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COMPACT CONVERGENCE AND THE ORDER
BIDUAL FOR C{X)

W. A. FELDMAN AND J. F. PORTER

An order-theoretic characterization of the topology of
compact convergence on the lattice C(X) of all continuous
real-valued functions on X is provided for a realcompact
space X, analogous to the order unit characterization for
compact X. The approach is to generalize the concept of
an order unit to permit consideration of locally convex
topologies. The characterization is then achieved by viewing
C(X) as a subspace of its order bidual. In addition, the
bidual is employed to provide an order-theoretic description
of the continuous convergence structure on C(X).

Semiorder-units in a vector lattice and the locally convex topology
they generate are introduced in § 1, generalizing the concept of order
units and their associated seminorm topology. For a realcompact
space X it is shown that the semiorder-unit (sou) topology on C(X),
the lattice of continuous real-valued functions on X, is the topology
of compact convergence if and only if X is a union of open compact
sets (Theorem 1). To describe the topology of compact convergence
via sou's for an arbitrary realcompact space requires the material
of § 2. In that section, an extension of C(X) which contains an

ample number of sou's is introduced. This is the space C(X), all
limits in the order bidual of order convergent nets from C(X). That

C(X) is a sublattice of the bidual is a consequence of Theorem 2,
which establishes that a vector lattice together with order convergence
is a convergence vector lattice. The main result, developed in §3,
describes the topology of compact convergence as the sou topology
on C(X) restricted on C(X) for any realcompact X (Theorem 3).
The final section is devoted to characterizing the continuous con-
vergence structure on C(X) (Theorem 4) via the bidual and unbounded
order convergence.

1* The semίorder-unit topology* We recall that an element u
of a partially ordered vector space V is said to be an order unit if
for each v in V there is a λ > 0 such that v ^ λu. If X is a
compact space and u is an order unit in C(X), the functional p
defined by p(f) — A ίλ > 0: I /1 ^ λ^} is a norm on C(X) generating
the topology of uniform convergence. In particular, u can be chosen
to be the constant function 1, in which case p is the usual supremum
norm.
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We wish to provide an analogous characterization of C(Y) with
the topology of compact convergence when Y is a completely regular
(Hausdorff) space. We first note that the vector lattices C(Y) and
C(υY) are lattice-isomorphic where υY denotes the Hewitt real-
compactification of Y (see [7], p. 118). We will therefore identify
the vector lattices C(Y) and C(υY), and reserve the letter X to denote
realcompact spaces. We observe that if there is an order unit u in
C(X) then u must be bounded, since there is a λ > 0 such that u2 ^ Xu.
It follows that C(X) has order units if and only if each continuous
function on X is bounded—that is, if and only if X is compact. This
last equivalence follows from the fact that a realcompact space is
compact if and only if it is pseudo-compact (see [7], p. 79). The
following concept may prove useful in vector lattices which lack
order units.

DEFINITION 1. Let V be a vector lattice. We call a positive
element u in V a semiorder-unit (sou) if for each v in V there is
a λ > 0 such that v A nu ^ Xu for all n in the set N of positive
integers.

It is easy to verify that every order unit in a vector lattice is a
sou. Analogously to the way a seminorm is associated to an order
unit, we associate a seminorm to a sou. We state this as a proposi-
tion whose proof is routine.

PROPOSITION 1. Let u be a sou in vector lattice V. The func-
tional p defined by

p(v) = A ( λ > 0: I v I Λ nu ^ Xu for all neN}

for v in V is a seminorm on V. If u is an order unit then this
functional p is the usual seminorm associated to u (i.e. p(v) =
A {λ > 0: I v I ̂  Xu}).

If u and u' are sou's in a vector lattice with the property that
there exist real numbers a and β such that au ^ u' S βu, then it
follows that their associated seminorms are equivalent. Although
the seminorms associated to all order units in a vector lattice are
equivalent, two sou's may have associated seminorms which are
not equivalent.

DEFINITION 2. Let V be a vector lattice. By the sou topology
on V we will mean the locally convex topology generated by the
collection of seminorms associated to the family of all sou's in V.
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If X is a discrete space, all characteristic functions of finite
subsets of X are nonzero sou's in C(X). It is easy to verify that
the seminorms associated to this subcollection of sou's generate the
topology of compact convergence. More generally, we have the
following theorem.

THEOREM 1. Let X he realcompact. The sou topology on C(X)
coincides with the topology of compact convergence if and only if
X is a union of open compact sets.

