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QUOTIENTS OF COMPLETE GRAPHS: REVISITING
THE HEAWOOD MAP-COLORING PROBLEM

JONATHON L. GROSS AND THOMAS W. TUCKER

The principal result of this paper is the determination
of every graph that can be covered by a complete graph. It
is shown that for every odd divisor d of the number n of
vertices of a complete graph Kn, there is a unique graph
with n/d vertices covered by Kn, and that there are no other
graphs covered by Kn. This determination is applied to an
examination of certain aspects of the solution to the Heawood
map-coloring problem. In particular, combinatorial argu-
ments of the solution are set in a topological framework of
branched covering spaces.

I* Terminology and one-vertex quotients* A graph is a finite
1-dimensional cell complex, that is, it may have multiple adjacencies
and self-adjacencies. (F. Harary [7] calls this a "pseudograph".) Con-
nected graphs are the main concern here.

The complete graph Kn is the graph with n vertices and an edge
between any pair of vertices. The d-fold complete graph on n vertices
is the graph with n vertices and exactly d edges between each pair
of vertices.

A quotient of a graph K is a graph K' such that there exists a
regular covering projection / : K—>K'. Such a graph K' is the quotient
of K by the automorphism group of covering translations, but most
of the interest here is in finding quotients, not in the different possible
projections K—>K' or the associated automorphism groups.

The graph with one vertex and n edges is called a bouquet of n
circles. Proposition 1 indicates that every bouquet of circles is a
quotient of a complete graph.

PROPOSITION 1. The complete graph K2n+1 covers the bouquet of
n circles.

Proof. Label the vertices of K2n+1 by 0, , 2n modulo 2 ^ + 1
and the circles of the bouquet by 1, , n. For i = 0, , 2n and
j = 1, , n9 an edge between vertices i and ί + j modulo 2n + 1
projects onto circle j .

The complete graph K2n on evenly many vertices has n(2n — 1)
edges, so one might hope it is an w-fold cover of some graph with
two vertices and 2n — 1 edges. Proposition 2 indicates that this hope
is not realized when the number n is even.
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PROPOSITION 2. Let d be an even divisor ofn. Then the complete
graph Kn has no d-fold quotients.

Proof. Suppose that / : Kn—>K is a d-fold covering and that v
is a vertex of K. The edges adjoining the d vertices of the fiber
f~\v) over v form a complete graph, which is the preimage of a set
of loops based at v. Since the covering is ώ-fold, each v-based loop
lifts to d edges in that complete graph, contradicting the fact that
the even number d does not divide the number d(d — l)/2 of edges
in that complete graph.

COROLLARY. A complete graph on a number of vertices which is
a power of two has no nontrivial quotients.

It is proved in the next section that a complete graph Kn has a
unique d-fold quotient for every odd divisor d of n and no other
quotients. While an elementary proof is feasible, the details required
to establish existence are automatically provided by the voltage graph
construction, which is needed for the remainder of the paper.

In addition to satisfying the usual topological criteria (e.g., see
Chapter 5 of W. S. Massey [11]), the covering maps in the paper are
assumed to be cellular, that is, each cell of the covering space lies
over a cell of the base, necessarily of the same dimension.

2* Reduced voltage graphs* Voltage graphs are introduced by
J. L. Gross [2] to assist in the construction of graph imbeddings in
surfaces, in particular, to help compute the genus of graphs. The
theory of voltage graphs is dual to that of current graphs, originated
in combinatorial form by W. Gustin [6], exploited by G. Ringel and
J. W. T. Youngs [17] and their colleagues in the solution of the
Heawood map-coloring problem, and recently developed into full to-
pological generality by Gross and S. R. Alpert [3, 4]. This section
provides further illustration of their advantage over current graphs
in certain applications.

A reduced voltage graph is a pair {K, β) consisting of a graph
K and a set function β from the oriented edges of K to a group G
(usually finite) such that the value of β on an edge is the inverse in
G of its value on the reverse edge (i.e., the oriented edge with the
same endpoints but opposite direction). The values of β are called
voltages.

