TWO THEOREMS ON GROUPS OF CHARACTERISTIC 2-TYPE

GEOFFREY MASON

- D. Gorenstein has made the following conjecture: suppose that G is a finite simple group which is simultaneously of characteristic 2-type and characteristic 3-type. Then G is isomorphic to one of PSp(4,3), $G_2(3)$ or $U_4(3)$. In this paper, we prove two results which, taken together, yield a proof of this conjecture under the additional assumption that G has 2-local 3-rank at least 2.
- 1. Introduction. In this paper we study finite simple groups, all of whose 2-local and 3-local subgroups are 2-constrained and 3-constrained respectively. The results we obtain are extensions of Thompson's theorem ES, and their relation to simple groups of characteristic 2-type is entirely analogous to the relation of theorem ES to simple N-groups.

The two Main Theorems are actually slight extensions of a conjecture of Gorenstein [10], and we refer the reader to [10] for a more detailed discussion of these ideas.

It will be convenient, before stating our main results, to develop some notation, most of which is standard.

Let X be a group, Y a subgroup of X, and π a set of primes. Then $\mathcal{U}_X(Y;\pi)$ denotes the set of Y-invariant π -subgroups of X. In particular, if the only Y-invariant π -subgroup of X is 1, we write $\mathcal{U}_X(Y;\pi) = \{1\}$.

For a finite group X, $\pi(X)$ is the set of prime divisors of |X|. As in [26], the subdivision of $\pi(X)$ into π_1 , π_2 , π_3 and π_4 will be important. We recall that $p \in \pi_3 \cup \pi_4$ if a S_p -subgroup P of G has a normal abelian subgroup of rank at least 3, which we write as $SCN_3(P) \neq \emptyset$. Moreover,

$$p \in \pi_3$$
 if $SCN_3(P) \neq \emptyset$ and $M_X(P; p') \neq \{1\}$
 $p \in \pi_4$ if $SCN_4(P) \neq \emptyset$ and $M_X(P; p') = \{1\}$.

If p is a prime, X a group, and P a S_p -subgroup of $O_{p',p}(X)$, we say that X is p-constrained if $C_X(P) \subseteq O_{p',p}(X)$.

For p a prime and X a group, a p-local subgroup of X is the normalizer of some nonidentity p-subgroup of X.

We say that X is of characteristic p-type if $p \in \pi_4$ and every p-local subgroup of X is p-constrained.

With these definitions we can now state Gorenstein's conjecture: Suppose that G is a finite simple group, p an odd prime, and

suppose further that G is simultaneously of characteristic 2-type and characteristic p-type. Then G is isomorphic to one of $G_2(3)$, PSp(4, 3) or $U_4(3)$.

A little more notation is required to state our own results: if $p \in \pi_3 \cup \pi_4$, $\mathfrak{A}(p)$ denotes the set of elementary abelian subgroups of type (p, p) which are contained in elementary abelian subgroups of type (p, p, p).

Suppose that P is a S_p -subgroup of X and that $SCN_3(P) \neq \emptyset$. We write

$$p \in \pi_4^*$$
 if $M_x(P; 2) = \{1\}$.

Hence we require that P should not normalize any nontrivial 2-group, though it may well normalize some proper $\{2, p\}'$ -group.

We can finally state the main results of the present paper.

THEOREM 1. Suppose that G is a finite simple group, p an odd prime, and that the following conditions hold:

- (a) G is of characteristic 2-type.
- (b) $p \in \pi_4^*$ and all p-local subgroups of G are p-constrained.
- (c) Some 2-local subgroup of G contains an element of $\mathfrak{A}(p)$.

Then p=3 and G is isomorphic to $G_2(3)$, PSp(4,3) or $U_4(3)$; or p=5 and G satisfies the conditions of part (c) of Theorem D of [19].

THEOREM 2. Suppose that G is a finite simple group and that the following conditions hold:

- (a) G is of characteristic 2-type.
- (b) $3 \in \pi_*^*$ and all 3-local subgroups of G are 3-constrained.
- (c) Some 2-local subgroup of G contains an elementary abelian subgroup of type (3, 3).

Then G is isomorphic to $G_2(3)$, PSp(4, 3) or $U_4(3)$.

A word about the hypotheses of Theorems 1 and 2. Evidently hypothesis (b) is a little weaker than requiring G to be of characteristic p-type (respectively, of characteristic 3-type). The point here is that the only relevant elements of $\mathcal{N}_{G}(P; p')$, for P a S_{r} -subgroup of G, are the 2-groups. It is condition (c) which provides an initial hold on the subgroup structure of G. The strength of this assumption has previously been demonstrated in [19], and we will make use of the results obtained there in the present paper. Of course, elimination of (c) in Theorem 1 would provide a complete proof of Gorenstein's conjecture.

Finally we remark that although Theorems 1 and 2 are of a

very similar nature, the proofs of the two theorems are completely different. Indeed if G is a finite simple group of characteristic 2-and p-type, the truth of Gorenstein's conjecture would imply that p=3. Under the assumptions of Theorem 1, the results of [19] already show that p=3, but in Theorem 2 we must assume at the outset that p=3. Moreover in Theorem 2 we have to account for the possibility that G has a 2-local subgroup containing an elementary abelian subgroup $V \cong (3, 3)$ with $V \notin \mathfrak{A}(3)$, and this causes difficulties. In view of Thompson's work in [4] and [26] this is not unexpected.

Finally, we emphasize that all groups considered in this paper are finite. Our notation is standard and usually follows that of [26]. We use the notation Z_n , D_n , Q_2n , SD_2n to denote the cyclic group of order n, dihedral group of order n, generalized quaternion group of order 2^n , and semidihedral group of order 2^n respectively. $A \setminus B$ is the regular wreathed product of A with B, A^*B the central product of A and B, and $A \subseteq B$ means A is isomorphic to a subgroup of B. Our notation for simple groups also follows [26], in particular A_n , \sum_n are the alternating and symmetric groups of degree n respectively. The solvability of groups of odd order [4] is assumed throughout.

- 2. Some preparatory lemmas. In this section we collect together some results which we shall need in the sequal. Most of the results are already in the literature.
- LEMMA 2.1 (Generalized $P \times Q$ -lemma): Suppose that P is a p-group, Q a q-group with p and q distinct primes and p odd. Suppose further that $Q \triangleleft PQ$ and that PQ normalizes the p-group M. Then [Q, M] = 1 if, and only if, $[Q, \Omega_1(C_M(P))] = 1$.
- *Proof.* This is contained in a result of Bender [2], and is a slight extension of a result of Thompson [9, Lemma 5.3.4] which we shall also need.
- LEMMA 2.2. P is a p-group which admits a fixed-point-free automorphism of order 3. Then P has class at most 2.
- *Proof.* This is an old result of Burnside. A proof can be found in [12, Theorem 8.1].
- LEMMA 2.3. G is a solvable group such that O(G)=1 and $|G:O_2(G)|=2.3^a$, $a\geq 1$. Suppose that a S_3 -subgroup R of G has a subgroup R_0 of order 3 such that R_0 is weakly closed in R and

- $C(R_0) \cap O_2(G) = 1$. Then one of the following holds:
 - (a) $G \cong \sum_{4}$
 - (b) $O_2(G)$ is characteristic in a S_2 -subgroup of G.

Proof. Let $Q = Q_2(G)$ with T a S_2 -subgroup of G, so that |T:Q|=2. If |Q|=4 then (a) obviously holds, so we may assume that $|Q| \ge 8$. Now as $C_Q(R_0)=1$ then Q has class at most 2 by Lemma 2.3. We will show that Q is the only subgroup of T of its isomorphism class, in which case (b) is immediate.

Now by the Frattini argument we have $G = QN_G(R)$, so because of the existence of R_0 we get $|N_G(R)| = 2 |R|$, so $N_G(R) = R\langle t \rangle$ with $T = Q\langle t \rangle$ for some involution t. Since R_0 is weakly closed in R then $R_0 \triangleleft R\langle t \rangle$ so t either inverts or centralizes R_0 . If t inverts R_0 then the desired result is proved by Higman in [12, Theorem 8.1], so we may assume that $[R_0, t] = 1$.