Proof. We begin by showing that the sou topology on C(X)
is always coarser than the topology of compact convergence. Let
u be a sou in C(X). Since u2 is in C(X) there is a δ > 0 such that
u2 Λ nu ^ δu for all n e N. It follows that u is bounded by δ on
X. Similarly, there is an ε > 0 such that V' u Λ nu ^ eu, which
implies u(x) ^ 1/ε2 if u(x) Φ 0. The set S = {x e X: u(x) Φ 0} is open
and closed; we will show that S is compact. Since S is closed and
X is realcompact, it is sufficient to verify that every / in C(X) is
bounded on S (see [7], p. 126). Given / in C(X), there exists a
λ > 0 such that /Λ nu ^ Xu for all n. In particular, for x in S it
follows that f(x) 5g Xδ, and thus S is compact. The fact that u is
bounded and bounded away from zero on S implies that the seminorm
associated to u is equivalent to the seminorm || | | s defined by

! U = V

Thus the sou topology on C(X) is coarser than the topology of
compact convergence.

Let us assume that X = \J Aa, where each Aa is an open compact
set. To show that the topology of compact convergence is coarser
than the sou topology, we consider a compact subset K of X. Now
K is contained in some finite union (J?=i ^αί>

 a n d the characteristic
function of U?=i - ^ ^s a s o u m C(^) The seminorm associated to
this characteristic function is || ||uj=14α. a n d dominates ]| ||/v, as
desired.

To prove the converse, let us assume that the sou topology on
C(X) is the topology of compact convergence. We will show that
each x in X is contained in an open compact set. For x in X there
are a finite number of sou's uί9 — ,un with associated seminorms
pu .., pn satisfying V?=i^i ^ II lίw (Note that for u a sou with
associated seminorm p we have eu a sou with associated seminorm
p/ε for any e > 0.) We claim that x is in the set

{y e X: ut(y) Φ 0 for some i = 1, ••-,%}.
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For otherwise, there would exist a function / in C(X) vanishing on
this set with f(x) — 1, implying that (V?=i Pi)(f) = 0 whereas || / ||{β} =
1. Thus Uj(x) is nonzero for some j (1 <£ j ^ n). It follows from
the remarks at the beginning of the proof that {y e X: uό{y) Φ 0} is
an open compact set containing x, as desired.

In particular, if X is compact then the sou topology on C(X) is
the norm topology. We noted previously that, alternatively, this
topology is generated by any order unit.

2* The order bidual and C(X). It is clear from Theorem 1
that the topology of compact convergence on C(X) is not the sou
topology for many important spaces—for example C(R), where R
denotes the reals. C(R) lacks characteristic functions for compact
subsets; in fact, C(R) has no nonzero sou's. To continue our study,
we will consider C(X) as a subspace of its order bidual C(X)00. (For
a vector lattice V, we denote by V° the vector lattice generated by
the positive linear functionals on V, see [14], p. 24).

We recall that C(X)00 is an order-complete vector lattice, and
we will identify C(X) with its natural embedding as a sublattice of
C(X)00. This embedding is a lattice isomorphism (see [14], p. 156).

We will utilize the following theorem, due to Hewitt (see [8],
p. 179).

THEOREM A. Let Y be a completely regular space. Let CC0{Y)
denote C(Y) together with the topology of compact convergence and
CC0(YY denote its continuous dual. Then C(Y)° coincides with CC0(Yy
if and only if Y is realcompact.

It will be convenient to utilize the following consequence of
Theorem A.

THEOREM B. Let X be a realcompact space and φ a positive
linear functional on C(X). There exists a compact subset K of X
and a positive linear functional φr on C(K) such that φ = φ' ° r,
where r is the restriction mapping from C(X) to C(K).

Proof. By Theorem A, φ is continuous with respect to the
topology of compact convergence. Thus there exist a compact set
K in X and an a > 0 such that | φ(f) \^a\\f\\κ for all / in C(X).
This, together with the fact that r is onto, allows one to define
the mapping φr as follows: for / ' e C(K) let φ'(ff) = Φ(f)9 where
feC(X) and r(f) = / ' . Clearly φ' is a nonnegative element in C(Kf
and φ = ψ o r.
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We remark that if X is locally compact as well as realcompact then
C(Xy° is precisely the space M defined by Mack in [13] (see p. 227).

Given a compact subset K of X the restriction mapping r from
C(X) into C(K) induces a linear mapping r* from C(K)° into C(X)°
defined by r*(ψ) — φ°r for all φ in C(K)°. Similarly, r* induces a
linear mapping r** from C(X)00 into C{K)m defined by r**(F) =
F o r * for all F in C(X)00.

