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Let L,(G) denote the Hilbert space of analytic functions f
which are regular in a region G and have finite norms:

1/2
(f J’ | f(z)lzdxdy> <o, It is well-known that the set
G

{K(z,2))|z\ € G} of the Bergman kernels for the class L.(G) is
complete in L,(G). In this paper, for regular regions G in the
plane, it is shown that the set {K(z, Z,)|z, € G} is also complete
in the Hilbert space of analytic functions f which are regular in G

172
and finite norms: (f ]f(z)]’ds) < oo,
aG
The object of this paper is to discuss some problems of this

type.

1. Introduction. Let S be a compact bordered Riemann
surface with contours m and of genus n. Let {C,}."' denote a
canonical homology basis and {C,}:“ir., denote the boundary
components. Let M denote the Hilbert space of analytic differentials
f(z)dz which are regular in S and have finite norms:

1/2
(fJ’ |f(z)|2dxdy> <ow(z=x+yi). Let F=F(C,,C,---,C,) be the
S

closed subspace of M composed of differentials f(z)dz such that
(1.1) f f(z)dz=0, A=1,2,--- a.
c,

In terms of local parameters z and z,, let Kg(z,Z,)dz denote the
Bergman kernel for the class F which is characterized by the following
reproducing property:

f(z,)=”; f(z)Ke(z,Z,)dxdy for all f(z)dz €F.

On the other hand, we consider the Hilbert space H? of analytic
differentials f(z)dz which are regular in S and finite norms:

12
(-21; f |f(z)dz|2/idW(z,t)) <. Here W(z 1) denotes g(z,1) +ig*
as
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(z,t), g is the Green function of S with pole at ¢t and g* is the conjugate
harmonic function of g. In this paper, for simplicity, we shall use the
same notation for a point on S and a fixed local parameter around
there. Let H2" denote the closed subspace of H? satisfying the
condition (1.1). In terms of local parameters z and z,, let Rf(z,z,)dz
denote the conjugate Rudin kernel for the class H%" which is character-
ized by the following reproducing property (cf. [2]):

(1.2) 1 f(2)dzR% (z, z))dz
1@ =50 = w0

for all f(z)dz € H? .

Let S, denote any point set {P} of S such that lim;_.. P,=P, for some
P€S. Then as we see from the reproducing property, the sets of
kernel functions {Kr(z,Z,)dz |z, € So} and {R(z,z)dz|z,E S} are
complete (or equivalently closed) in the Hilbert spaces F and H?,
-respectively. In the present paper, we shall show that the sets
{Kr(z,Z,)dz | z, € So} and {R% (z,2,)dz | z, € S,} are also complete in H5*
and F, respectively, and further we refer to some completenesses of the
Rudin kernel functions. These results will be obtained from some
fundamental properties of the Bergman kernel and the Rudin kernel.

2. Completeness of {K:(z, z))dz |z, € S,}. Let
Le(z, z)dz

denote the adjoint L-kernel of Kr(z,Z,)dz. Lr(z,z,)dz is an analytic
differential on S except for z, where it has a double pole:

(L1
2.1 Le(z,z)dz = (w = Zl)2+ regular terms) dz.

Further L:(z,z,)dz has the following properties:

@) [ Lad=0 =12
G,
(23) ff f(z) Le(z,z,) dxdy =0 for all f(z)dz €F.
N
(2.49) — Kr(z,2,)dz = Le(z,,z)dz along S (z € 3S).

In general, we have K:(z,Z,) = Ke(2,,Z), but Lg(z,z,) = Lr(z,,2) if and
only if the class F is symmetric. As to the properties of the Bergman
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kernel for the class F on compact bordered Riemann surfaces, the
reader is referred to Schiffer-Spencer [4]. Let {t,}*'""' denote the
critical points of g(z,t). Let {C,,C,, -, C,} denote {C,}}xi"'—
{C;,,Cy,, -+, C,,}. Then we have the following theorem which is a
generalized form of Lemma 2.1 in [2]:

THEOREM 2.1.

1 @n+m-1)xQ2n+m-1)

fa, Le(z,t,)dz

fck,, Le(z,t,)dz

det #0.

