may be assumed that $X \notin \mathscr{P}_{3,3}$. In addition to $b, c \in d G$ chosen according to (4.2), we select an additional element $f \in d G$ such that

$$
f \in\left\{b, b c b^{-1}, b c^{-1} b, b^{-1} c^{-1}, c, c b c^{-1}, c b^{-1} c, c^{2} b^{-1}\right\}
$$

Redefine $H_{1}=H \cup\left\{b, b^{-1}, c, c^{-1}, f, f^{-1}\right\}$ and form $Y_{2}=X_{G_{1}, H_{1}}$. One can verify straightforwardly that despite the additional edges, $b c^{-1}$ and e still have no common neighbors in X_{-1} and that b and c remain their only common neighbors in X_{1}. Since f is the only neighbor in X_{1} of e which is not a neighbor of $b c^{-1}, \varphi(f)=f$. Thus φ fixes pointwise the set $H \cup\{f\}$ which generates G_{1}. Hence φ is the identity and Y_{2} is a GRR of G.
(c) Let $G_{1}=G \times C_{3}$. We first suppose that G contains an element g such that $g^{6} \neq e$. There exists an element $c \in G_{1} \backslash G$ such that $c^{3}=e$.

If $b=g c$,

$$
b^{6}=(g c)^{6}=g^{6} c^{6}=g^{6} \neq e,
$$

and the result follows from part (a) above.
Suppose therefore, that $\exp (G)=2,3$ or 6 . By part (b), we need only assume $12 \leqq|G| \leqq 36$ and ignore the orders 24 and 36 . If $\exp (G)=$ 2 , then G is abelian. Since G_{1} is non-abelian, there are no cases to consider. If $\exp (G)=3$, then $|G|=27$. But the (unique) group G of order 27 with exponent 3 is in Class II, [8, Theorem 3].

If $\exp (G)=6$, then $|G|=12$ or 18.
Since G is in Class I, $G \cong C_{3} \times D_{3}$ if $|G|=18$, and $G \cong D_{6}$ if $|G|=12$. (See [12].)

Following Coxeter and Moser [2, p. 134], $C_{3} \times D_{3}$ can be represented by

$$
s^{3}=t^{6}=e, t s t=s^{-1}
$$

G_{1} is formed by adjoining a generator u with

$$
u^{3}=e, s u=u s, t u=u t
$$

Let

$$
H_{1}=\left\{s, s^{-1}, t, t^{-1}, t s, t^{-1} s, t^{2} s, t^{-2} s^{-1}, u, u^{-1}, t u, t^{-1} u^{-1}\right\}
$$

We assert that the Cayley graph $Y=X_{G_{1}, H_{1}}$ is a GRR of G_{1}. Let Y_{e} denote the subgraph of Y induced by the neighbors of e, namely the set H_{1}, and let $\varphi \in A_{e}(Y)$. The restriction of φ to Y_{e} belongs to $A\left(Y_{e}\right)$. One straightforwardly verifies that Y_{ϵ} has the form of Figure 1.

Figure 1. Y_{e} when $G_{1}=C_{3} \times C_{3} \times D_{3}$
The two vertices whose valence in Y_{e} is 5 are t and t^{-1}, but only t^{-1} has exactly one neighbor $t^{-1} u^{-1}$ of valence 2 . Therefore, φ fixes
both of these vertices and hence all vertices in the subgroup $\langle t, u\rangle$ generated by them. Then φ fixes the second neighbor $t^{2} s$ of t whose valence in Y_{e} is 2. But $G_{1}=\left\langle t^{2} s, t, u\right\rangle$, and so φ is the identity and Y is a GRR of G_{1}.

If $G=D_{6}$, we represent $G_{1}=C_{3} \times D_{6}$ by

$$
s^{6}=t^{2}=u^{3}=e, t s t=s^{-1}, s u=u s, t u=u t
$$

Then G_{1} is generated by

$$
H_{1}=\left\{s, s^{-1}, t, t s^{-1}, u, u^{-1}, s u, s^{-1} u^{-1}, t u, t u^{-1}\right\}
$$

Figure 2. Y_{e} when $G_{1}=C_{3} \times D_{6}$
Define Y, Y_{e}, and φ as in the preceding paragraph. In this case (see Figure 2) φ fixes $t s^{-1}$ since it is the only vertex whose valence in Y_{e} is 4 . Its only neighbor with valence 5 (in Y_{e}) is $t u$ and with valence 6 is t. But $\left\langle t s^{-1}, t, t u\right\rangle=G_{1}$, and so, as before Y is a GRR of G_{1}.