We recall that an ideal / i n a vector lattice V is called a δcmd
if the suprema in V of subsets of / are also in /.

LEMMA 1. (a) The mapping r* is a lattice isomorphism onto
a band L in C(X)°.

(b) The mapping r** is a lattice homomorphism and there is
a band M in C(X)00 such that the restriction of r** to M is an
isomorphism onto C(K)00. In fact, M is the set of members of
C(X)00 which vanish on the orthogonal complement (in C(X)°) of L.

Proof. The proof of (b) follows from (2.4), p. 331 and (2.5),
p. 332 in [10]. To prove (a) we note that C(X)/I is isomorphic to
C(K), where

I={feC(X):f(K) = 0)

(see [11], p. 39). Thus C(K)° is isomorphic to (C(X)/I)°, which is in
turn isomorphic to the ideal J — {φ e C(X)°: φ(I) = 0}. Since J is a
direct summand of C(X)° whose natural embedding map "is" r*, we
have the result.

A subset A of a vector lattice V is said to be directed upward
(downward) if for a and b in A there is an element in A greater
than or equal to (less than or equal to) both a and b.

LEMMA 2. (1) Let {fa} be a subset of C(X) and φ ;> 0 in C(X)\
If {fa} is directed upward (downward) and bounded above (below) in
C(X)m, then in C(X)00

lVfa](φ)= Vlfa(φ)]
a a

(IAM(Φ) = AlfΛΦ)])-
a a

(2) Let F and G be in C(X)00 and φx be the point-evaluation
functional at x in X. Then

(F V G)(φ.) = F(φx) V G(φ.)
and

{F A G){φx) = F(φx) A G{φ«) .



118 W. A. FELDMAN AND J. F. PORTER

Proof. For the proof of (1), see (2.2) of [9].
To prove (2), it is sufficient to show that [F+](φx) = [F(ψx)]+,

where + again denotes supremum with zero. We write

[F+](φx) = V {F(φ): O^φ^φx}.

Now 0 SΦ^ΦX implies | φ(f) \ £ \\f\\{x} for all / in C(X). Arguing

as in the proof of Theorem B we see t h a t φ = kφx for some 0 g

k ^ 1. Thus

[F+](φx) = V {kF(φa): 0 <£ k £ 1} ,

which simplifies to [F(φx)]+.
The next lemma relates the order of C(X)00 to the point-evalua-

tion functionals.

LEMMA 3. (a) If F and G belong to C(X)00 and A and B are
subsets of C(X) such that F=\f {f:feA} and G = V {g:geB},
then F ^G if and only if V {f(x):fe A } ^ V {g{x)\ g e B) for all x
in X.

(b) // F and G belong to C(X), then F £ G if and only if
F(φx) ^ G(φx) for all x in X.

Proof, (a) We can assume that A and B are directed sets by
including suprema of finite subsets. Thus the sufficiency follows by
Lemma 2. For the necessity, we note that by using Dini's theorem
and Theorem A one can prove as in [9], (5.5) on p. 73, that if / is
in C(X) and D is a subset of C(X) then / = V {hiheD} if and only
if f(x) = V {h(x):heD} for all x in X. The proof of part (a) can
be completed by interpreting (6.3), p. 76 in [9], in this setting.

(b) The sufficiency is clear. On the other hand, suppose
F(ώx) ^ G(φx) for all x in X. There exist nets {fa} and {ga} in C(X)
such that F= V« Λ^«Λ and G= AaVβ^gβ (see [14], p. 44). It
follows that for all a and a',

. ) £ { A

By (6.5) in [9], p. 76, we conclude that

so that F ^ G.
We now demonstrate that C(X)00 is "rich" in sou's. Let K be

a compact subset of X. We define an element eκ in C(X)00 by

eκ = A {/e C(X): f ^ 0 and f(K) = 1} ,
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the infimum being taken in C(X)Q0. We remark that the family of
functions used in defining eκ satisfies the hypotheses of Lemma 2.

PROPOSITION 2. For every compact suset K of X, the element
eκ is a sou in C(X)00.