Jo, ([ otctrae) iaweary

Ic,a (J)j Lr(S, tv)dg) idW(z,t)

Here we assume that {t,} are all simple. In the other cases, we obtain
modified forms.

Proof. From (2.1), (2.4) and the identity

Kr(z1, 7) =% f K (¢, 2)dERE (L, z)d¢

idW({, t)
we have
—— Le(z, H)RT (L, 20)dg
Kez, D)= —75 f W 1)
_ 1 <1éf(z, z.))'_”‘*”’" RI(t, 2)Le(2,1,)
W’(Z, t) v=1 W”(tv, t) )
Hence

_1- R’:(Z, Z]) '= R (tv, Zl)
(2'5) T ( W'(Z, t)) KF(Z Zl) E W"(t,,, t) LF(Z9 tv)'

Further we get
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(2.6) R¥(z, z)dz

1
T

U Ke(G.20d; +2 o e J Le(g t )d{} AW (z,1).

At first from (2.5) we have

R (t Z)
(2.7) 2 W1 j o Le(z,t,)dz

_I KF(Z,Z—l)dZ, M =],2,"',b.
Ck
Next from (2.6), since R (z,z,)dz € HS, we have

R (tv’zl) ! ;
(2.8) 2 W,,(t”t)J ( Le(¢, md;) idW(z,t)

=_L (f KF(g,Z,)dg“)idW(z,t), A=12,a

Here we shall see that the coefficients {R” (t,,z,)/W"(t,t)}, in the
representation (2.6) of R¥(z,z,)dz are determined uniquely as the
solution of the equations (2.7) and (2.8).

We take {X,}2'""' as a solution of (2.7) and (2.8) and define

i R (z,z)dz = U Ke(¢, z,)d§+2 Xf Lr(Z,t, )d{} dW(z, t).

m

Then Rf (z,z,)dz € H?" and from (2.7) and (2.2) we see that (K (¢, Z)) +
S.X,Le(L, t,))d is exact. For any analytic differential f(z)dz on S (in
fact, S) such that f(z)dz € HY", we have

1 [ f(z)dzR%(z,2,)dz
27 Jss idwW(z,t)

=§17Ls f(z)(f(KF(g, 2)+2 X.Le(Z, t,))dz) dz

from the Green’s formula, as usual,

= ffs f(2) <Kp(z, Z)+ 2 X, Le(z, tu)) dx dy
from (2.3),
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= f(zl),

which implies that Rf(z,z) = Rf(z,z). Since {szF(g, t,)d{} is

linearly independent, we have the desired result.

Thus from the uniqueness of the solution of the equations (2.7) and
(2.8), we have the assertion of the theorem. In the cases of which all
the t, are not simple, we can modify the above arguments slightly and
we have modified forms, as usual.

In Theorem 2.1, if F = F(0) =M, then from the identities

(2.9) LF(z,z,)=—%i’§—Z(§-;f—') and Z',(z)=—fC Le(¢, 2)de

(cf. [4]), we have det[Z(t;)]¢ - ">@+m=b £ (0 which is the result of
Lemma 2.1 in [2). Here {dZ,} is a basis of analytic differentials on S
which are real along 4S.

Next let G be a regular region in the plane with contours
{CYi.,. If F=F(@,2,---,m—1), from the identities

_ 1 1
Kp(z,z,)=; M'(z,z,) and Lg(z,z)= — N'(z, zy)

(cf. [1], pp. 361-376), we have the following:

COROLLARY 2.1.
1 (m-1)xm-1)
det [2— f NG, )idW (2 1) = N, £)o (1) #0.
m Jg

Here w; is the harmonic measure of C; and we assume that {t,} are all
simple. In the other cases, we have modified forms.
Now we have the first desired result:

THEOREM 2.2. The set of the Bergman kernels {Kg(z,2))dz |z, €
So} is complete in HY".

Proof. We assume that for any f({)d{ € HY,

f(OdEKe(L, Z)dE
y AW, 1) =0 forall z€S,.