To any reduced voltage graph (K, β) there is associated a derived
graph Kβ whose vertex set is the cartesian product V x G of the set
V of vertices of K and the voltage group G. For every edge k between
vertices u and v of the graph K and every g e (?, there is an edge
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in Kβ between the vertices (u, g) and (v, bg), where b is the voltage
from u to v on k. If k is regarded as carrying voltage 6"1 from v
to u, then that same edge in Kβ is generated by the element bg e G,
that is, it lies between the vertices (v, bg) and (u, b~\bg)) = (u, g).

One advantage of voltage graphs over current graphs apparent
in the above definition is that the derived graph Kβ is independent of
an imbedding of K in a surface.

THEOREM 1. Let (K, β) be a reduced voltage graph with voltages
in a group G. Then the derived graph Kβ is a (possibly disconnected)
\G\-fold covering of K.

Proof. The graph Kβ as constructed above admits a graph mor-
phism onto K which carries a vertex (v, g) onto its first coordinate
and an edge between (u, g) and (v, bg) onto the edge k between u and
v that contributed to its generation. The voltage group G acts as an
automorphism group on Kβ by what is essentially right translation,
that is, for all heG

(v, g) h—*(v, gh)

and

l(M>, g), {v, bg)] h > [(u, gh), (v, bgh)] .

The graph morphism Kβ —> K realizes the quotient of Kβ under the
automorphism group G, so it is a regular covering (on every com-
ponent of Kβ). One observes that the transitivity of the action as-
sures the isomorphism of components of Kβ.

The above proof of Theorem 1 is abstracted from the proof of
Theorem 1 of Gross and Alpert [4], where it was necessary to be
concerned with extending the graph covering projection to the imbed-
ding surfaces. It is now applied to completing the classification of
quotients of complete graphs.

THEOREM 2. A complete graph Kn has a unique d-fold quotient
for every odd divisor d of n and no other quotients. Such a quotient
is obtained by amalgamating a bouquet of (d — l)/2 circles to every
vertex of a d-fold complete graph on n/d vertices.

Proof. Suppose that Kn has a d-fold quotient K, for some odd
divisor d of n. Then the edges adjoining the d vertices in the fiber
over any vertex of K form a complete graph, which necessarily
projects onto a bouquet of (d — l)/2 circles. The d2 edges adjoining
the vertices of two distinct fibers form a complete bipartite graph
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that projects onto d edges between the two base vertices in K. This
establishes the unique isomorphism type of a d-fold quotient. By
Proposition 2, there are no even quotients. What remains to be proved
is the existence of all odd quotients, and this is where reduced voltage
graphs are useful.

For any odd divisor d of n, let Ld be a graph obtained by
amalgamating a bouquet of (d — l)/2 circles to every vertex of a en-
fold complete graph on njd vertices. At every vertex of Ld, give
each of the circles a preferred direction and assign the voltages 1,
• , (d — l)/2 modulo d to the circles with preferred directions and
the inverse voltages d — 1, d — 2, , (d + l)/2 to their opposites.
The d edges in Ld running from any vertex v to any other vertex
u are assigned the voltages 0, , d — 1 modulo d (assuring that their
respective opposites are assigned the voltages 0, d — 1, d — 2, , 1
modulo d). The construction of the derived graph Lβ

d corresponding
to the reduced voltage graph (Ld, β) assures that it is a complete
graph on n vertices.

Precisely, the derived graph Lβ

d has n(n — l)/2 edges. There are
no self-adjacencies, because no identity voltage is assigned to a self-
adjacency in Ld and no multiple adjacencies since no two distinct
edges in Ld between the same pair of vertices are assigned the same
voltages. By the "pigeonhole principle", there must be exactly one
edge between each pair of vertices in the derived graph. This com-
pletes the proof.