Suppose to begin with that Q is abelian. If there is a second subgroup of T which is isomorphic to Q then t must centralize a subgroup of index 2 in Q. As R_0 normalizes $C_Q(t)$ we get $Q \cap C(R_0) \neq 1$, a contradiction. Now suppose that Q has class 2. Higman shows in [12, Theorem 8.1] that every subgroup Q_0 of Q with $|Q:Q_0|=2$ is such that $Q'=Q'_0$. If there is a subgroup $Q_1 < T$ with $Q_1 \cong Q$ and $Q_1 \neq Q$ then $Q_0 = Q_1 \cap Q$ has index 2 in Q, so we get $Q'_0 = Q'$. But $Q'_0 \leq Q'_1 \cong Q'$, so $Q'_1 = Q'$. Finally, set $\overline{G} = G/Q'$. As $Q' \leq \phi(Q)$ then $\overline{G}/\overline{Q}$ acts faithfully on \overline{Q} and \overline{Q} is abelian. Since $Q_1 = Q_0 \langle tq \rangle$ for some $q \in Q$ and \overline{Q}_1 is abelian then \overline{t} centralizes \overline{Q}_0 . But $|\overline{Q}:\overline{Q}_0|=2$, so \overline{t} centralizes a subgroup of \overline{Q} of index 2 and we obtain a contradiction as before. This completes the proof of Lemma 2.3.

The next result, though apparently of an elementary nature, requires deep results of Gorenstein and Gilman [5] and Walter [27] for its proof.

LEMMA 2.4. G is a 3'-group which admits an automorphism a of order 3 such that $C_G(a)$ has odd order. Then G is solvable of 2-length 1.

Proof. Since $(|G|, |\langle a \rangle|) = 1$ then G has an $\langle a \rangle$ -invariant S_2 -subgroup T. By Lemma 2.2 T has class at most 2.

First we show that G is solvable, so suppose that this is not the case. Proceeding by induction, we may assume that G is characteristically simple, hence is the direct product of isomorphic groups G_1, \dots, G_r . As $\langle a \rangle$ permutes the G_i among themselves we get r=1 or 3 and if r=3 and then $\langle a \rangle$ is transitive on $\{G_1, G_2, G_3\}$. But in this case $\langle a \rangle$ must centralize the involution tt^at^a whenever t is an involution of G_1 , against the assumption that $C_G(a)$ has odd order.

So in fact G is simple. As T has class at most 2 we may identify G by the results of Gorenstein-Gilman and Walter mentioned above. As G is 3'-group the only possibility $G \cong Sz(q)$ for some $q \ge 8$. But every outer automorphism of Sz(q) has a fixed-point subgroup of even order (see [25]), which contradiction completes the proof that G is solvable.

In proving that G has 2-length 1 we may assume that O(G)=1 and try to prove that $T \triangleleft G$. As G is solvable it has an $\langle a \rangle$ -invariant Hall 2'-subroup H, and $H\langle a \rangle$ acts faithfully $Q=O_2(Q)$. Next we show [a,H]=1, so suppose this is not the case and choose V to be an $\langle a \rangle$ -invariant subgroup of H minimal subject to $[V,a]\neq 1$. As $V\langle a \rangle$ is faithful on Q, it is well known that $C_Q(a)\neq 1$, a contradiction. So V does not exist and hence [H,a]=1. It follows that $Q\langle a \rangle \triangleleft G\langle a \rangle$, and hence $T=QN_T(\langle a \rangle)$. But $N_T(\langle a \rangle)=C_T(a)=1$, so Q=T as required.

LEMMA 2.5. G is a simple group with a cyclic S_p -subgroup P, p an odd prime. Suppose that C(P) has odd order and |N(P):C(P)|=2. Then G has only one class of icvolutions.

Proof: This is a result of Brauer's [3].

LEMMA 2.6. G is a group, p an odd prime, $G = O^{p}(G)$, and P a S_{p} -subgroup of G. Suppose that P is non-cyclic and abelian, and that |N(P): C(P)| = 2. Then G is p-solvable.

Proof. This is a recent result of Smith and Tyrer [24].

LEMMA 2.7. G is a simple group of characteristic 2-type. Then O(N) = 1 for each 2-local subgroup N of G.

Proof. This is a well-known result of Gorenstein [7] which we will frequently use without specific reference to it.

LEMMA 2.8. G is a simple group of characteristic 2-type with a maximal 2-local subgroup N such that $O_2(N)$ is of sympletic type. Then G has a non-solvable 2-local subgroup.

Proof. This is contained in a result of Lundgren [20]. (Observe that O(N) = 1 by Lemma 2.7.)

LEMMA 2.9. G is a simple group such that $2 \in \pi_3 \cup \pi_4$ and $C_c(x)$ is solvable of 2-length 1 for each involution x of G. Then G is isomorphic to one of the following groups: $L_2(q)$, Sz(q) or $U_3(q)$ for $q = 2^n \ge 8$.

Proof. This is a combination of results of Bender, Goldschmidt and Suzuki. The result is discussed in [8].

LEMMA 2.10. G is a simple group and T a S_2 -subgroup of G. Suppose that T has an abelian subgroup of index at most 2. Then the following hold:

- (a) T is either abelian or isomorphic to D_2n , SD_2n or $Z_2n \in Z_2$.
- (b) G is isomorphic to one of the following groups: $L_2(q)$, $q \ge 4$, $L_3(q)$ or $U_3(q)$, $q \ge 3$, a group of Ree-type, A_7 , M_{11} or J_1 .

Proof. This is the combination of the work of a number of authors. For a fuller discussion of the result we refer the reader to [21].

3. The Proof of Theorem 1. In this section we will present a proof of Theorem 1. So for the balance of this section G will denote a simple group satisfying the hypotheses of Theorem 1, and $p \neq 5$.

We have already made an initial investigation of the consequences of the hypotheses of Theorem 1 in some joint work with Klinger [19]. We obtained there the following result which represents the first major reduction in the proof of Theorem 1.

Proposition 3.1. Under the assumptions of Theorem 1, the following conditions hand.

- (a) p = 3
- (b) No 2-local subgroup of G contains an elementary abelian subgroup of type (3, 3, 3).
- (c) We can choose $B \in \mathfrak{A}(3)$ and a maximal element F of $\mathsf{M}(B;2)$ such that F is extra-special of width $w \leq 4$. Moreover F is the central product of w B-invariant quaternion subgroups. We have $Z = Z(F) = C_F(B)$, and $C_F(B_0)$ has rank 1 for $1 < B_0 < B$.

We shall retain the notation of Proposition 3.1 throughout. Moreover we set $\hat{B} = \{B_0 \mid 1 < B_0 < B \text{ and } C_F(B_0) \neq Z\}$. Thus $C_F(B_0) \cong Q_8$ for $B_0 \in \hat{B}$, $|\hat{B}| = w$, and if $\hat{B} = \{B_1, \dots, B_w\}$ with $C_F(B_i) = Q_i$, $1 \leq i \leq w$, then $F = Q_1^* \cdots *Q_w$. We also set $Z = \langle z \rangle$.

We also obtained in [19] the following useful result.

- LEMMA 3.2. Suppose that $D \in \mathfrak{A}(3)$, $H \in \mathsf{M}(D;2)$, and $C_{H}(D) \neq 1$. Then H is of symplectic-type.
- Lemma 3.3. Let x be an involution of G. Then exactly one of the following holds.

- (a) $C_{G}(x)$ has cyclic S_{3} -subgroups.
- (b) $x \sim z$ in G.

Proof. Suppose that (a) is false, in which case C(x) contains a noncyclic elementary 3-subgroup D. By Proposition 3.1(b) we have |D|=9. Suppose to begin with that $D\in\mathfrak{A}(3)$. Then if $\langle x\rangle \leq F_0\in \mathsf{M}^*(D;2)$ we get that F_0 is of symplectic-type by Lemma 3.2, in particular $\langle x\rangle=\Omega_1(Z(F_0))$. But if T is a S_2 -subgroup of G containing F_0 we must have, since $O_2(N(F_0))=F_0$, that $Z(T)< F_0$. Hence $\langle x\rangle=\Omega_1(Z(T))$ and so $x\sim z$.

Finally, suppose that $D \notin \mathfrak{A}(3)$. We will show that this case cannot occur: namely, if $D \notin \mathfrak{A}(3)$ then D contains every element of order 3 in C(D), in particular if R is a S_3 -subgroup of G containing D then $Z_0 = \Omega_1(Z(R)) < D$. Set $L = C_0(Z_0) > R$. As $SCN_3(R) \neq \emptyset$ then $O_{3'}(L)$ has odd order, so x acts faithfully $O_{3',3}(L)/O_{3'}(L)$. Set $P = O_{3',3}(L)/O_{3'}(L)$. $\langle x \rangle \times D$ acts on P and we have $[x, \Omega_1(C_P(D))] \leq [x, D] = 1$, hence $[x, C_P(D)] = 1$, hence [x, P] = 1 by the $P \times Q$ -lemma. This contradiction proves the lemma.