From (2.1) and (2.4), we have
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1 (@)Y " ) Lezt,) _
10 o (G5 + S L Ct oo foran z €5,

and hence for all z € S. Here we assume that {t,} are all simple. At
first from (2.10), we have

@i Sl [ Lz =0 w120

Next from (2.10), we have

1 _f@) ) _
(212) T W,(Z,t)+z,, W”(t,,,t)J', LF({’ t,,)dg =0.

Hence from f(z)dz € HY", we get

(2.13) 2% ) (fLF(g’,tv)dg) idW(z,t)=0,

A=1,2,---a.

Hence from (2.11), (2.13) and Theorem 2.1, we have f(t,)=0, v =
1,2,---,2n+m —1. Thus (f(z)/W'(z,t)) =0 and f(z) =0. It im-
plies the desired result.

In the cases of which all the ¢, are not simple, by making use of
modified forms of Theorem 2.1, we have the desired result, again.

3. Completeness of {R7(z,z,)dz |z, € S;}. Let N(z;z,,t)
be a Neumann’s function on S with poles at z, and ¢, where N(z;z,,t)+
log|z —z,| and N(z;z,,t)—log|z —t| are harmonic, respectively and
ON/dv =0 on 3S. We set V(z;z,,t)=N(z;z,,t)+iN*z;z,,t) and
define meromorphic differentials as follows:

dP(z;z,t)= % [dV(z;z,,t)—dW(z,z,)+dW(z,1)]

dP(z;z,,t)= [dV(z;z,,t)—dW(z,z,)—dW(z,t)]
3.1
dQ(z;z,t)= [=dV(z;z,t)—dW(z,z)+dW(z,t)]

1
2
dQ(z;z,,t)= } [—dV(z;z,,t)—dW(z,2)) — dW(z, 1)].
Here we note that

(3.2) dP(z;z,,t)= —dQ(z;z,,t) along 48,
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(3.3) dP(z;z,,t)= —dQ(z;z,,t) along aS.

Then we have the following representation of the kernel R,(z,z,)dz for
the class H?[2]:

2n+m—1

B4  R(zz)=-W.H)P@z,0+ 2 B2i1) Ziz2).

Here {B,(z,, t)} are constants which depend on z, and ¢ and determined
uniquely. At first, we note the following fact:

LEmMaA 3.1.
(3.5 det[B, (t,, t)]@nmxansm=b £ ()

Here we assume that {t,} are all simple. On the other cases, we have
modified forms.

Proof. We assume that the determinant (3.5) is zero. Hence we
can take complex numbers {X,} such that all X, are not zero and

2n+m—1

(3.6) > X B.(t.,t)=0, v

p=1

1,2,---,2n+m — 1.

On the other hand, from (3.4) we have
. 2n+m-—1
37 R@Gzt)= 2 B(t.t)Zz2), p=12,-2n+m—1.
v=1
Hence from (3.6) and (3.7), we get
> X.R(z,t,) = 0.
I

As we see from the general theory of kernel functions, since
det[R,(t,, t,)] #0, we have X, =0 for all u and hence we arrive at a
contradiction.

Now we shall have the following theorem:

THEOREM 3.1.

. - Qn+m—-1)x2n+m-1)
(3.8) det [f ([ R,(z,z,)dz) dzl] > ().
Ca Cu
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Proof. We assume that the determinant (3.8) is zero. Then by
making use of the representation of R,(z, z,) by a complete orthonormal

system, we see that { ﬁ,(z,zl)dz} is linearly dependent for any
A

CA

z, € S. Hence there exist complex numbers {X,} such that all X, are

not zero and 2, X, R, (z,z,)dz = 0. As to this fact, the reader is
Ca

referred to the proof of Theorem 2.1in [3]. Hence from (3.4) we have

2 X, fg <— W’(z.,t)P’(z;z,,t)+Z B.(z,,1) ZL(Z))dz =0, z,ES.

By setting z, = t,, we have
ZXA(ZB"(tF‘t)f dZ,,>=0’ I~L=1,2,"',2n+m—1_
A v Ca

Hence from Lemma 3.1 (or from modified forms of (3.5) if all the ¢, are

not simple), we have ZAXAJ' dzZ, =0, v=1,2,---,2n + m — 1, which
Ca

[
Ca
nonsingular. Thus we have a contradiction.