3* Branched coverings* In preparation for consideration of the
solution to the Heawood map-coloring problem, this section defines
voltage graphs in full generality and gives the main theorem. The
exposition here differs from that of Gross [2] in that it avoids "rotation
systems", thereby permitting, incidentally, an extension of the theory
to nonorientable graph imbeddings. An understanding of what follows
depends on comprehension of the notion of a branched covering.

A cellular map / : X —>Y between two cell complexes is called a
branched covering if X and Y have subdivisions Xr and Yf preserving
the cellularity of / such that the restriction of / to the complement
in X' of a subcomplex of codimension two is topologically a covering.

The subdividing permitted by this combinatorial definition of
branched covering is of critical importance here since, in what follows,
that branching set of the covering space is a discrete set of points,
each lying in the interior of a polygon of, say, n sides, whose image
is a polygon of n/d sides for some divisor d of n. The canonical
model of such a branched covering action is the map reiθ—*reidθ on
the complex plane, which has a branch point of degree d at the origin.

A voltage graph is a triple (K, β, c:K—>M) such that the pair
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(K, β) is a reduced voltage graph and c: K~+M is an imbedding of
K as the 1-skeleton of a closed polyhedral surface M.

The product of the voltages on the edges comprising the boundary
of a face of the imbedding c:K —>M is called an excess voltage.
Such a product is computed in sequential order, and it may diίfer by
conjugacy in the voltage group from another such product, computed
from a different starting edge. The order of the excess voltage in
the voltage group is unique. The Kirchoff voltage law (abbr. KVL)
is said to hold on any face where the excess voltage is the identity.

By construction of the derived graph Kβ, each face boundary
(or, more generally, any cycle) in K with n edges lifts to a set of
cycles in Kβ each of whose number of edges is the product of n and
the order of its excess voltage.

A derived surface Mβ and a derived imbedding cβ: Kβ —> Mβ are
obtained by identifying each component of a lifted face boundary
with the sides of a 2-cell (unique to that component). The covering
Kβ -+K is readily extended to a surface map Mβ —> M. Details of this
construction may be read (from a current graph viewpoint) in Gross
and Alpert [4]. Gross [2] uses Theorem 2 of [4] to prove the
following.

THEOREM 3. Let the voltage graph (K, β, c: K—+ M) with voltages
in a group G have faces fu , fq with su , sq sides and carrying
excess voltages of orders eu * ,βff respectively. Then the derived
imbedding cβ: Kβ —> Mβ is a branched covering of the imbebbing c: K—>
M. For ί= 1, •••, q there are |(?!/£* faces lying over face fif each
with e^i sides and (for et Φ 1) a branch point of degree et in its
interior.

4* Revisiting the Heawood map-coloring problem* A coloring
of a closed orientable surface Th with h handles is an assignment of
colors to the faces of a polyhedral decomposition such that no two
adjacent faces are assigned the same color. The chromatic number
chr (Th) is the minimum number such that any polyhedral decomposition
of Th has a coloring with that number of colors.

In 1890, P. J. Heawood proved that

d 7 + yττ48/π h^
L 2i J

where [x\ denotes the greatest integer (or "floor") in a real number
x. The right side of the above inequality is denoted H(h) and called
the Heawood number of Th. Heawood conjectured that his upper
bound was an equality.

One observes that to prove the Heawood conjecture, it is sufficient
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to imbed the complete graph on H(h) vertices in the surface Th9 for
the dual imbedding would require H(h) colors. In other words, it is
sufficient to prove that the genus of the graph Kmh) is less than or
equal to h.

Ringel, Youngs, and their colleagues solved the problem by-
proving that

where \x] denotes the least integer ("ceiling") greater than or equal
to a real number x. This equation is often called the Ringel-Youngs
equation. Its right side is denoted I(ri). Routine manipulation of the
expression I(H(h)) establishes that genus (Kmh)) is less than or equal
to h.