We now set $C = C_G(Z)$. T will denote some fixed S_2 -subgroup of C, and R is a S_3 -subgroup of C which contains B. We collect the facts we shall need about C in the following lemma:

LEMMA 3.4. The following conditions hold:

- (a) C = N(F), and C is a maximal 2-local subgroup of G.
- (b) T is a S_2 -subgroup of G and Z = Z(T).
- (c) Either R=B is elementary of order 9 or one of the following holds:
 - (i) w = 3 and R is non-abelian of order 27.
 - (ii) w = 4 and R is non-abelian metacyclic of order 27.
 - (d) $\mathsf{M}_{\mathcal{C}}^*(B;3') = \{F\}.$

Proof. We have |Z|=2, so clearly $N(F) \leq C$. On the other hand if $F_0=O_2(C)$ we must have $F_0 \leq F$ since otherwise we get $F < F_0F \in \mathcal{N}(B;2)$, against the maximality of F. Now as C is 2-constrained we must have $Z < F_0$, hence $C_{F_0}(B) \neq 1$ and F_0 is of symplectic-type by Lemma 3.2. We deduce that F_0 is a product of the subgroups Q_1, \dots, Q_w . If $F_0 \neq F$ then some Q_i , say Q_i , satisfies $Q_1 \cap F_0 = Z$. But then $[Q_i, F_0] = 1$, against the 2-constraint of C, and so we must have $F_0 = F$ and N(F) = C. The same proof now yields that C is also a maximal 2-local subgroup of G, so (a) is proved. (b) is a straight forward consequence of (a).

As for (c), suppose that B < R. In this case, we must have w = 3 or 4, so assume to begin with that w = 3. Hence, we get $C/F \subseteq \text{Out.}(F) \cong O_6^-(2)$, so $R \subseteq Z_3 \wr Z_3$. Since R has rank 2 by

Proposition 3.1(b) we get that R is non-abelian of order 27. Now suppose that w=4 and assume without loss that $B_1 \leq B \cap Z(R)$. Hence R normalizes $Q_1 = C_F(B_1)$ and $C_R(Q_1) = R_1$ is a cyclic subgroup of R index 3, in particular R is metacyclic. Moreover R_1 is faithful on $Q_2^*Q_3^*Q_4$ so $R_1 \subseteq Z_3 \wr Z_3$ and $|R_1| = 9$. This completes the proof of (c).

Now we certainly have $\{F\} = \mathsf{M}_c^*(B;2)$ by part (a), so to prove (d) it suffices to show that $\mathsf{M}_c(B;q) = \{1\}$ for each prime $q \in \{2,3\}'$. We get, since $q \geq 5$, that $[C_Q(B), Q_i] = 1$ for $1 \leq i \leq w$, hence $[C_Q(B), F] = 1$, hence $C_Q(B) = 1$ by 2-constraint. Now if w = 3 we get |Q| = 5 and hence [Q, B] = 1, a contradiction. Thus w = 4. Now choose $b \in B^\sharp$ with $C_Q(b) \neq 1$. We have $C_F(b) \cong Q_{\mathbb{S}}$ so $[C_Q(b), C_F(b)] = 1$, hence $|C_Q(b)| = 5$ and we get $[C_Q(b), B] = 1$ which is again impossible. This completes all parts of the lemma.

As a corollary of Lemmas 3.4(a) and 2.8 we obtain immeditely

LEMMA 3.5. G has a non-solvable 2-local subgroup.

Next we prove

LEMMA 3.6. One of the following occurs.

- (a) C is solvable.
- (b) w=4 and C/F is isomorphic to a subgroup of $\operatorname{Aut}(A_{\scriptscriptstyle{6}})$ containg $\operatorname{Inn.}(A_{\scriptscriptstyle{6}})$.

Proof. Suppose that C is nonsolvable. Then we obviously have $w \geq 3$. Suppose that w=3, and let E/F be a minimal normal subgroup of C/F. By Lemma 3.4(d) E has order divisible by 3, so as all 3-local subgroups of $O_{\epsilon}^{-}(2) \cong \operatorname{Out.}(F)$ are solvable whilst C is nonsolvable we must have that E/F is simple. Now $O_{\epsilon}^{-}(2)$ has 3-rank 3, whilst C has 3-rank 2 by Proposition 3.1(b). We deduce that $E/F \ncong O_{\epsilon}^{-}(2)$, so the only possibilities are $E/F \cong A_{\epsilon}$ or A_{ϵ} . But if $E/F \cong A_{\epsilon}$ some element of B^{\sharp} centralizes E/F, an impossibility. Suppose that $E/F \cong A_{\epsilon}$. In this case B is a S_3 -subgroup of E and there is a cyclic subgroup of order 4 in E/F normalizing and acting irreducibly on E. On the other hand there is exactly one subgroup of E of order 3 not in E0, so E1 cannot act irreducibly on E2. This contradiction establishes that fact that E2 if E3 is nonsolvable.

Again let E/F be a minimal normal subgroup of C/F, where we are now assuming that w=4. As before E/F is either simple or a 3-group. If the latter case occurs then we can choose $b \in (E \cap B)^{\sharp}$. Setting $\overline{C} = C/F$ we deduce that $C_{\overline{c}}(\overline{b})$ is nonsolvable and that $C_{\overline{c}}(\overline{b})$ has a normal subgroup $\overline{A} \cong A_{\sharp}$. But then \overline{B} normalizes a S_{\sharp} -subgroup of \overline{A} , against $F \in \mathsf{M}^*(B; 2)$, so we have shown that E/F is simple.

Next, let S be a S_7 -subgroup of E and suppose that $S \neq 1$. Thus |S| = 7, and a simple computation shows that $C_F(S) \cong D_8$. Now as no 3-element of \bar{C}^{\sharp} contralizes a four-group of F and as $O_8^+(2)$ has no elements of order 35 we deduce that $N_c(S)$ is a $\{2,7\}$ -group. A Frattini argument now yields R < E, so R = B by Lemma 3.4(c) and a theorem of Huppert [14]. Sylow's theorem now tells us that $|E:F| = 2^a 3^2 7$ or $2^a 3^2 5^2 7$ for some a. However, $O_8^+(2)$ has no such simple subgroup (with elementary S_3 -subgroups), so we have shown that E is a 7'-group. Being simple E/F is a $\{2,3,5\}$ -group, and surveying the possibilities we find that $E/F \cong A_5$ or A_6 . However if $E/F \cong A_5$ then some element of B^{\sharp} contralizes E/F, and we have already shown that this cannot occur. Hence $E/F \cong A_6$, and the conclusions of Lemma 3.6 now follows easily.

LEMMA 3.7. Suppose that w = 3 and that B_0 is the subgroup of B of order 3 satisfying $B_0 \notin \hat{B}$. Then the following hold:

- (a) $C_c(B_0)$ has cyclic S_2 -subgroups.
- (b) C contains a S_2 -subgroup of $C_G(B_0)$.

Proof. Let I be a S_2 -subgroup of $C_c(B_0)$. Thus $Z \subseteq I$. Since $B_0 \in \widehat{B}$ we have $I \cap F = Z$. Now if (a) is false then there is an involution $x \in I - Z$; x must invert a subgroup of \widehat{B} so we may suppose that x inverts B_1 . Thus $\langle x \rangle \times B_0$ normalizes $Q_1 = C_F(B_1)$, so $[x, Q_1] = 1$ since B_0 is faithful on Q_1 .

Next, suppose that either x or xz (say x for definiteness) is conjugate to z, and set $L=C_{\sigma}(x)$. We have $\langle x\rangle=\phi(O_2(L))$ and $B_{\sigma}Q_1 < L$. Since $L\cong C$ and $Q_1=[Q_1,\,B_{\sigma}]$ we get $Q_1< O_2(L)$, hence $Z=\phi(Q_1)=\langle x\rangle$. This is false, so we deduce that neither x or xz is conjugate to z.

Finally consider $N=N_G(B_1)>B_1(Q_1\times\langle x\rangle)$. If P is an $\langle x,z\rangle$ -invariant S_3 -subgroup of $O_{3',3}(N)$ then $P=\langle C_P(y)\mid y\in\langle x,z\rangle^{\sharp}\rangle$. But by Lemma 3.3 and the provious paragraph we get that both $C_P(x)$ and $C_P(xz)$ are cyclic, hence are both centralized by z. But then z centralizes P, contradiction. This proves part (a) of the lemma, and (b) is a straightforward consequence of it.

LEMMA 3.8. Suppose $w \ge 3$. Then C controls fusion of its subgroups of order 3.