_ Next we consider a representation of Rf(z,z|)dzAby the kernel
R,(z,z,)dz. From Theorem 3.1, we can take constants {A; (z,)}i-, which
are analytic functions of z, and determined uniquely as follows:

implies that all the X, are zero, because the matrix is

a

: . :
69  RGz2)d-523 AG) | R dd Ry,
A= A

As we see by the simple computations, since the differential (}.9) has the
reproducing property (1.2), we see that this is the kernel Rf (z, z,)dz.
Now we shall give the following theorem:

THEOREM 3.2. For {B,,(z),1)}’-,, we have

1 @entrm-1)xQRa+m-1)

Bh(tm t)

det| B (8. 1) #0.
Ajl(tl/)

A,(t)
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Here we assume that {t,} are ali simple. In the other cases, we obtain
modified forms.

Proof. We assume that the above determinant is zero and hence
we can take {Y,} such that all Y, are not zero and

2n+m-—1

> YB.(t,t)=0, w=1,2,---,b, and
v=1
(3.10)

2n+m-—1

> YA, (t)=0, A=12,a
v=1

On the other hand, from (3.4) and (3.9) we have

B.11)  RE(z,z)=-W'(z, ) P'(z;2,t)+ >, B,(z1,t) Z)z)

1 A A
5 2 A2 f R(¢ 2)dr.

Hence we have, by setting z,=t,,

1 ~ A
012 RI )= 3 8,002 ~ 52 S A | R e

From (3.10) and (3.12), we get

S VRIG) =3 (2 VAwD) 2,6,

and hence from R¥ (z,t,)dz € HYF,

a

z (Z ?"Bj‘(tV’t)>J dZ]»\ =0’ A= 1,27“ 5 a.
v Cx

A=1

Since det U deA] # 0, we have
Cl}\'

z ?Vm=0, A=1,2,-- a.

and hence
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> Y,Rf(zt,) =0,

which implies that all the Y, are zero. Hence we have a contradiction.
Especially, in Theorem 3.2, from the case of the subspace of H?
such that f(z)dz € HY are exact, we have the following:

COROLLARY 3.1.

det [Ap(t# yJensm-DxCnem £ ()

Here we assume that {t,} are all simple. On the other cases, we have
modified forms.

Now we can give the second desired result:

) THEOREM 3.3. The set of the conjugate Rudin kernels
{R¥(z,2,)dz |z, € Sy} is complete in F.

Proof. We assume that for any f(z)dz €EF,

jj f(z)R%(z,z,)dxdy =0 for all z,E S,.
From (3.4) and (3.9), we have
[[ 1a]-wenPEan+S .07 | ddy

+2+n' 2 Az ”S @) (L R.(&, z)d{) dxdy = 0.

Here since
(3.13) I _
|| 1 Z@ acay=~[ sz ot 1,
from f(z)dz € F, we have
(3.149) - W’(z;,t)”S f(z) P'(z;z,,t)dxdy

+§ 3k“(21,t)<_f& f(z)dz)

+§5r7§, A, (z) J’L f(Z)UCIA R,(g’,z)dg) dxdy =0.
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Here we assume that {t,} are all simple and we set z,=t, in
(3.14). Then from Theorem 3.2, we see that

jf f(z) P'(z;z,,t)dxdy =0 for all z,€ S,
S

and f(z)dz is exact. We set f'(z) = f(z) and from the Green’s formula,
we have

J f(z) P'(z;z,,t)dz = 0.

From (3.3), we have f(z,) = f(t), which implies the desired result.
In the cases of which all the ¢, are not simple, by making use of
modified forms of Theorem 3.2, we have the desired result, again.

4. Completeness of the Rudin kernel functions. Let
H, denote the (analytic) Hardy class on S. Let R,(z,z,) denote the
Rudin kernel for the class H, which is characterized by the following
reproducing property:

f(21)=%fas f(z)R.(z, 2))idW (z, t) for all f€E€ H,.