Heawood's conjecture appears in the same paper in which he
disclosed the flaw in the purported proof by A. B. Kempe [10] of
the four color conjecture, which, one notices, is obtained by substitut-
ing zero for h in Heawood's conjecture.

The proof of the Ringel-Youngs equation analyzes each residue
class of n modulo 12 separately, for reasons that are soon apparent
in a serious investigation of the problem, but that might yet be over-
come, some would hope. The full proof occupies about 300 published
pages. The difficulty of proof varies widely from one residue class
to another.

The Euler formula V — E + F — 2 — 2g and the edge-face inequa-
lity 2E ^ SF lead to the complete graph inequality

genus (Kn) ^ I(n) n ^ 3 .

Thus, the Ringel-Youngs equation can be affirmed by constructing an
imbedding of the complete graph Kn in the surface TIM. Such an
imbedding maximizes the number of faces, subject to the above ine-
quality. Maximizing the number of faces is accomplished, in turn,
by making as many of them triangles as is possible.

For n congruent to 0, 3, 4, or 7 modulo 12 the quantity in brackets
in the Ringel-Youngs equation is an integer, which is equivalent to
the statement that a complete graph on a number of vertices in any
of these residue classes has a triangular imbedding in an orientable
surface. No other residue class has a triangular imbedding, by the
complete graph inequality.

5* Residue class 7* The easiest case to understand is residue
class 7, originally solved by Ringel [16] and later rewritten by Youngs
[24] in a fashion consistent with the published solutions of other cases.
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The vertex, edge, and face numbers for a triangular imbedding
of a complete graph K12s+7, s — 0, 1, , are 12s + 7 vertices, (12s +
7)(6s + 3) edges, and (12s + 7)(4s + 2) faces. They are all divisible by
12s + 7, suggesting the possibility that such an imbedding is a (12s +
7)-fold unbranched cover of something, necessarily a triangular im-
bedding whose vertex, edge, and face numbers are 1, 6s + 3, and
4s + 2, that is, a bouquet of 6s + 3 circles in a surface of genus
8 + 1.

A common factor in the vertex, edge, and face numbers is no
immediate assurance of a quotient imbedding, or even of the existence
of an imbedding whose cell numbers make it a candidate for a quotient.
In this case, however, ther are many candidates, that is, triangular
imbeddings of bouquets of 6s + 3 circles. In general, a candidate
for a quotient is not unique.

Figure 1 illustrates an imbedding of the bouquet of 9 circles that
is a quotient of a triangular imbedding of K1Q, thereby verifying the
Ringel-Youngs equation for n = 19. Two edges of the octogon bound-
ary are identified if they carry the same voltage in the cyclic group
Z19.

The bouquet of nine circles is a quotient for many different 19
vertex graphs, only one of which has no multiple edges. What assures
that the derived graph here is iΓ19 is that it has 9-19 edges and there
are no self-adjacencies or multiple adjacencies. (No edge has identity

FIGURE 1. A quotient for a minimal imbedding of the complete graph
iΓ19, with voltages in Z19.
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voltage and no two distinct oriented edges have the same voltage.)
What assures that the derived imbedding is triangular is that

KVL holds on every face of the quotient imbedding.
If the Gustin ladder-like nomogram for K19 with its coil-derived

currents (see Youngs [23]) is topologically interpreted as a current
graph in the sense of Gross and Alpert [4], then that current graph
is precisely the dual of the voltage graph illustrated here in Figure
1. In fact, every current graph used in the published solution for
residue class 7 modulo 12 has as its dual a voltage graph resembling
the one in Figure 1 in the sense that the imbedding looks like a
scallop shell.

6* Residue classes 3,4, and 0. This section completes discussion
of the complete graphs that admit triangular imbeddings.

A triangular imbedding of iΓ12s+3 must have 12s + 3 vertices,
(6s + l)(12s + 3) edges, and (6s + l)(8s + 2) faces, for s = 0, 1, .
The largest common factor of these cell numbers is 4s + 1, corre-
sponding to a quotient imbedding of a graph obtained by amalgamating
a bouquet of 2s circles to each vertex of a (4s + l)-fold complete
graph on three vertices and to an unbranched covering.