Proof. As a consequence of Lemma 3.7(b) we get (with the notation of that lemma) that B_0 is conjugate to no element of \hat{B} in case w=3. Now suppose that B_5 , B_6 are two subgroups of R of order 3 with $B_5 \sim B_6$ in G. It follows that $C_F(B_i)$ is a quaternion group, i=5,6.

Let $Q_i = C_F(B_i)$ with I_i a S_2 -subgroup of $C_C(B_i)$, i = 5, 6. Thus $Q_i \leq I_i$. A simple computation shows that I_i is either quaternion or semidihedral (of order 16), so in any case we have $Z = Z(I_i)$ and I_i is a S_2 -subgroup of $C_G(B_i)$, i = 5, 6. As $B_5 \sim B_6$ we can choose $g \in G$ satisfying $B_5^g = B_6$, $I_5^g = I_6$ by Sylow's theorem. Hence $Z^g = Z$, that is $g \in C$, as required.

LEMMA 3.9. Suppose $w \ge 3$ and x is a involution with $x \in C - F$, Then $C_c(x)$ is a 2-group.

Proof. We only need show, after Lemmas 3.4 and 3.6, that x centralizes no nontrivial 3-subgroup of C, so suppose that this is false. By Lemma 3.7 we can assume that x centralizes B_1 . We calculate that $\langle x, Q_1 \rangle$ is semidihedral of order 16.

Now set $N=N_G(B_1)$, and let P be a $\langle x, Q_1 \rangle$ -invariant S_3 -subgroup of $O_{3',3}(N)$. Thus $P=\langle C_P(y) \mid y \in \langle x, z \rangle^\sharp \rangle$. If $x \not\sim z$ in G then $C_P(x)=C_P(xz)$ is cyclic by Lemma 3.3, hence $B_1=\Omega_1(C_P(x))=\Omega_1(C_P(xz))$, hence z centralizes P, contradiction. It follows that $x\sim xz\sim z$ in G. Setting $L=C_G(x)$ and $x=z^g$, we get $B_1, B_1^g < L$, so $B_1=B_1^{g^1}$ for some $1\in L$ by Lemma 3.8. We have thus shown that $x\sim xz\sim z$ in N.

Finally, since $C_P(Z)$ admits Q_1 we must have $B_1 = \Omega_1(C_P(Z))$, so $B_1 = \Omega_1(C_P(y))$ for any $y \in \langle x, z \rangle^{\sharp}$. This is absurd, and the lemma is proved.

LEMMA 3.10. The following conditions hold.

- (a) If $B_i \in \widehat{B}$ then $C_F(B_i)$ is a S_2 -subgroup of $C_C(B_i)$.
- (b) If C is solvable and $w \ge 3$ then C/F has cyclic S_2 -subgroups.
- (c) If C is nonsolvable then C/F has 2-rank 2.

Proof. To prove (a), let $B_i \in \hat{B}$ with $Q_i = C_F(B_i)$ and suppose that Q_i is not a S_2 -subgroup of $C_c(B_i)$. Let I_i be a S_2 -subgroup of $C_c(B_i)$ which contains Q_i . By Lemma 3.9 I_i is generalized quaternion of order at least 16, so $C_c(B_i)$ has a normal 2-complement. But then we get $[B, Q_i] \leq Q_i \cap O(C_c(B_i)) = 1$, a contradiction which proves (a).

(b) is a simple consequence of (a) together with Lemma 3.7(a).

Finally, suppose that C is nonsolvable and that C/F has 2-rank at least 3. By Lemma 3.6 we must have that C/F contains a subgroup isomorphic to \sum_{6} , and that w=4. But \sum_{6} has elements of order 6 and every subgroup of B of order 3 lies \widehat{B} as w=4. This contradicts (a), and the lemma is proved.

Lemma 3.11. Suppose that $w \ge 3$. Then Z is weakly closed in F.

Proof. Suppose false. Then there is $g \in G - C$ such that $Z^g = Y < F$. Set $C^g = L = C_G(Y)$ with $D = O_2(L)$. Now $C_F(Y) = Y \times F_0$ where F_0 is extra-special of width w-1 and $F_0 < L$. It is a simple consequence of Lemma 3.10 that $F_0 \cap D \neq 1$, so Z < D, so F_0D/D is elementary abelian. By Lemma 3.10 again, we deduce that $|F_0: F_0 \cap D| \leq 4$, and $|F_0: F_0 \cap D| \leq 2$ if w=3 (for C is solvable in this case). Thus $F_0 \cap D$ is not elementary abelian, so we obtain the contradiction $Z = \phi(F_0 \cap D) = \phi(D) = Y$. This proves the lemma.

It is now easy to prove

Proposition 3.2. The case w = 3 cannot occur.

Proof. Let N be a nonsolvable 2-local subgroup of G, the existence of which is guaranteed by Lemma 3.5, and set $D=O_2(N)$ with N_2 a S_2 -subgroup of N. As w=3 then C is solvable by Lemma 3.6, so $N\neq C$. Lemma 3.4(b) allows us to assume that $N_2< C$, in which case Z< Z(D).

Let $V = \Omega_1(Z(D))$, so that Z < V < N. As w = 3 Lemma 3.10(b) shows that a S_2 -subgroup of C has rank at most 4, in particular $|V| \le 16$. So if $\mathfrak X$ is the N-orbit of V^\sharp which contains z then $|\mathfrak X| \le 9$, as follows from Lemma 3.11.

Now we have $|N| = |\mathfrak{X}| |C_N(Z)|$. Since $C_N(Z)$ is a $\{2, 3\}$ -group, N is nonsolvable, and $|\mathfrak{X}| \leq 9$, we deduce that $|\mathfrak{X}| = 5$ or 7. In either case there is a subgroup J < N of order 3 centralizing Z, so J < C. Since $V = C_V(J)[V, J]$, Lemmas 3.9 and 3.10 yield V < F, so $\mathfrak{X} \subseteq F$ against Lemma 3.11. This completes the proof of Proposition 3.2.

Proposition 3.3. The case w = 4 cannot occur.

Proof. Our proof in this case is a little different to that of Proposition 3.2, since if C is nonsolvable, then Lemma 3.5 is of no help. We break the proof into a number of steps. We start with

(1) Suppose that x is an involution of C - F, and that $x \in O^2(C)$ if C is nonsolvable. Then $C_F(x)$ is elementary of order 16.

Observe that since w=4 then every subgroup of order 3 in B lies in \widehat{B} . Now as $x \notin O_2(C)$ then x inverts a subgroup of C of prime order by the Baer-Suzuki theorem [1]. If C is solvable such a subgroup must have order 3 by Lemma 3.4(c). If C is not solvable then in $\widehat{C}=C/F$, \widehat{x} must invert a subgroup of order 3 by the structure of A_6 . Let B_0 be a subgroup of C such that \widehat{x} inverts \widehat{B}_0 . Thus $H=FB_0\langle x\rangle$ is a group. If E is 2-closed we get that E inverts E is not 2-closed, hence E is not 2-closed, hence E inverts a subgroup of E of order 3. So in any case E inverts a subgroup of E of order 3,

and we may assume that such a subgroup is $B_1 \in \hat{B}$.

The same argument also shows that x inverts a subgroup of order 3 in $C_c(B_1)/B_1$, so that x inverts an elementary subgroup of C of order 9. We may therefore assume that x inverts B. Hence x normalizes Q_i and $\langle Q_i, x \rangle \cong SD_{16}$ for $1 \leq i \leq 4$. A simple computation now proves (1).

(2) Let y be an involution of F-Z such that C contains a S_2 -subgroup of $C_G(y)$. Then $C_G(y) < C$.

Set $Y = \langle y \rangle$, $L = C_G(Y)$, $D = O_2(L)$. Since D < C we get $Z < V = \Omega_1(Z(D))$. Proceeding under the assumption that $L \not< C$ we get $Z \not< L$, so if $\mathfrak X$ is the L-orbit of V^\sharp which contains z we get that $|\mathfrak X|$ is odd and $|\mathfrak X| \ge 3$. By Lemma 3.11 we get $\mathfrak X \cap F = \{z\}$.

We claim next that $D\cap F$ is elementary abelian. If C is solvable or C is nonsolvable and $(\mathfrak{X}-\{z\})\cap O^{2}(C)\neq\varnothing$, this is an immediate consequence of step (1), so we may suppose that neither of these conditions hold. Choose $x\in\mathfrak{X}-\{z\}$, Thus by Lemma 3.6(b) and 3.10(c) we have $C=O^{2}(C)\langle x\rangle$. In this case we have that $x\notin\phi(K)$ whenever K is a 2-subgroup of C containg x, in particular $x\notin\phi(D)$. As $x\sim z$ in L then also $z\notin\phi(D)$, so $z\notin\phi(D\cap F)$ so $D\cap F$ is elementary abelian, as required.

