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REAL PARTS OF UNIFORM ALGEBRAS
ON THE CIRCLE

W. P. NOVINGER

This paper is about uniform algebras on the unit circle
Γ in the complex plane and specifically with the spaces of
real parts of such algebras. The major portion of the paper
is devoted to proving that if A is the disc algebra on Γ
and B is any uniform algebra on Γ such that Re A c Re B,
then either B = C(Γ) or else B = A o φ(= {/o <p: feA}) for
some homeomorphism φ. We also show that any homeo-
morphism φ for which Re A c Re A © φ must be absolutely
continuous.

By a uniform algebra on Γ we mean a subalgebra of C(Γ)
which is closed in the supremum norm, separates points, and contains
the constant functions. The canonical example of a uniform algebra
on Γ (other than C(Γ), of course) is the disc algebra A: those
members of C(Γ) which have continuous extensions to the closure
of the unit disc U so as to be analytic in U. In a recent paper
[3], John M. F. O'Connell sets forth some of the consequences of
assuming the relationship Re A — Re B, where Re A and Re B denote
the spaces of real parts of the functions in A and B respectively.
O'Connell shows that when Re A = Re J5, there is a homeomorphism
Φ of Γ onto Γ such that B= Aoφ, and that any homeomorphism
Φ for which Re A— Re Aoφ is necessarily absolutely continuous.
Thus our main results, as stated in the opening paragraph, represent
generalizations of O'ConnelΓs work to settings in which only the
inclusions Re A c Re B and R e i c R e i o φ are assumed.

THEOREM 1. Let A be the disc algebra on Γ and B be any
uniform algebra on Γ such that Re A c Re B. Then either B = C(Γ)
or there is a homeomorphism Φ of Γ onto Γ such that B— Aoφ.

As the proof is rather lengthy, we have chosen to proceed
through a sequence of three lemmas. The last of these is perhaps
interesting in its own right and is suggested by work that appears
in O'ConnelΓs paper. The first lemma is also due to O'Connell. Z
will be used throughout to denote the identity function on Γ, Z(z) = z
for all zeΓ.

LEMMA 1. Suppose B is a uniform algebra on Γ such that
Re A c Re B. Then there are two points a, b € Γ Π {z: Im z ^ 0},
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and a function Φ eB such that Φ maps Γ onto itself as in the
diagram below. See, alsoy the notes following diagram.

Φ

NOTES. Xίf X2, Ylf and Y2 are the indicated closed arcs; Φ(X,)
is a singleton {ζ̂ -} and Φ takes Y3- homeomorphically onto Γ 0 for
3 = 1, 2.

Proof. As Z eA, there are functions ψ and ψί in B such that
Re Z = Ref and Im Z = I m ^ . Now if ψ maps Γ onto a Jordan
arc, then Mergelyan's theorem implies that the function w —+Re w
is uniformly approximable on ψ(Γ) by polynomials in ψ. Since B
is a uniformly closed algebra, we have ReZeB. Similarly, if also
ψi maps Γ onto a Jordan arc, then iτaZeB. Thus in the event
that both ψ(Γ) and ψι(Γ) are Jordan arcs, we conclude by Fejer's
theorem that B = C(Γ). The conclusion of the lemma obviously
holds in this case. So let us assume that at least one of ψ(Γ) or
ψίiΓ), say the former, is not a Jordan arc. Remembering that
Re ψ = Re Z, we see that it is necessarily the case that there exist
a, b e Γ Π {z: Im z :> 0} with Re a < Re b such that ψ(a) = ^(α), -f(6) =
τH6), but f(ζ) Φ ψ(ζ) for Re a < Re ζ < Re b. Let Xlf X2, Yίf Y2 be
the closed arcs indicated in the diagram. Then ψ maps each of Yt

and Y2 homeomorphically onto arcs and maps Yt U Yi onto a simple
closed curve J. Let TΓ be the bounded component of C — J and K
be the union of ψ(Γ) and the bounded components of C — ψ{Γ).
By a famous theorem of Caratheodory, there is a homeomorphism
Φ of VΓ U J onto the closed unit disc such that φ is analytic on W;
if we extend φ to if by defining φ(w) — Φ(ψ(a)) for Re w < Re ψ{a)
and ^(w) = Φ{ψ{b)) for Re w > Re ψ{b), then ^ is continuous on K
and analytic on the interior of K. By Mergelyan's theorem, we see
that φ is uniformly approximable on K by polynomials and so it
follows that φoψ eB. The function Φ = φ oψ has the required
properties.
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For I c Γ , B\ X will denote the algebra of restrictions to X of
the members of B.