We shall consider the completenesses of the sets of differentials of
{R.(z,2))idW(z,t)|z, € So}-type in F. Here we should consider the
kernel Rf*(z,z,) for the closed subspace HZi* of H, such that
f(2)idW(z,t) € H?". We note that RF(z, z,) is analytic on S, as we see
easily. At first we have the following fact:

THEOREM 4.1. The set of kernel functions {Rf«(z,z,)|z, € Sy} is
complete in HY*. The set of analytic differentials

{RT(z,2)idW(z,t)|z, E So}

is complete in F if and only if S is simply-connected.

Proof. The first part is evident, by the reproducing
property. Next we assume that S is not simply-connected. Then
there exists at least one critical point t* of g(z,t). We take Kq(z, [¥)
and we have, by the reproducing property of Kq(z, f*),

ff Kr(z, I*)R[(z, 2))iW'(z,t)dxdy = 0 for all z,ES.
S
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Hence {R{(z, z,)idW(z,t)|z, € S¢} is not complete in F.

If S is simply-connected, then we have the desired result, from the
assertion of the next Theorem 4.2.

On the other hand, we consider the Rudin kernel R% (z, z,) (with
poles, in general) for the class HY of meromorphic functions f such that
f(2)idW(z,t)€ H?". Then we have the following identity, as we see
by the simple computations,

4.1) R (z,2)idW(z,t)idW(z,,t) = R (z,z,)dz dz.

Thus from (4.1) and Theorem 3.3, and from Theorem 2.2, we have the
following theorem:

THEOREM 4.2. The set of differentials {R" (z,z)idW(z,t)|z, € So}
is complete in F. The set of meromorphic functions
{Kr(z,2))dz[idW(z,t)|z, € So} is complete in HE.

In the last part, we shall give a representation of R¥ (z,z,) by the
kernel R,(z,z,). At first we shall give the following theorem:

THEOREM 4.3.

(2n+m)xX(2n+m)
] > 0.

det UC (L R.(z, 2)idW(z, t)) AW D

Proof. As we have pointed out in Theorem 3.1, it is sufficient to
2n+m

show that {J' R, (z,z)idW(z, t)} is linearly independent. Suppose
Cx A=1
that

4.2) > XAf R.(z,z)idW(z,t) =0, z ES.
A Ca

Here we use the following representation of R,(z, z\)idW(z,t)[2]:
2n+m-—1

(4.3) R,(z,z)idW (z,t) = [— iP'(z:2,,t)+ Z av(zl,t)Z’v(z)] dz.

Here {a,(z,,t)} are constants which depend on z, and ¢t and determined
uniquely. From (4.2) and (4.3), we get

v
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We recall the following identities:

IN(z;z,t) dg(z,z) dg(zt)

(4.5) P'(z;z,,t)= 5 92 Fram

and

32g(z,z,) azN(z;Z“t) 7T2n+m 1
6z0z,  ozaz 2 Y CwZU2)ZSz).

mv=1l

(4.6)

Here the constants ¢, are real, c,, =c, and the matrix |c, | is
nonsingular (cf. [4], p. 97). On the other hand, from (4.3) we have the
following equations:

> a(z ) Zt)=iP'(t;2,,1), j=1,2,---2n+m—1.

v

Here we assume that {t,} are all simple. On the other cases, we can
modify the following arguments, as usual. Then since det[Z(t;)] # 0,
we get

4.7) (_—_——ga_%:_t_)> =

(1 aP(t Zy,t >' /|Z(t)|

Further we note that
4.8) f K(z2)dz = - f f K(z2)Zi(2) dxdy = — Z}(z),
Ca S

and we set P, = az,.

Ca

Now from (4.4), (4.5), (4.6), (2.9), (4.7) and (4.8), we get

4.9) miS XZE+ 5 2 X, (2 € PaZ02))

VA

(7K 12033 0. 20070 | ) = 0.

2x(3

Since in (4.9), each of the coefficients of K(t,Z,) must be zero, we
compute the coefficients. Let M,; denote the cofactor of the (v,j)-
component of the matrix || Z(t)|. Then the coefficient of
miK(t,2)/| Z'(t;)] is given by
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X: Pl.) Ml.j + X} PZ.I Mz,i +oeeet Xl P2n+m~].l Mzn+m—1,j
+X2 PLZMIJ +X2Pz.zM2,j +oeert Xz P2n+m—l.2 M2n+m—l.i

.....