Now $C_F(Y) = Y \times F_0$ where F_0 is extra-special of width 3. By the last paragraph $D \cap F_0$ is elementary, so $|F_0: D \cap F_0| \ge 8$, so L/D has 2-rank at least 3.

Next we show that $C_L(Z)$ is a 2-group. If false, the structure of C yields only one possibility, namely that $C_L(Z)$ is a $\{2, 5\}$ -group and C is nonsolvable. Let K be a S_5 -subgroup of $C_L(Z)$, so that $V = C_V(K) \times [V, K]$. Now it is a simple consequence of step (1) that $|V| \leq 2^6$, so if $[V, K] \neq 1$ then $|[V, K]| = 2^4$, $C_V(K) = \langle Y, Z \rangle$, so V < F. This is false, so [V, K] = 1 and $K < C_L(V) < L$. However $[F_0, K]$ is nonabelian and $[F_0, K] \leq O_2(C_L(V)) = O_2(L)$. This is impossible as $D \cap F$ is elementary, so we have shown that $C_L(Z)$ is a 2-group.

Since $|L| = |\mathfrak{X}| |C_L(Z)|$ we deduce that $|\mathfrak{X}| = |L|_{2'} < 63$. As 3.5.7 > 63 it follows that $\pi(L)$ contains at most 3 distinct primes. Next, suppose that L is solvable. As L/D has 2-rank at least 3 and L has cyclic S_3 -subgroups by Lemma 3.3, we gain a simple contradiction using Lemma 5.34 of [26]. So L is nonsolvable. Hence L/D is a nonsolvable $\{2, 3, p\}$ -group with cyclic S_3 -subgroups, 2-rank at least 3, $O_2(L/D) = 1$, $|L:D|_{2'} < 63$, and $L/D \subseteq GL(5, 2)$. There are no such groups, and step (2) is proved.

(3) If y is an involution of F-Z then $C_{\sigma}(y) < C$. If C contains a S_2 -subgroup of $C_{\sigma}(y)$ we are done by step (2). In any case by Sylow's theorem y is conjugate to an involution x of C such that C contains a S_2 -subgroup of $C_{\sigma}(x)$. Suppose that $x^{\sigma} = y$ for

some $g \in G$. Evidently $x \in F$, so we get $C(y) < C^g$ by step 2. Now if $C_F(y) = \langle y \rangle \times F_0$ then F_0 is extra-special of width 3. By the structure of C^g we get $F_0 \cap O_2(C^g) \neq 1$, so $Z < O_2(C^g)$, so $Z = Z(O_2(C^g))$ by Lemma 3.11. Hence $C^g = C$, and step (3) follows.

(4) Z is weakly closed in C with respect to G. For suppose that $g \in G$ and $Z^g < C$, $Z^g = Y \neq Z$. Set $L = C_G(Y)$, $D = O_2(L)$. A straightforward calculation shows that $F \cap D \neq 1$, so let f be an involution with $f \in F \cap D$. By step 3 we get $C_G(f) \leq L$, in particular $C_F(f) < L$. This leads to Z < D, so $Z = Z(O_2(D)) = Y$ by Lemma 3.11. This is a contradiction, so (4) is proved.

Finally, since C contains a S_2 -subgroup of G, step 4 and the Z^* -theorem [6] yield G = O(G)C. As $2 \in \pi_4$ then O(G) = 1, so $Z \triangleleft G$. But then a S_3 -subgroup of G normalizes a nontrivial 2-group, contradiction. Proposition 3.3 is thus proved.

Thus in order to proved Theorem 1, we are reduced to studying the case w=2. In this case a simple computation shows that the S_2 -subgroup T of G has section 2-rank at most 4, hence the theorem is a consequence of the results in Part II of [11]. However, we can avoid direct appeal to this important result by making use of prior characterizations of the groups $G_2(3)$, PSp(4,3) and $U_4(3)$ by the centralizers of their central involutions.

We retain our previous notation, so that $F=Q_1^*Q_2$ with $Q_i\cong Q_8$ and $B_i=C_B(Q_i),\ i=1,2.$ We set Z=Z(F) with C=C(Z)=N(F). As w=2 then B is a S_3 -subgroup of C and moreover $C/F\subsetneq \sum_3 \wr Z_2$, in particular C=TB and $T/F \subsetneq D_8$.

Now as a simple consequence of the Z^* -theorem [6] we cannot have T=F. Because $SCN_3(T)\neq\emptyset$ we also calculate that $T/F\not\cong D_8$ and $T/F\not\cong Z_4$. Hence $\mid T\colon F\mid=2^n$ and T/F is elementary abelian, n=1 or 2.

LEMMA 3.12. Suppose that A is an elementary abelian subgroup of T with $A \triangleleft T$ and |A| = 8. Then $A \triangleleft F$.

Proof. Since $A \triangleleft T$ then $Z \subseteq A_0 = A \cap F$. Suppose that $Z = A_0$. Then $[A, F] \subseteq Z$ so A stabilizes the chain: $F \triangleright Z \triangleright 1$, so $A \triangleleft F$, a contradiction. Now suppose that $|A_0| = 4$ and choose $a \in A - A_0$. As a normalizes F it either fixes Q_1 and Q_2 or interchanges them. If $Q_i^a = Q_i$, i = 1, 2, we get $[Q_i, a] \subseteq Q_i \cap A = Z$, so a stabilizes and hence $a \in F$, contradiction. On the other hand if $Q_1^a = Q_2$ we get $|[F, \langle a \rangle]| = 8$ against $|F, \langle a \rangle| \subseteq A_0$. The lemma is thus proved.

Now by Lemma 2.8 G has a nonsolvable 2-local subgroup N. Lemma 3.4(b) allows us to assume that T contains a S_2 -subgroup of N. Set $D = O_2(N)$, $V = \Omega_1(Z(D))$, and retain this notation for the

remainder of this section. As T has 2-rank at most 4 than |V|=8 or 16. We consider these two possibilities separately. First we have

Proposition 3.4. If |V| = 8 then $G \cong G_2(3)$.

Proof. Since C(D) = Z(D) we get Z < V, and a simple computation yields C(V) = D. As N is not solvable we get $N/D \cong L_3(2)$, so N has a Frobenius subgroup K of order 21 transitive on V^* . Thus K has a subgroup J of order 3 such that $Z = C_V(J)$. It follows that J < C and that $V = Z \times [V, J] < F$.

Now F has exactly 6 elementary subgroups of order 8, falling into two conjugacy classes of length 3 under the action of C. It follows that $N_c(V)$ contains a S_2 -subgroup of C, hence T < N. Thus, |T| = 8 |D|. As $|T| \le 2^7$ then $|D| \le 2^4$ and so D is abelian. Evidently D cannot be nonelementary, so in fact |D| = 8, V = D, and $|T| = 2^6$.

Since F < N, $F \not< D$, there are involutions in N-D, so there is an involution $x \in N-D$ such that $DJ\langle x \rangle$ is a group with $DJ\langle x \rangle/D \cong \sum_{s}$. Hence we may assume that x inverts J, in which case x centralizes Z. As $x \in C$ and $x \notin F$ we get $T \cong F\langle x \rangle$ and $C = FB\langle x \rangle$. Now we may assume that J < B. The structure of N yields $J \notin \hat{B}$ (that is, $C_F(J) = Z$), so x normalizes $B = O_3(C(J) \cap FB)$. Let J_1 be an $\langle x \rangle$ -invariant complement to J in B.

If x centralizes J_1 , then x must interchange Q_1 and Q_2 . In this case $F\langle x\rangle$ contains elementary abelian subgroups of order 16, and some such elementary subgroup of C must contain V. But as V=C(V) this is impossible. Hence, x inverts J_1 . Now we check that C is isomorphic to the centralizer of a (central) involution of $G_2(3)$. By a theorem of Janko [15] we get $G \cong G_2(3)$ as required.

PROPOSITION 3.5. If |V| = 16 and $|T| = 2^6$ then $G \cong PSp(3, 4)$.

Proof. As F has 2-rank 3 we get $F \cap V < V$, so if $v \in V - F$ then $T = F \langle v \rangle$ and $C = FB \langle v \rangle$. Since v centralizes an elementary abelian subgroup of F of order 8 (namely $F \cap V$) then v must interchange Q_1 and Q_2 .