The current group employed by Youngs [23] in his unifying
version of the solution, originally achieved for residue class 3 by
Ringel [16], is not Z4S+1 but Z12s+3. The explanation is that the covering
space corresponding to Youngs's nomogram and current distribution
has three mutually isomorphic components. Alpert and Gross [1]
prove that the number of components (always mutually isomorphic)
equals the index in the current group of the isotropy group for any
fixed component.

Unfortunately, a quotient imbedding for residue class 3 is not so
easily drawn as in residue class 7, so none is illustrated here.

The cell numbers for a triangular imbedding of K12s+i are 12S +
4, (6s + 2)(12s + 3), and (6s + 2)(8s + 2) for s = 0, 1, . Theorem 2
prohibits use of 6s + 2, the largest common factor, seemingly leaving
the task of constructing a (3s + l)-fold cover. But when s is odd, even

FIGURE 2. A quotient graph with one vertex and two edges, imbedded
in the projective plane, with voltages in Z4, leading to a minimal imbedding
of the complete graph Z"4 in the sphere To.
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the factor 3s + 1 is impermissible.
A different tactic, however, is illustrated by Figure 2. From the

voltage graph shown, one derives a nearly triangular imbedding of
a graph which is nearly K4.

By construction, the derived graph for Figure 2 has 8 ( = 2-4)
edges. It is K4 plus two redundant edges. The voltage 2 on the
central loop in Figure 2 is of order 2 in the group Z±, so the monogon
it encloses lifts to two digons, by Theorem 3. Since KVL holds on
the other face, the remaining faces in the derived imbedding are
triangles. Excising the digons and reclosing the surface by identifica-
tion of multiple edges eliminates all eight redundancies and yields a
triangular imbedding Kέ —* To.

Figure 2 is apparently the first example of a nonorientable quotient
graph imbedding used to derive an orientable imbedding (by either
voltages or currents). Unfortunately, there seems to be no obvious
generalization to a new solution for all of residue class 4.

What C. M. Terry, L. R. Welch, and Youngs [14] did in their
solution to cases 4 was to employ the above tactic in the combinatorial
guise of "singular arcs", invented by Gustin [6], and interpreted
topologically by Youngs [22] (or see Gross and Alpert [4]). The problem
solvers added 3(6s + 2) redundant edges and digons, yielding a derived
imbedding with 12s + 4 vertices, (12s + 4)(6s + 3) edges, (12s + 4)(4s +
1) triangles, and 18s + 6 digons. They employed a (12s + 4)-fold
branched cover, obtained from currents in Z2 x ZQs+2. Thus, the dual
of their current graph (interpreted topologically) has 1 vertex, 6s +
3 edges, 4s + 1 triangles on which KVL holds, and 3 monogons whose
excess voltage has order 2.

Residue class 0 presents unusual difficulty, since a number of the
form 12s might have no large odd factors. Terry, Welch, and Youngs
[13] solved this case also, once again using singular arcs, and intro-
ducing the use of a nonabelian current group.

A topological interpretation of their method is that the problem
solvers added 6s(2& — 1) redundant edges and digons to the desired
imbedding, thereby allowing it to be obtained via a 12s-f old branched
covering. The number 2k is the largest power of two that divides
12s.

7* Other residue classes* If the number n is not congruent to
0, 3, 4, or 7 modulo 12, then there is no triangular imbedding of the
complete graph Kn. The strategy for these "irregular" cases is to
discard one or more edges of the complete graph, to then triangularly
imbed the resulting graph, and to finally restore the deleted edges
on one or more handles, thereby obtaining an imbedding verifying
the Ringel-Youngs equation.
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The first residue class for which the problem was solved was
residue class 5, by Ringel [15]. Of the irregular cases, it is the
easiest to describe.