.....

+ X2n+m—l Pl,2n+m~1 M.i +-
+ X2n+m—l P2n+m—l.2n+m—l M2n+m—|.j~

Hence we have

2n+m-—1

kz_l Mk.j(Xl Pk,l + X, Pt -+ Xonsm-i Pk,2n+m-—l) =0,
j=12,---2n+m —1.

Since the matrix ||M;, | is the adjoint matrix of the regular matrix
lZut)|, it is nonsingular. Hence we get =, X,P, =0 for k=
1,2,---,2n+ m — 1. Hence we have all the X, are zero, which implies
the desired result.

Next we shall consider the class H§ of meromorphic functions f
such that f(z)idW(z,t) is analytic on S except for t and f€&
L,(8S). We shall construct the kernel R4(z, z,) (with poles, in general)
for the class H%. In the following, without loss of generality, we
assume that {t,} are all simple. Because in the other cases, we can
modify the following arguments, slightly.

Let L,(z,z) and L, (z,z,) denote the adjoint L-kernels of R,(z, z,)
and R,(z, z)), respectively. They are analytic on S except for a simple
pole at z, with residue 1, and the following properties:

- 1
4.10) R.(z, z)idW{(z, t) = H L,(z,z)dz along S, and

- I
(4.11) R(z2)=7 L(z, z)idW(z,t) along éS.

respectively. i
Further we have L,(z,z,)= — L,(z,,z) and

4.12) L(z,t)= —L,(t,z)= — W'(z,t)[2].

As we see by the simple computations, we have the following represen-
tation of R¥(z,z,):



ON SOME COMPLETENESSES OF BERGMAN AND RUDIN KERNEL 595

2n+m-1

(4.13) Ri(z,z) = R(zz)+ 2 Y.(2)L(zt).

Here {Y,(z,)} are determined as the unique solution of the following
equations:
2n+m—1

(4.149) > Y.,(z)R(t,t.)=L,(z,t), j=1,2,---,2n+m —1.

v=1
Here we shall give the following theorem:

THEOREM 4.4.

n+m)x2n+m)
] >0.

det [ LA ( . R% (z,z,)idW(z,t)) idW(z,,t)

Proof. Suppose that X, X, f R#% (z,z)idW(z,t) = 0 and hence
Ca

> X, f R/(z,z)idW(z,t)+ D, X, (2 Y,(z) f L. (z,t)idW(z, t))
A Ca A v Ca
0.

Since each Y,(z)) is represented as a linear combination of {L,(z,, t, )i,
we get

> XAI R.(z,2)idW(z,t) = D> XA<Z Y,(z,)f L.(z, tv)idW(z,t))
A Cx A v Cx
= 0.

Hence from Theorem 4.3, we have all the X, are zero, which implies the
desired result.
Now we construct the kernel R{(z,z,). We set C,=4S. Then

from Theorem 4.4, we have

] (a+)x(a+1)

det UC (L | R%(z, 2))idW(z, t)) dW(z,, t) >0,

AMLA'=0,1,2,--05a.

Hence we can take the unique constants {A; (z,)}i-, such that

@15 Ru z,)—i A(z)) f  Ri({, 2)idW({, t) E HE,
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which is the kernel R% (z, z,), as we see from the simple computations.
From (4.13) and (4.15), we have

2n+m—1

(4.16) Ri(zz)=R(zz)+ 2 Y.(z)L(zt)

2n+m—1

—;,Ah(zl)fc [R,(z,z)+ Z Yy(z)ﬁ,(g,tv)] idW(, 1).

Since R (t,2,)=0, L,(t,t,) =0 and Y,(t) = 0, as we see from (4.12) and
(4.14), we have, by setting z =t in (4.16),

1- Az) | idW(t)=0.
A=0 c,
Hence we get (Note that the integral on C, is zero.)

2n+m—1

(@.17) Ri(zz)=R(zz)- D+ 2 Y.(@)Li(zt)

2n+m-—1

_;A]A(Zl)fC [(Rt({,l)_l)'f' ; YV(Z)ﬁ,(g,t,)]ldW({,t)
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