Hence C is isomorphic to the centralizer of a central involution of PSp(4, 3). By a theorem of Janko [16] we get $G \cong PSp(4, 3)$ as required.

Proposition 3.6. If |V| = 16 and $|T| = 2^{r}$ then $G \cong U_{4}(3)$.

Proof. As V < T a simple computation proves that in fact V < T so that T is a S_2 -subgroup of N. Moreover $C_T(V) = V$,

hence V = C(V), V = D, and $T/D \cong D_8$.

As in Proposition 3.5 we can choose $v \in V - F$. Then v interchanges Q_1 and Q_2 and centralizes a subgroup J of C of order 3. We may assume that J < B in which case $J \notin \widehat{B}$. Moreover J normalizes $V \cap F = C_F(v)$, hence J < N. Let U be a S_2 -subgroup of $N_c(J)$, so that U contains $\langle v, z \rangle$ as a subgroup of index 2. We next show that U is either elementary abelian or dihedral.

Since N/D is nonsolvable with a dihedral S_2 -subgroup of order 8 then one of the following occurs: $N/D \cong L_2(7)$, $N/D \cong A_6$, or N/Dcontains a subgroup isomorphic to \sum_5 . Suppose to begin with that the latter case occurs. By Lemma 2.6 of [11, Part II] the extension N/D splits, so N=DH with $H\cong \sum_{5}$. Hence, $N\cap C=D(H\cap C)$ with $H \cap C \cong \sum_{4}$. Now J is a S₃-subgroup of $N \cap C$, hence is conjugate to a S_3 -subgroup of $H \cap C$, hence is inverted by a involution x of $N \cap C$. We thus get that $U \cong \langle v, z, x \rangle$ has the desired isomorphism type in this case. Now suppose that N/D is isomorphic to either $L_2(7)$ or A_6 . If the A_6 case occurs then J must correspond to (123) (456) since $C_{\nu}(J) \neq 1$ (c.f. [13, p. 157] so in either case $N_{\nu}(J)$ has S_2 -subgroups of order 8. Moreover, since $F < N, F \leqslant D$ there are involutions in N-D, so there is an involution $x \in N-D$ which inverts J. Hence, $W = \langle v, z, x \rangle$ is a S_2 -subgroup of $N_N(J)$. But N contains a S_2 -subgroup of $N_c(J)$, so $U \cong W$ and again U has the required isomorphism type.

Suppose to begin with that U is elementary of order 8. Then we find, since C = FBU, that the extension C/F splits. Following a paper of Phan [22] we check that C is isomorphic to the centralizer of a central involution of $L_4(3)$. Phan goes on to show that G has a second class of involutions with nonconstrained centralizers. As G is of characteristic 2-type this cannot occur, so we deduce that U is not abelian.

Finally, suppose that $U \cong D_8$. Now we check that C is isomorphic to the centralizer of an involution in $U_4(3)$. A second result of Phan [23] yields $G \cong U_4(3)$ as required. This completes the proof of Theorem 1.

4. The proof of Theorem 2. In this section we will present a proof of Theorem 2. In a sense our proof is unsatisfactory: for one thing we must assume at the outset that the relevant odd prime p for which the p-locals are p-constrained is 3. Moreover our proof utilizes several deep characterization theorems whose relevance, at least superficially, would appear to be small.

From now on, we use the following notation: G is a finite simple group of characteristic 2-type and R is a S_3 -subgroup of G. We assume that all 3-local subgroups of G are 3-constrained and that

 $\mathcal{U}(R;2) = \{1\}$. B is an elementary subgroup of R of order 9 such that $\mathcal{U}(B;2) \neq \{1\}$.

Now if some 2-local subgroup of G contains an element of $\mathfrak{A}(3)$ then by Theorem 1 we have $G \cong G_2(3)$, PSp(4, 3), or $U_4(3)$ as required. So in trying to prove Theorem 2 we may, and shall, assume

(*) No 2-local subgroup of G contains an element of $\mathfrak{A}(3)$. We will eventually show that (*) leads to a contradiction, in which case Theorem 2 will be proved.

Our first lemma gives a number of properties of B which we shall use in the sequel. First observe, since $B \notin \mathfrak{A}(3)$, that Z(R) is cyclic and that $Z = \Omega_1(Z(R)) < B$. We fix this notation for the remainder of the paper.

LEMMA 4.1. The following conditions hold.

- (a) If $F \in \mathcal{M}(B; 2)$ then $C_F(Z) = 1$.
- (b) If $F \in \mathcal{N}(B; 2)$ then F has class of most 2.
- (c) C(B) has odd order.
- (d) Z is weakly closed in B.
- (e) If $1 < B_0 < B$, $B_0 \neq Z$, then $C(B_0)$ is solvable.

Proof. To prove (a), let $F \in \mathsf{M}(B;2)$ and suppose that $E = C_F(Z) \neq 1$. Set $L = C_G(Z) > EB$. Since $Z \leq Z(R)$ then R < L, hence $O_{3'}(L)$ has odd order since $\mathsf{M}(R;2) = \{1\}$. On the other hand L is 3-constrained, so there is an EB-invariant S_3 -subgroup P of $O_{3',3}(L)$ on which E acts faithfully. We get $[E, \Omega_1(C_P(B))] \leq P \cap [E, B] \leq P \cap E = 1$, so [E, P] = 1 by the generalized $P \times Q$ -lemma. This is a contradiction, so (a) is proved. Part (b) follows from (a) and Lemma 2.2. As for (c), since C(B) is 3-constrained and B contains all elements of order 3 in C(B), we find that C(B) has a normal 3-complement. Now (c) follows immediately from (a).

Next choose $1 \neq F \in \mathcal{M}(B; 2)$. As B is noncyclic there is a subgroup $1 \neq B_0 < B$ satisfying $C_F(B_0) \neq 1$. It follows from (a) that B_0 is not conjugate to Z in G. On the other hand, since $N_R(B) > C_R(B)$, all subgroups of order 3 in B distinct from Z are conjugate in R. Thus Z is weakly closed in B as required.

Finally let $1 \neq B_0 < B$ with $B_0 \neq Z$. Set $L = C(B_0)$. By (d) we can assume that $C_R(B_0)$ is a S_3 -subgroup of L. Thus $C_R(B_0) = B_0 \times R_1$ where R_1 is cyclic and $Z = \Omega_1(R_1)$. Since L is 3-constrained we get that L is 3-solvable and $L/O_{3'}(L)$ is solvable. But by (a), $C(Z) \cap O_{3'}(L)$ has odd order. So $O_{3'}(L)$ is solvable by Lemma 2.4, hence L is solvable, as required.

LEMMA 4.2. A S_2 -subgroup of N(B) has order at most 2.

Proof. Let T be a S_2 -subgroup of N(B). We have $C_T(B) = 1$ by Lemma 4.1(c), so T acts faithfully on B. By Lemma 4.1(d), we have $Z \triangleleft N(B)$, so T is actually both faithful and reducible on B. Now assume that |T| > 2. The only possibility is |T| = 4 and T is a four-group.

Set $L=N_G(Z)>TB$. As usual we have $O_{3'}(L)$ of odd order, so there is a TB-invariant S_3 -subgroup P of $O_{3',3}(L)$ such that T is faithful on P. Let K be a critical subgroup of P of exponent 3 (that is, K is a characteristic subgroup of P and every 3'-element of $L/O_{3',3}(L)$ is faithful on K. The existence of K is proved in [9, Theorem 5.3.13]). Now as a consequence of (*) and Lemma 4.1(c) we find that if x is an involution of G then $C_G(x)$ has cyclic S_3 -subgroups. Hence $|K| \leq 27$.

Suppose first that |K|=9. Then $K\cong (3,3)$, so as $Z\triangleleft L$ then L is solvable and T covers a Hall 3'-subgroup of $L/O_{3'}(L)$. Thus L has a normal 2-complement and L has 3-length 1, so we may assume that P=R. Thus $K\in U(R)$, so that K is contained in an element of $SCN_3(R)$. On the other hand $K\neq B$, $[K,B]\neq 1$, so there is an involution of T acting without fixed points on $C_R(K)$. This forces $C_R(K)$ to be abelian of rank 2, a contradiction. So we have |K|=27.

Suppose K is abelian. Then $K \cong (3, 3, 3)$, hence

$$K = \langle \Omega_{\scriptscriptstyle 1}(C_{\scriptscriptstyle K}(t)) \mid t \in T^{\sharp} \rangle > B$$
.