LEMMA 2. Let B be a uniform algebra on Γ such that Re AaΈie B
and let Φ eB map Γ onto Γ as in Lemma 1. Then B \ X1 = C(X0
and B\X2= C(X2).

Proof. We have Φ{XX) = {Q while Φ(ζ) eΓ- {ζj for ζ e Γ - X,.
Therefore XΊ is a peak set for B and consequently I? | Xx is sup-
norm closed in the space C(Xi). [5, Lemma 12.3.] In fact, an
application of the generalized Stone-Weierstrass theorem will show
that J3 |X 1 = C(Xi). For to begin with, it follows from the theory
of conformal mapping of Jordan regions (already used once in the
proof of Lemma 1) that there is a function f in A which takes Γ
homeomorphically onto the (boundary of) the closed unit square and
is such that /(Xi) = {x: 0 ^ x <̂  1}. We have Re A c Re B, so choose
geB such that Re/ = Reg. As Re/ is one-to-one on X19 so too is
Re g; thus g maps Xι onto a Jordan arc. By Mergelyan's theorem
once more, there is a sequence {Pn} of polynomials such that Pn(w) —>
Rew uniformly on g(X^\ hence Pn o g(ζ) —• Re g(ζ) uniformly on Xt.
As BI Xγ is closed we have Re g \ Xx e B \ Xx. But Re g — Re / is
one-to-one on Xλ. Thus B\XX contains a real-valued function (viz.
Re g I JQ which is one-to-one. In particular, the real-valued func-
tions in B I Xx separate the points of Xx. It follows from the gene-
ralized Stone-Weierstrass theorem [5, Theorem 12.1] that B\Xι —
C{XX) as required. Exactly the same argument applies to show that
B\X2=C(X2).

Before turning to the third and final lemma needed for the
proof of Theorem 1, let us stop and note how O'ConnelPs result
follows readily from what we have already done. That is, assume
we actually have the equality Re A = Re B. Then Re A | Xx =
Re I? I Xί = CR(X^), the last equation being a consequence of Lemmas
1 and 2. By a result of Sidney and Stout [5, Theorem 20.9] we
conclude that A\X,= C(-XΊ). But as is well-known, A\Xλ= C{XX)
only if the "arc" Xι is a single point. Of course the same argument
yields that X2 is a single point. Consequently, (see diagram again)
a = a = —1 and b — b — 1, and hence Φ is one-to-one. Now A°Φa
B implies Ad Boφ~\ so B°Φ~ι is a uniform algebra on Γ which lies
between A and C(Γ). By Wermer's maximality theorem, B°Φ~ι ~
A or Boφ~1=C(Γ). The latter equality is impossible (Re A Φ
CR(Γ)), so B= Aoφ and we have O'ConnelPs result.

As preparation for Lemma 3, we need to introduce some addi-
tional terminology and recall a few facts. Let m denote normalized
Lebesgue one-dimensional measure on Γ and let Lp(m) have its
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usual meaning. Hp(m) is the subspace of Lp(m) consisting of those
feLp(m) whose Fourier coefficients with negative indices are zero:

thus feHp(m) iff / e Lp(m) and [ Znfdm = 0 for n = 1, 2, . For
feL\m)y let P[f] denote the Poisson integral of /. It is a basic
fact that P[f] is a (complex-valued) harmonic function on U and
P[f] is analytic if and only if feH^m). Also, P[f] has radial
limits equal to / a.e., and when feH^m), then /(ζ) = 0 on a set of
positive measure if and only if P[f] is identically zero.

LEMMA 3. Suppose S is a subalgebra of L°°(m)f h e Hι(m) with
h =£ 0, and hf e H\m) for each fe S. Then S c ίP°(m).

Proof. We can assume that S is closed in L°°(m) as the closure
of S will satisfy the hypothesis if S does. Now for any flf f2 e S,
P[h]-P[ff2h] and P[fh] P[f2h] are each of bounded characteristic
(belong to the Nevanlinna class JV, cf. [4], Chapter 17) and, further,
have the same radial limits a.e. Thus (P[h]'P[ff2h])(z) = (P[fh]'
P[f2h])(z) for all z in U. This means that for any fixed z where
P[h](z)Φθf the functional

(feS)

is a multiplicative linear functional on the Banach algebra S; thus
it is continuous and has norm <I 1. Consequently, for each feS,
the meromorphic function P[fh]/P[h] is actually bounded on U and
since P[fh]/P[h] has radial limits equal to /a .e . , we conclude that
feH°°(m). So S(zH°°(m) as required.