Proof. It is clear from Lemma 1 and the fact that C(Xf is
order complete that C(K)° is a direct summand of C(X)°. We will
show that eκ vanishes on the orthogonal complement W of C(K)°
(in C(X)°). Let φ ̂  0 be in W. By Theorem B, φ is a nonnegative
regular Borel measure with compact support Kφ. Thus φ is the
sum of two nonnegative measures φγ and φ2 supported on KΦ Π K
and KΦ\K respectively. Since φt is in C(K)°, we obtain φ — φ2 so
that φ{K) = 0. Since φ is regular, for any ε > 0 there is a closed
set F contained in KΦ\K such that φ(Kφ\F) < ε. Let g be a function
in C(X) with 0 ^ g <> 1, g{K) = 1 and g(F) = 0. By the definition
of eκ, w e h a v e 0 ^ eκ(φ) S g(Φ) £\\g \\Kφφ(Kφ\F) < ε. T h u s eκ is in
the ideal M defined in Lemma 1. We will complete the proof that
eκ is a sou in C(X)00 by showing that it is an order unit in M.
Let j / = { / e C ( I ) : / ^ 0 and f(K) - 1}. For φ in C(K)° and r
the restriction map from C(X) into C(K),

(r**eκ)(φ) = eκ{r*φ) = (A

= A {/(r^

the third step being a consequence of Lemma 2. Thus r**(e#) is
the constant function 1 in C(K)00, so that eκ is an order unit in M.

For § 3 we wish to consider not C(X)00 but a sublattice of C(X)00

which contains C(X) and the sou's eκ discussed above. This sub-
lattice will be defined in terms of order convergence in C(X)00.
Recall that a net {xa} in a vector lattice V is said to order converge
to zero if there is a collection M of nonnegative elements of V
directed downward with A {^: ^ e M} — 0 such that for each m in
Λf there is an α' satisfying |a;α| ^ m for α ^ ar (see [14]). Order
convergence to other points of V is defined by translation. We

denote by C(X) all elements in C(X)00 which are order convergence

limits of nets in C(X). (When X is compact, C(X) is the sublattice

U defined by S. Kaplan in [9].) It is clear that C(X) contains
C(X) and the sou's eκ.

By the order convergence adherence of a subset W of a vector
lattice Z we will mean the set of all elements of Z which are limits
under order convergence of nets in W. The following theorem is a
consequence of the continuity of the vector lattice operations with
respect to order convergence (see Theorem 14, [2], p. 362).
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THEOREM 2. The space C{X), the order convergence adherence
of C(X) in C(X)00, is a sublattice of C(X)00 containing as sou's all
elements

eκ - Λ {fe C(X):f^ 0 and f(K) = 1}

for compact subsets K of X.

We remark that one can prove the more general result that
any archimedean vector lattice together with its order convergence
is a convergence vector lattice. (By a convergence vector lattice
one means a convergence vector space (see [1]) with the property
that the lattice operations are continuous.)

3* The topology of compact convergence on C{X). Let C(X)

denote the vector space C(X) of § 2 together with its sou topology.
In this section we investigate the topology τ induced on C(X) as a

subspace of C(X). We first observe that τ is finer than the topology
of compact convergence. Indeed, for K a compact subset of X and
e its associated sou (the element eκ in Corollary 1) we verify that
\\f\\κ^Pe(f) for all /in C(X), where ||/|U = V {\f(x)\:xeK} and
pe is the seminorm associated to e (see Proposition 1). Let / be in
C(X). By definition of pe, \f\ A ne <; pe(f)e for all n. By Lemma
2 w e o b t a i n \f(x) \ A ne(φx) ^ pe(f)e(φx). I n p a r t i c u l a r , \\f\\κ ^ pe(f)
since e(φx) — 1 for x in K (see Lemma 2).

The central purpose of the section is to establish that τ coin-
cides with the topology of compact convergence on C(X). It is

important for this goal that all sou's in C(X) are "similar" to the

e's discussed above. Although stated for C(X), the following pro-
position is valid for any sublattice of C(X)00 which contains C(X).

PROPOSITION 3. Let X be realcompact and E a sou in C(X).
Then

(1) there is a real number M such that E(φx) ^ M for all x in
X, and

(2) the closure in X of {xe X: E{φx) Φ 0} is compact, where φx

denotes the point-evaluation functional at x in X.

Proof. Let A denote {x e X: E(φx) ^0}. To prove (2) we assume
that A is not compact. By SE and 1.20 in [7], there is a function
/ in C(X) and a sequence {xn} in A such that f(xn) = nE(φxJ. It
follows from Lemma 2 and the fact that E is sou that

nE(φx) = f{xn) A nE(φxJ ^
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for some λ > 0 and all neN, a contradiction. To prove (1), we
assume to the contrary that there is a sequence {xn} in A such that
E(φXn) ^ n*. Arguing as in the proof of Proposition 5.7 (i) in [13],
p. 234, we define a measure

Since A is compact, it follows from Theorem B that μ is in C(X)°.
But E(μ) ̂  E(φxJ/n2 ^ n for all n, a contradiction.