But then $B \in \mathfrak{A}(3)$, against (*). So K must be extra-special of order 27 and exponent 3. It follows, since $\mathrm{Inn.}(K) = O_3$ (Aut. (K)), that $P = K^*C_P(K)$ and $L/O_{3',3}(L) \subset GL(2,3)$. Next, notice that $C_P(K)$ is cyclic: this follows since $K \cap C_P(K) = Z$, $K = \langle \Omega_1(C_K(t)) | t \in T^* \rangle$, and $C_P(K)$ admits T. Hence, we get $K = \Omega_1(P)$. Since $SCN_3(R) \neq \emptyset$, whilst $SCN_3(P) = \emptyset$, we get that P < R. As L also contains a fourgroup, it follows that $L/O_{3',3}(L) \cong GL(2,3)$. Now K contains exactly four subgroups of order 9, including B and some $U \in U(R)$. Since $B \not\sim U$ we deduce that B has exactly 3 conjugates in L, so $N_L(B)$ contains a S_2 -subgroup of L. This contradicts the first paragraph of the proof, so the lemma is proved.

Now set $R_0 = C_R(B)$. As we have observed, we can assume that R_0 is a S_3 -subgroup of $C_G(B)$. The next lemma is crucial.

LEMMA 4.3. Suppose that $1 \neq F \in M^*(R_0; 2)$. Let $N = N_G(F)$, with T a S_2 -subgroup of N. Then the following hold:

- (a) T is a S_2 -subgroup of G.
- (b) $|T:F| \leq 2$.

Proof. Let S be a S_3 -subgroup of N which contains R_0 . We may assume without loss that $S \subseteq R$. Now by (*) we have that S

contains no element of $\mathfrak{A}(3)$, so if $U \in \mathcal{U}(R)$ we have $S \cap C_R(U)$ cyclic. Hence S is metacyclic. Set $K = O^3(N)$. By a theorem of Huppert [14] K has abelian S_3 -subgroups. Set $S_0 = K \cap S$.

Case 1. S_0 is non-cyclic. We get $B = \Omega_1(S_0)$, so by Lemma 4.2 it follows that $|N_K(B): C_K(B)| \leq 2$. If $N_K(B) = C_K(B)$ then K has a normal 3-complement by a transfer theorem of Burnside. If $|N_K(B): C_K(B)| = 2$ then K is 3-solvable by Lemma 2.6. So in either case K is 3-solvable, hence $K = O_{3'}(K)N_K(B)$. As F is a S_2 -subgroup of $O_{3'}(K)$ we get $T = FN_T(B)$, so $|T:F| \leq 2$ by Lemma 4.2. Finally, TB is a group satisfying all the conditions of Lemma 2.3, so F is characteristic in T, so (a) follows and the result is proved in Case 1.

Case 2. S_0 is cyclic. If $S_0 = 1$ then $K = O_{3'}(N)$ is the normal 3-complement of N, so F = T and there is nothing to prove. Hence, we may assume that $S_0 \neq 1$. Set $B_1 = \Omega_1(S_0) < B$.

Now set $\bar{N}=N/O_{3'}(N)$. $C_{\bar{K}}(\bar{B}_1)$ has a normal 3-complement which admits \bar{B} , so if $C_{\bar{K}}(\bar{B}_1)$ has even order then there is a 2-group $\bar{U}\neq 1$ admitting \bar{B} . But then B normalizes a S_2 -subgroup of U which properly contains F, contradiction. So $C_{\bar{K}}(\bar{B}_1)$ has odd order. If \bar{K} has a minimal normal subgroup of order 3 then \bar{K} , and hence K, is 3-solvable. In this case we complete the proof as in Case 1, so we may suppose that every minimal normal subgroup of \bar{K} is non-solvable. As \bar{K} has cyclic S_3 -subgroup we deduce that $\bar{L}=\bar{K}^{\infty}$ is simple.

Next we have $C_{\overline{L}}(\overline{B}_1)$ of odd order and $|N_{\overline{L}}(\overline{B}_1)\colon C_{\overline{L}}(\overline{B}_1)|=2$. By Lemma 2.5 we get that \overline{L} has one class of involutions. Moreover, as \overline{B} normalizes $N_{\overline{L}}(\overline{B}_1)$ there is a subgroup B_2 of order 3 in B such that \overline{B}_2 centralizes an involution \overline{x} of $N_{\overline{L}}(\overline{B}_1)$. Thus $\overline{B}_2 \leqslant \overline{L}$ and \overline{B}_2 normalizes $C_{\overline{L}}(\overline{x})$. We show next that $\langle \overline{x} \rangle$ is a S_2 -subgroup of $C_{\overline{L}}(\overline{B}_2)$. For this, it is enough to show that $C_{\overline{L}}(\overline{B}_2)$ is solvable: for $C_{\overline{L}}(\overline{B}_2)$ has a cyclic S_3 -subgroup, so if $C_{\overline{L}}(\overline{B}_2)$ is solvable and has a S_2 -subgroup of order at least 4 then $\mathcal{M}(\overline{B};2)\neq\{1\}$, a contradiction. Now if $B_2\neq Z$ the solvability of $C_{\overline{L}}(\overline{B}_2)$ follows from Lemma 4.1(e). On the other hand if $B_2=Z$ then $C_G(Z)$ has S_2 -subgroups of 2-rank at most 1, so the solvability of $C_{\overline{L}}(\overline{B}_2)$ follows easily in this case also. So we have indeed shown that $\langle \overline{x} \rangle$ is a S_2 -subgroup of $C_{\overline{L}}(\overline{B}_2)$.

Consider now the group $C_{\overline{L}}(\overline{x})$. It is a 3'-group, and moreover $C_{\overline{L}}(\overline{x}) \cap C(\overline{B}_2)/\langle \overline{x} \rangle$ has odd order by the last paragraph. By Lemma 2.4 we find that $C_{\overline{L}}(\overline{x})/\langle \overline{x} \rangle$ is solvable of 2-length 1, so $C_{\overline{L}}(\overline{x})$ has the same property. So we have shown that \overline{L} is a simple group such that every involution of \overline{L} has a centralizer which is solvable of 2-length 1. Let \overline{Y} be a \overline{B}_2 -invariant S_2 -subgroup of \overline{L} with $\langle \overline{x} \rangle \leq$

 $Z(\bar{Y})$. We claim that $SCN_3(\bar{Y}) \neq \emptyset$. Otherwise, since $\langle \bar{x} \rangle = C_{\bar{Y}}(\bar{B}_2)$, we find easily that \bar{Y} is of symplectic type, and even extra-special. But as is well-known, no simple group has such a S_2 -subgroup. Thus we may now identify \bar{L} using Lemma 2.9. As \bar{L} has a cyclic S_3 -subgroup with an odd-order centralizer, and as \bar{L} admits an automorphism (induced by \bar{B}_2) with fixed-point subgroup having twice odd order, we find that the only possibility is $\bar{L} \equiv L_2(8)$. Hence a S_3 -subgroup of N is isomorphic to a S_3 -subgroup of Aut. $(L_2(8))$, hence is metacylic of order 27 and exponent 9. But then $B = R_0 = \Omega_1(S)$ char S and as $|N_R(B): C_R(B)| = 3$ we get $S = N_R(B)$. As $SCN_3(R) \neq \phi$ and $B \notin \mathfrak{A}(3)$ this is impossible. So the analysis of Case 2 is completed, and the lemma is proved.

We can now prove

PROPOSITION 4.1. $O_{3'}(C(R_0))$ is transitive on $\mathbb{N}^*(R_0; 2)$.

Proof. First notice that $\mathcal{N}(R_0;2) \neq \{1\}$. For by assumption we have $\mathcal{N}(B;2) \neq \{1\}$. So if $1 \neq F \in \mathcal{N}(B;2)$ and $1 < B_0 < B$ satisfies $F_0 = C_F(B_0) \neq 1$ we get, since $F_0 \neq Z$ by Lemma 4.1(a), that $C(B_0)$ is solvable. Thus $F_0 \leq \langle \mathcal{N}_{C(B_0)}(B;2) \rangle \leq O_{3'}(C(B_0))$. As $R_0 < C(B_0)$ then R_0 must normalize a (nontrivial) S_2 -subgroup of $O_{3'}(C(B_0))$, as required.

