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CENTRAL EMBEDDINGS IN SEMI-SIMPLE RINGS

S. A. AMITSUR

A ring S is a central extension of a subring JR if 5 = RC
and C is the centralizer of R in 5, i.e., C = {s E S sr = rs} for
every r E R. We shall also say that R is centrally embedded in
S.

We have shown that if a ring JR is centrally embedded in a
simple artinian ring then JR is a prime Ore ring and its quotient
ring Q is the minimal central extension of R which is a simple
artinian ring; furthermore, the centralizer of R can be
characterized. In the present note we extend these results and
show that rings which can be centrally embedded in semi-simple
artinian rings are semi-prime Ore rings with a finite number of
minimal primes and their rings of quotients are the minimal
central extension of this type.

2. The Ring Q0(JR). We recall some definitions and re-
sults of [1].

Let R be an associative ring (not necessarily with a unit) and let
L0(R) be the set of all (two-sided) ideals A of R with the property:

(A) "Vx E JR, AX = 0 φ JC = 0".
The set L0(R) is a filter. That is: closed under finite intersection

and inclusion. We shall also.assume henceforth that R E L0(R) i.e.
Rx = 0 φ x = 0.

Consider every A E L0(R) as left R-module and define the ring

Qo(R) = lim Homj?(A, R), where A ranges over all A E L0(R). A more

detailed description of Q0(R) is as follows: Let U - U HomR(Λ,J?),
A ELotR), and in U we define an equivalence relation, addition and
multiplication as follows:

For a: A-+R, β: B^R and A,B GL0(J?) we put:
(i) a +β: A ΠB-^R defined by x(a + β) = xa + xβ for

x E A Π B.
(ii) aβ: BA-+R by: (Zba)aβ =X[b(aa)]β for b e B, a <Ξ A.
(iii) a = β if there exists C C A Π B, C E L0(l?) for which cα =

c/3 for every c E C.
The ring QoCR) is the ring of equivalence classes of U with respect

to preceding definitions. Furthermore, JR is canonically mapped into
Qo(R) by identifying R with the right multiplications on R.

The center Γ = Γ(JR) of Q0(R) can be characterized as the set of all
γ E Qo(R) which have a representative γ E Horn (A, R) such that γ is in
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fact a bi-R-module homomorphism of A into /?, i.e. it satisfies (ax)y =
(ay)x and (xa)y = x(ay) f o r ί / E Λ , i E R. Also γ EΓ if and only if it
commutes with the element of R.

From the results of [1] we quote the following:
If R is semi-simple artinian, then R is both a right and left Ore ring

and its quotient ring is Q0(R) = JRΓ. [1, Theorem 6].
If S = RC is a simple artinian central extension of R then Γ C C

5 = RΓ(g)ΓC and RΓ = Q0(i?) is also simple artinian [1, Theorem 18].
The ring /?Γ is semi-simple artinian if and only if the number of

minimal primes P of R is finite, and for each P, (RIP)Γ(R/P) is simple
artinian. [1, Corollary 13].

It follows also from the proofs of [1, Theorem 10] that the number
of simple components of R equals the number of minimal primes of R.

3. The main result. Let S = 5 ,0 0 S m a direct sum of
a finite number of simple rings 5, with units eh and 1 =
6, + £2+ ••• + €„. The ring S will be said an extension of minimal
length of a subring R if for every / there exist O ^ r E i ? such that
rβj = 0 for all \φ /, or equivalently r{\ - e{) = 0. This means that for no
subring S d - β ί ^ S . Θ eSϊHΘSf+iΘ ΘSm the subring /?(!-€,)
is isomorphic with /?.

LEMMA 1. Let S = RC be a central extension of R. and let
S = 5 , 0 0S m foe α d/recf swm of simple rings S t with units et. Then:

(1) For every central idempotent e, Se is a central extension of Re
and it is also a direct sum of simple rings with a unit.

(2) There exists a direct summand Se of S such that R = Re, and
Se is a central extension of R of minimal length.

Proof A central idempotent e of S is of the form € = €,•,+ + eίr

and hence Se = S f l0Si2φ • 0S ί V. Furthermore 5 = RC yields that
5β =(RC)e =(Re) (Ce) and the elements of Ce commute with the
elements of Ce, which readily implies that Se is a central extension of
Re.