Suppose there were an imbedding of the complete graph Kί28+Z,
s = 0, 1, . , in the surface TIil2s+δ)^ such that every face was 3-sided
except for two (12s + 3)-gons, both of whose boundaries contained
each vertex exactly once. Then two additional vertices might be
inserted as the "barycenters" of the (12s + 3)-gons and adjoined to
each boundary vertex, thereby yielding an imbedding of K128+δ — K2

(i.e., the edge-complement of K2 in Kί2s+δ) in JΓ/(128+5)_I. By attaching
a handle from the interior of a triangle incident on one of the two
new vertices to the interior of a triangle incident on the other, and
by then adjoining the two vertices over that handle, one could obtain
the desired imbedding Kl2s+δ-+ Tni2s+δ).

The current graph used to actually construct the imbedding of
K12s+3 in Γ/(i2β+β)-i resembles the one used for residue class 3.

Another early residue class to yield was residue class 10, solved
by Ringel [16]. By an extension of the combinatorial devises used
for the triangular imbedding of ϋΓ12s+7, it is possible to imbed Kί2s+7

in Tj(i2s+io)-i so that every face is 3-sided except for three complete
(12s + 7)-gons. Inserting additional vertices and adjoining edges as
in case 5 yields a triangular imbedding of iΓ12s+10 — Kz in Γ/(i2s+io)-i
Ringel developed an ingenious way of adding a single handle (see
Section 1 of Youngs [23]) so that the three mutually nonadjacent
vertices could be made mutually adjacent.

The relation of residue class 6 to class 3 is like that of class 10
to class 7. The solution for residue classes 1 and 9 employ redundant
edges and digons. The current distributions for classes 6 and 9 are
especially difficult to construct.

The solution of Ringel and Youngs [19] for residue class 11 is
obtained by imbedding K12S+G in TI{ί2s+n)-2 with five (12s + 6)-gons,
augmenting to obtain a triangular imbedding of K12s+n — Kδ, and
then adding two handles and some adjacencies to produce K12s+lί in
2i(i2 +u) Addition of the ten needed adjacencies is not directly ac-
complished. There are several intermediate steps involving adjacency
modifications, where a "modification" means replacing the existing
diagonal of a quadrilateral by the other diagonal.

The novelty in the solution of Ringel and Youngs [21] for residue
class 8 is that it is obtained via an imbedding of K12s+6 in Tmu+v-t
whose faces are triangular except for one (12s + 6)-gon and two
(6s + 3)-gons. After the usual augmenting procedure, the vertices
inserted at the barycenters of the (6s + 3)-gons are amalgamated and
the vertex at the barycenter of the (12s + 6)-gon is adjoined to the
amalgamated vertex. The amalgamation and adjoining operation are
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jointly achieved with the addition of only one handle and some
adjacency modifications.

The solutions of Ringel and Youngs [20] for residue class 2
involves amalgamating a vertex as in case 8, adding six handles, and
performing numerous adjacency modifications. For s odd, Ringel and
Youngs [18] also obtained a triangular imbedding of K12s+2 — K2 in
ϊi(i2β+2)-i Mahendra Jungerman [25] has found a triangular imbedd-
ing of K12s+2 — K2 for all s = 0, 1, and also a shorter solution for
residue class 9.

This revisit would not be complete without crediting L. Heffter
[9] for inventing a valuable method for describing graph imbeddings
and for constructing some special imbeddings of complete graphs Kn,
n ^ 12 or without mentioning the imbeddings constructed by J. Mayer
[12] for complete graphs Kn(n = 18, 22, 23, 30, 35, 47, 59) which resisted
the methods described here. Also, Ringel and Youngs [17] credit
R. K. Guy for contributions to the solution and also credit Gustin
for collaboration on cases 1 and 9 and an independent solution for
residue class 4.

Finally, another paper of the present authors [5] proves that
every graph covering, regular or irregular, results from some voltage
assignment on the given graph.
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