Remarks 1. When $|G| \leqq 30$, the only cyclic extensions by C_{3} which we have considered here are the direct products of C_{3} with the various groups G in Class I. Some of the other cases are readily dispensed with. For example, if $|G|=14,22$ or 26 , then G_{1} is squarefree and is in Class I by Lemma 4.

There is a semi-direct product G_{1} of D_{6} by C_{3} given by

$$
s^{6}=t^{2}=u^{3}=e, t s t=s^{-1}, s u=u s, u^{-1} t u=t s^{2}
$$

If one lets $H_{1}=\left\{s, s^{-1}, t, t s^{-1}, u, u^{-1}, t u^{-1}, t s^{2} u\right\}$, then the Cayley graph $X_{G_{1}, H_{1}}$ is a GRR of G_{1}.
2. All cyclic extensions by C_{3} of the two Class I groups G of order 16 with exponent 8 are in Class I. Indeed in the light of (a), we need consider only the semi-direct product. First G is generated by s and t where

$$
s^{8}=t^{2}=e, t s t=t^{m}, m \equiv 3 \quad \text { or } \quad 7(\bmod 8)
$$

Pick $c \in G_{1} \backslash G$ such that $c^{3}=e$. The subgroup generated by s is the only cyclic subgroup of order 8 and so is invariant. We have $c^{-1} s c=$ s^{j} where $o\left(s^{j}\right)=8$. Thus $j^{3} \equiv 1(\bmod 8)$, and the only solution is $j \equiv$ $1(\bmod 8)$. But $G_{1}=G \times C_{3}$ is known to be in Class I by part (c).
3. Infinite graphs satisfy condition (b) in both Theorem 2 and Theorem 3. By virtue of Corollary 1A, these theorems and Corollary 2A hold for infinite graphs.

Acknowledgement. The authors wish to thank the referee for his careful reading and valuable suggestions, in particular for shortening the proof of Theorem 1.

References

1. C. Y. Chao, On a theorem of Sabidussi, Proc. Amer. Math. Soc., 15 (1964), 291292.
2. H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Springer-Verlag, Berlin, 1965.
3. Marshall Hall, Jr. and James K. Senior, The Groups of Order $2^{n}(n \leqq 6)$, Macmillan, New York, 1964.
4. Wilfried Imrich, Graphs with transitive Abelian automorphism group in Combinatorial Theory and Its Applications, Coll. Soc. János Bolyai 4, Balatonfüred, Hungary, (1969), 651-656.
5. Rudolf Kochendörffer, Lehrbuch der Gruppentheorie unter besonderer Berïcksichtigung der endlichen Gruppen, Leipzig, 1966.
6. Lewis A. Nowitz, On the non-existence of graphs with transitive generalized dicyclic groups, J. Combinatorial Theory, 4 (1968), 49-51.
7. Lewis A. Nowitz and Mark E. Watkins, Graphical regular representations of non-abelian, groups I, Canad. J. Math., 24 (1972), 993-1008.
8. ——, Graphical regular representations of non-abelian groups, II, Canad. J. Math., 24 (1972), 1009-1018.
9. Gert Sabidussi, On a class of fixed-point free graphs, Proc. Amer. Math. Soc., 9 (1958), 800-804.
10. -, On vertex-transitive graphs, Monatsh. Math., 68 (1964), 426-438.
11. Mark E. Watkins, On the action of non-abelian groups on graphs, J. Combinatorial Theory, 11 (1971), 95-104.
12. -, Graphical regular representations of alternating, symmetric, and miscellaneous small groups, Aequat. Math. 11 (1974), 40-50.
13. Mark E. Watkins and Lewis A. Nowitz, On graphical regular representations of direct products of groups, Monatsh. Math., 76 (1972), 168-171.

Received February 2, 1972 and in revised form October 1, 1973.

Syracuse University

and
Technische Hochschule, Vienna, Austria