To prove the second part, we consider the set of all central
idempotents e of S with the property: "re =0, r E R φ r =
0". Clearly for such e, R = Re by corresponding: r —» re. The set of
these idempotents is not empty since the unit 1 has this property. Each
of the central idempotent e has the form e = e u + eip, i, < i2 < <
/r. So choose e of this set with minimal p. Then Se is a central
extension of Re of minimal length, since the minimality of p implies that
for any 1 ̂  λ ^ p, there exists r/0 such that r(e - eIλ) = 0.

The preceding lemma shows that if a ring R has a central extension
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S of the type described above, then replacing S by a direct sυmmand
we get a central extension of minimal length of a ring isomorphic with
R. We can, therefore, restrict ourselves to the study of central
extension of minimal length. Our results is the following.

THEOREM A. Let S = RC be a central extension of R of minimal
length then R is semi-prime and we can embed ΓCC. Furthermore, R Γ
is also a central extension of R of the same type with the same number of
components.

THEOREM B. Let S = RC be a semi-simple artinian ring and a
central extension of R of minimal length then R = Q0(R) is also
semi-simple artinian and S = RΓ<&ΓC.

In view of the results quoted from [1] we deduce that:

COROLLARY C. If R has a central extension which is a semi-simple
artinian ring, then R is a semi-prime (right and left) Ore ring with a finite
number of minimal primes. Its ring of quotient is QQ(R) and it is a
minimal semi-simple artinian central extension of R.

4. Proofs. Before proceeding with the proof we need a few
lemmas.

LEMMA 2. Let S = RC be a central extension of R of minimal
length, then an ideal A in R belongs to L0(R) if and only if AC = S.

Indeed, let S = S,0 0S n , Sf simple with a unit e, . If AC = S
and Ax =0 for some JC E #, then Sx = (AC)x = (Ax)C = 0 but S has a
unit and so x = 0, i.e. A E Lo(/?). Conversely, it suffices to show that
AC Π Si 7^ 0, since then AC Π S, is a nonzero ideal in the simple ring
implies that S, = AC Π Sh This in turn yields that AC D S, and,
therefore AC D S,0 0 S n = S. To prove that AC Π S, ̂  0, we note
that if AC Π St = 0 then Aet C ΛS{ C ARC Π S. C ΛC Π S, - 0. Let
P = {r, re, = 0} and ζ) = {r G JR, r(l - β,) = 0}. Since S is of minimal
length it follows that P Π ζ) = 0, ζMO and P D A Thus AQ C
P Π ( ? = 0 which contradicts the assumption that A G LQ(R) (i.e., A
satisfies (A) of §2).

We can follow now the proofs of [1] Lemma 14 and show:

LEMMA 3. If Sis as above then there is an embedding of Γ into the
center of S which contains C.

Proof. Let a: A -»/?, A E L0(R) be a representative of an ele-
ment a E Γ. First we show that there is a unique element ca E C
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depending on ά (and not on the representative a) such that aa = aca for
every a E A. Next we prove that the correspondence: ά —» 8a is the
required embedding. The proof follows the proof of fl] Lemma 14.

Since A E Lo(/?), it follows by Lemma 2 that AC = 5 and hence
1 = Xfl. c, for some α, E A and c, E C Set cα = Σ(α(α)c(. Since 5 E Γ ,
α is a bi-R hence for every α E A :

aa = (αα)l = Σ(flα)Λ/C, = Σ(αα,)αc( = flS(α(«)c, = aca.

To prove that cα E C, we observe that for every a E A and
JC E /?: (#jc)cα = (όuc)α = (aa)x = αcαx. Hence, #(Jtcα — cαjc) =
0. Consequently, S(xca - cax) = (CA) (xca - cax) = 0 and since 1 E 5
it follows that xca - cax = 0 for every x E /?, i.e. cα E C

The element ca which belongs to C, actually commutes also with
the elements of R and hence belongs to the center of S. Indeed, let
c E C and a EA then since C centralizes A we have (aa)c = c(aa) as
aa E R. Also αα = aca = cαα and, therefore:

cα (tf c) = (aca )c = (flα )c = c (tfα) = (c« )cβ = (ac )ca.

That is, ca commutes with all the elements of AC = 5, and this means
that ca is in the center of S.

Next we show that ca depends only on ά EF: let β: B -> R be
another representative of ά then a — β on some D C A Π β which
belongs to L0(R). Hence for d E D: dc« = da = dβ = dcβ. which im-
plies that D(ca - cβ) = 0 and therefore 5(cα - cβ) = (CD) (ca -cβ) = Q
which yields ca - cβ = 0.