Supposing the proposition false, choose elements D_i , D_i in $\mathsf{M}^*(R_0;2)$ such that D_i and D_i are not conjugate in $O_{3'}(C(R_0))$ and such that $|D_i\cap D_i|$ is maximal subject to this condition. Set $D=D_i\cap D_i$. We next show that $D\neq 1$. Namely, since $D_i\neq 1$ then $D_i=O_2(N(D_i))$ for i=1,2, and so B is faithful on D_i and D_i . Thus if $B_i^*=\{1< B_0< B\mid C_{D_i}(B_0)\neq 1\}$, then $|B_i^*|\geq 2$ for i=1,2. As $Z\notin B_i$, $Z\notin B_i$ by Lemma 4.1(a) it follows that $B_i^*\cap B_i^*\neq \emptyset$. Choose $B_0\in B_i^*\cap B_i^*$, with $D_i^*=C_{D_i}(B_0)\neq 1$, i=1,2. As before, we get $\langle D_i^*,D_i^*\rangle\leq O_{3'}(C(B_0))$, so there is $x\in O_{3'}(C(R_0))$ such that $\langle D_i^*,(D_i^*)^*\rangle$ is a 2-group. It follows that $D\neq 1$.

Now set N=N(D). Maximality of |D| ensures that $D=O_2(N)$. As N is 2-constrained then C(D)=Z(D), in particular $Z(D_i) \leq D$ for i=1, 2. As D_i has class at most 2 by Lemma 4.1(b), then $D \triangleleft D_i$, so $D_i \leq N$ for i=1, 2. Let T_1 be a S_2 -subgroup of N which contains D_1 . By Lemma 4.3, we have $|T_1:D_1| \leq 2$. Moreover D_1/D is abelian, so T_1/D has an abelian subgroup of index at most 2.

As in Lemma 4.3, we may argue that N has metacyclic S_3 -subgroup. Suppose that N is 3-solvable. Then we get

$$\langle N_{\scriptscriptstyle D_1}\!(D),\,N_{\scriptscriptstyle D_2}\!(D)
angle \leqq \langle m{\mathsf{M}}_{\scriptscriptstyle N}\!(R_{\scriptscriptstyle 0};\,2)
angle \leqq O_{\scriptscriptstyle 3'}\!(N)$$
 ,

so $\langle N_{D_1}(D), N_{D_2}(D)^x \rangle$ is a 2-group for some $x \in O_{3'}(C(R_0))$, and the maximality of |D| is contradicted. Hence, N is not 3-solvable. The

argument of Case 1 of the previous lemma now yields that $K=O^3(N)$ has a nontrivial cyclic S_3 -subgroup, and moreover if $\bar{N}=N/O_3$ (N) then $\bar{L}=\bar{N}^{\infty}$ is simple. Now as \bar{N} has S_2 -subgroups which have abelian subgroups of index at most 2, \bar{L} has the same property, so we may identify \bar{L} using Lemma 2.10. In particular, if $T=T_1\cap L$, so that \bar{T} is a S_2 -subgroup of \bar{L} , then \bar{T} is either elementary abelian, or isomorphic to D_2n , SD_2n or $Z_2n \wr Z_2$. Now B normalizes $D_1\cap L$ and $|T:D_1\cap L|\leq 2$. As $B\cap L$ is cyclic it follows that there is a subgroup B_0 of B of order 3 such that B_0 normalizes a S_2 -subgroup of L. Hence we can assume that B_0 normalizes T.

Now if T is non-abelian then $[T, B_0] = 1$. Since $C_L(B)$ has odd order by Lemma 4.1(c) it follows in this case that $C_{\overline{L}}(\overline{B_1})$ has odd order, where $B_1 = \Omega_1(B \cap L)$. It follows that $\overline{L} \not\cong L_3(q)$ or $U_3(q)$ (q odd), A_7 or M_{11} , for these groups have nonabelian S_2 -subgroups and elements of order 6.

Suppose we have $\bar{L} \cong L_2(q)$ for some q. We may choose $B_2 < B$, $|B_2| = 3$, $B_2 \neq Z$, $B_2 \leqslant L$. Then B_2 induces a field automorphism of \bar{L} of order 3. Since $C(B_2)$ is solvable by Lemma 4.1(e), the only possibilities are q=8 or q=27. In the latter case \bar{L} has a noncyclic S_3 -subgroup, a contradiction. We may eliminate the former possibility as in Lemma 4.3, and so $\bar{L} \ncong L_2(q)$ for any q.

As J_1 has no outer automorphisms of order 3 [17], and as groups of Ree-type have non-cyclic S_3 subgroups [18], \bar{L} can be isomorphic to none of these groups. Having exhausted the possibilities given by Lemma 2.10, we deduce that \bar{L} does not exist, so the proof of Proposition 4.1 is completed.

The Proof of Theorem 2. We retain the notation of the previous lemma, so that $B \leq R_0 = C_R(B)$. As $SCN_3(R) \neq \emptyset$ then there is $U \in \mathcal{U}(R)$ such that $R_0U = N_R(B)$. So $|R_0U:R_0| = 3$, so $R_0 \triangleleft R_0U$. Hence, U must permute the elements of $\mathsf{M}^*(R_0;2)$ among themselves. By Proposition 4.1 $\mathsf{M}^*(R_0;2)$ contains a 3' number of elements, so U must fix some element $F \in \mathsf{M}^*(R_0;2)$. As $F \neq 1$ then $\mathsf{M}(U;2) \neq \{1\}$. However, $U \in \mathfrak{A}(3)$. This contradicts our basic assumption (*), so Theorem 2 is proved.

REFERENCES

- 1. J. L. Alperin and R. Lyons, On conjugacy classes of p-elements, J. Algebra, 19 (1971), 536-537.
- 2. H. Bender, Über den grössten p'-Normalteiler in p-auflöbaren Gruppen, Arch. Math., **18** (1967), 15-16.
- 3. R. Brauer, Some applications of the theory of blocks of characters of finite groups III, J. Algebra, 3 (1966), 225-255.
- 4. W. Feit, and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775-1029.

- 5. R. Gilman and D. Gorenstein, Finite groups with Sylow 2-subgroups of class two I, II (to appear).
- G. Glaubermann, Central elements in core-free groups, J. Algebra, 4 (1966), 403-420.
- 7. D. Gorenstein, On finite groups of characteristic 2-type, Inst. Hautes Etudes Sci. Publ. Math., 36 (1969), 5-13.
- 8. ———, Centralizers of involutions in finite simple groups (in) Finite Simple Groups, Proceedings of London Math. Soc. Conf., London: Academic Press, 1971.
- 9. ——, Finite Groups, Harper and Row, New York, 1968.
- 10. ———, A program for classifying simple groups, Lecture notes, University of Chicago (unpublished).
- 11. D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, (to appear).
- 12. G. Higman, Odd characterizations of finite simple groups, Lecture notes, University of Michigan, 1968.
- 13. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
- 14. ——, Gruppen mit modularer Sylow-Gruppe, Math. Z., **75** (1961), 140-153.
- 15. Z. Janko, A characterization of the finite simple group $G_2(3)$, J. Algebra, 12 (1969), 360-371.
- 16. ———, A Characterization of the finite simple group PSp(4, 3), Canada. J. Math., 19 (1967), 872-894.
- 17. ———, A new finite simple group with abelian S₂-subgroups and its characterization, J. Algebra, 4 (1966), 147-186.
- 18. ——— and J. G. Thompson, On a class of finite simple groups of Ree, J. Algebra, 4 (1966), 274-292.
- 19. K. Klinger and G. Mason, Centralizers of p-groups in groups of characteristic 2, p-type, (to appear).
- 20. R. J. Lundgren, On finite simple groups all of whose 2-local subgroups are solvable, J. Algebra, 27 (1973), 491-515.
- 21. G. Mason, The characterization of finite groups whose Sylow 2-subgroup has a cyclic commutator subgroup, (to appear).
- 22. K.-W. Phan, A characterization of the finite simple group $L_4(3)$, J. Austr. Math. Soc., X (1969), 51-76.
- 23. ——, A characterization of the finite simple group $U_4(3)$, J. Austr. Math. Soc., X (1969), 77-95.
- 24. S. D. Smith and A. D. Tyrer, On finite groups with a certain Sylow normalizer II, J. Algebra, 26 (1973), 366-367.
- 25. M. Suzuki, On a class of doubly transitive groups, Ann. Math., 75 (1962), 105-146.
- 26. J. G. Thompson, Non-solvable finite groups all of whose local subgroups are solvable, I.: Bull. Amer. Math. Soc. **74** (1968), 383-437; II: Pacific J. Math., **33** (1970),
- 451-537; III: Pacific J. Math., **39** (1971), 483-534; IV: Pacific J. Math., **48** (1973), 511-592; balance to appear.
- 27. J. H. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. Math., 89 (1969), 405-514.

Received September 13, 1974. Partially supported by NSF GP-42875.

University of California, Santa Cruz