Proof of Theorem 1. Let ΦeB map Γ onto Γ as in Lemma 1.
We have B \ X, = C{XX) and B\X2= C(X2) by Lemma 2. Now let
us consider the remaining restriction algebras B \ Yί and B | Y2, and
the two possibilities: (1) B\Yι= C(Yi) and B\Y2= C(Y2), (2) B\ Y, Φ
C{Yλ) or B\ Y2 Φ C(F2). If (1) holds then B= C(Γ) because of the
following theorem of R. E. Mullins [2, Theorem 3, p. 272]: "Let A
be a function algebra on a compact metric space X. Let Fu , Fn

be n closed sets such that X = \Ji=1Ft and A | Ft — C(Fi), i —
1,2, ••-,*&. Then L̂ = C(X)." (A generalization of Mullins' result
can be found in [5], Theorem 13.11.)

Suppose then that (2) holds with say B\Y1φC(Y1). By a

theorem of Glicksberg [5, Theorem 20.16] there is a complex regular

Borel measure μ on Γ such that I gdμ = 0 for all g e B, but the

restriction μ \ Yγ is not the zero measure. The same theorem implies,
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moreover, that each of μ \ X1 and μ\ X2 is the zero measure. Denote
by μ* the measure on Γ induced by Φ; that is, μ*(2?) = μ(Φ~\E))
for each Borel set E. Since Φ maps Yx homeomorphically onto Γx

and μ \ Yλ is not the zero measure, it follows that μ* is not the zero
measure either. For each g e B, let g* be defined on Γ — {ζ1} ζ2} by
g*(Q = g(φ-\Q). We claim that dμ* = hdm where h e H\m) and
that g*h e H^m). To see this let g e B and n be a positive integer.
Then

0

If we take g = 1, then the preceding calculation, together with the
classical F. and M. Riesz theorem, implies that dμ* = hdm where
h e H\m). This establishes the claim. Note also that since μ
is not the zero measure, h cannot vanish on a set of positive
m-measure. Now let S be the subalgebra of L°°(m) consisting of
{g*:geB}. Lemma 3 applies and we conclude that SciH^im). So
g* e H°°(m) for each g e B. It is clear that the bounded analytic
extension to U of g* is continuous on U (J Γ — {d, ζ2} and that,
furthermore, limζ_c. #*(ζ) = g(a) while limζ_ζi g*(ζ) = #(α). By

an old theorem due to E. Lindelof [1, p. 43], we deduce that g(a) =
g(a) = limζ_Cl flr*(ζ). In the same way, g(b) = g(b) = limc_C2 flr*(ζ).

As 5 separates points, we conclude that a = a and 6 = b so that Φ
is one-to-one. The above argument also shows that then goφ^eA
for each geB. So BczAoφ. But we already have i ° Φ c ΰ , hence
Ao'Φ = B and the proof of the theorem is now complete.

REMARK. Although Wermer's maximality theorem was used to
give a short proof of O'ConnelPs result, the above proof of the
generalization does not require the maximality theorem. What the
proof does use is some of the techniques that appear in Wermer's
original argument.

A compact subset Ka Γ is an interpolation set for A if A \ K —
C(K). Say that a continuous map Φ: Γ —> Γ preserves interpolation
sets if A I K = C(K) implies A \ Φ{K) - C(Φ(K)).

THEOREM 2. Suppose Φ is a continuous map of Γ into Γ such
that R e A c R e i o φ , Then Φ preserves interpolation sets.

Proof. Let K be an interpolation set for A so that C{K) =
A I K. Then CR(K) = Re (A \ K) c Re (A o φ | K). This implies that
CR(Φ(K)) c Re A I Φ{K). Hence by the Sidney-Stout result once more,
we conclude that C{Φ{K)) = A | Φ(K) as reguired.
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Note that the preceding simple result is true in the setting of
general uniform algebras. It would be interesting to know whether;
in general, a map Φ satisfying the hypothesis of Theorem 2 neces-
sarily preserves peak sets. In certain special cases interpolation sets
are automatically peak sets.

COROLLARY. Let Φ be a homeomorphism of Γ such that Re A c
ReAoφ. Then Φ is absolutely continuous.

Proof. By Theorem 2, Φ maps interpolation sets to interpolation
sets. But by the Rudin-Carleson theorem these are the closed sets
of measure zero. So the homeomorphism Φ maps closed sets of
measure zero to closed sets of measure zero. It follows that Φ is
absolutely continuous.

Although Theorem 1 generalizes in a trivial way to the case
where Γ is the boundary of an arbitrary Jordan region in the plane,
this is the only extension of Theorem 1 that we know of. It would
be of interest to determine its validity in some other cases.

Added in proof. Results of E. L. Arenson can be used to show
that in the setting of general uniform algebras, a homeomorphism
Φ satisfying the hypothesis of Theorem 2 necessarily preserves peak
sets.
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