Finally cα+β = cα + cβ, caβ = cacβ since for some ideals in L0(R) we
have the following relations for their elements:

xca+β = x(a + β) = xa + xβ = xca -f xcβ = x(ca 4- cβ)

Kαβ = y(αβ) = (ya)β = (ya)cβ = y(cαcβ)

and as in preceding proofs this implies that ca+β = ca + cβ and caβ = cαcβ.
We, henceforth, identify Γ with its image in C and thus we may

assume that Γ C C.

LEMMA 4. Lei 5 = RC = 5,φ φS n , S, simple with unit e,, fte α
central extension of R of minimal type, then e, E Γ.

For let P - {r E jR, ref = 0} and Q = {r E /?, r(l - ef ) = 0}. Since S
of minimal length, ί V 0, Q^0 and P Π Q - 0 . We first assert that
P + Q<ELQ(R) and, indeed, (QC)ef = ((?€f )C = QC = QRC = <?S =
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Q φ 0 and so QC C S* but QC is and ideal in S and therefore, also in 5,
which yields QC = S, since S, is simple. A similar proof which uses
the fa£t that Pe^O for jV / shows that (PC)ej = S, . Hence

and thus P + Q & LQ(R) by Lemma 1. Consider now the map e:
P + Q-+Q given by (p + q)e = q. Clearly, this is a bi-/?-
homomorphism, hence ά E Γ and so there exists c€ E C such that
(p + ήf)c6 = q. Consequently, (p + q)c€ = q = qex = (p + q)eh By the
uniqueness of ce it follows that c€ = ef

We are now in position to prove the main theorems.
R is semi-prime, for if A2 = Othen (AC)2 = in S, but S is semi-

prime and so AC = 0 which implies that A = 0.
Let S = RC = S,φ φ 5 n be a central extension of R of minimal

length, with e, the units of 5( . Put P = {r E i?, rβj = 0}, and consider R
as a subring of QQ(R). Then we readily have, since 6, E Γ C Qo(R) that
P = R Π Q0(R) (1—€i). Furthermore, P is a prime ideal: indeed let
AB QP with Λ,β ideals in R containing P, then since βg!P, Be, ^ 0
and, therefore, (BC)e] is a nonzero ideal in S\ which implies that
BCe, = S,. Thus:

0 = (CP)€, D (CAB)ex - Λ (CB)e, = AS,.

This yields that Λβi = 0 and so A C P. We can now apply [1] Theorem
8, which in our case means that QQ(RIP) = Q0(R)eι and Γ(i?/P) =

Denote, i?j = /?€, (which isomorphic with R/P) and d = ce] then
/?C6, = /?,C) = 5] which shows that /?, is a prime ring with a central
extension which is a simple ring S, with a unit. It follows, therefore, by
[1] Theorem 18 that /?,Γ(/?,) is simple with a unit. Now Γ(R]) =
Γ(R/P) = Γe] by the preceding result. So R^Te^ is simple with a unit
and note also that R]Γe] = (/?Γ)e,. The same follows for all the other
idempotents e, and so we get that JRΓ = i?Γei + PΓ62+ * * * + RΓen is a
direct sum of simple rings with units, which completes the proof of
Theorem A.

The proof of Theorem B follows the same lines by applying the
second part of [1] Theorem 18 which was quoted in the present note
(§2). Namely, if 5 is semi-simple artinian then each summand 5, is
simple artinian and hence, by [1] Theorem 18 /?,Γ, = (/?β,) (Γe,) = (/?Γ)e,
is simple artinian. Furthermore, we also have /?,Γ, = Q()(R/P) =
Qύ(R)eι by (iii) of [1] Theorem B. Thus, Q0(R) - ΣQoW*/ = Σ/?,Γ, =
RΓ.
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Finally, (RC)eι? = JR,Γ,®ΓlC^ for every ί, from which it follows
that:

# C = Σi?C6t = XRΓΊ (g) Cβf = i?Γ (g) C
Γ, Γ

since Γ = ΣΓe, and the elements e, belong to the center of S = JRC The
last isomorphism is given by the mappings r α ® c -

Corollary C follows now immediately by Theorem 6 and Corollary
13 of [1].

We finish with an immediate corollary of the fact that Γ C Cents S,
and Cent S C C :

COROLLARY D. If RC is a central embedding of R in a direct sum
of simple rings of minimal length, then so is JR(Cent C).
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