The crucial fact relating the sou's in C(X) to the topology of
compact convergence on C(X) is contained in the following pro-
position. We recall that \\f\\κ = V (1/0*0 M e K).

PROPOSITION 4. For X a realcompact space and E a sou in

C(X), let K denote the closure in X of {xe X: E(φx) Φ 0} and pE be
the seminorm associated to E (in Proposition 1). Then for all f in
C(X),

pE(f)^\\f\\κpE(l).

Proof. Let / in C(X) be given. For x in K,

f(x) A nE{φx) <ί (|| / IU-1) Λ nE(φx)

^pΛ(\\f\\κ)l]E(Φx)

= \\f\\κpE(l)E(φx).

Since E(φx) is zero for x not in K we obtain by Lemma 2 that for
all x in X, (/Λ nE){φx) ^ || / 1 1 ^ , ( 1 ) ^ . ) . Thus by Lemma 3 (b),
(/Λ nE) ^ \\f\\κpE(l)E. Now it follows from the definition of pE(l)
that pΛf)^\\f\\κPE(l).

The space C(F), the order convergence adherence of C(Y) in
C(Y)00, can be defined for any completely regular spacQ Y and is
order isomorphic to C(υY)f where uY is the Hewitt realcompactification
of Y. However, C(υY) with the topology of compact convergence is
homeomorphic to C(Y) with the topology of compact convergence if
and only if Y is realcompact. Thus, in view of Proposition 4 and
the remarks at the beginning of this section, we have proved the
following theorem.

THEOREM 3. Let Y be a completely regular topological space

and let the subspace C(Y) of C(Y)00 have its sou topology. The

topology induced on C( Y) as a subspace of C( Y) coincides with the
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topology of compact convergence if and only if Y is realcompact.

A more explicit description of the seminorms in question is
given in the following proposition.

PROPOSITION 5. Let X be realcompact.
(1) If K is a compact subset of X with associated sou e in

C(X), then pe(f) = \\f\\κ forjll f in C(X).

(2) If E is a sou in C(X) and A = {xeX: E(φx) Φ 0} then pE( )
is equivalent to || | | i on C(X); i.e., there exist positive real numbers
a and β such that a \\f\\Ί ^ pE{f) ^ β \\f\\7ί for all f in C(X).

Proof. B y t h e r e m a r k s of t h e f i r s t p a r a g r a p h of t h i s s e c t i o n
a n d P r o p o s i t i o n 4 w e h a v e || f\\κ ^ pe{f) ^ pe{l)\\ f\\κ. F o r φ^O
in C{X)\ we can wri te φ-=φλ°r+φ2°r with e(φ1 o r) = φSX) and

e(φ2 o r) = 0, as in the proof of Proposition 2. Thus (1 Λ ne)iφ) ^
^(1) = e(φ), so that pe(l) ^ 1, establishing (1). For (2), we observe
that I f{x) I Λ nE(φx) ^ pE(f)E(φx) by Lemma 2. By proposition 3
there is an M > 0 such that E(φx) ^ M, and E(φx) Φ 0 for x in A.
Thus

V{\f(x)\:xeA}£Ps(f)M,

which together with Proposition 4 implies (2).

4* The continuous convergence structure on C(X). In this
section we provide an order-theoretic description of the continuous
convergence structure on C(X) which extends some results of
Kutzler [12].

For any space Y, we recall that the continuous convergence
structure (see [1]) on C(Y) is the coarsest convergence structure σ
on C(Y) such that the evaluation map ω from Cσ(Y) x Y into the
reals, defined by ω(f x) — f(x), is continuous. The space C(Y) to-
gether with the continuous convergence structure is denoted by
CciY). We say that a net converges to a function / in CC(Y) if its
filter of final sections converges to /. It is obvious that a filter in
CC(Y) converges if and only if its associated net converges.

We recall [5], [6] that a net {xa} in a vector lattice V unbounded
order converges to zero if each bounded net {ya} (i.e. \ya\ ^ v for
some v G V and all a) with \ya\ fj \xa\ order converges to zero.
(This means that there exists a subset M of V directed downward
with infimum zero such that for each me M there is an am satisfying
\ya\ ^™ for a ^ am.) Given a sublattices W of V, we will say that
net {xa} in W unbounded order converges to zero in W as a subspace
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of V if each net {ya} in W which is bounded in W (i.e. \ya\ ^ w
for some w e W and all a) with \ya\ <^ \xa\ has the following pro-
perty: there exists a subset M of W directed downward with
infimum zero in V such that for each me M there is an am satisfying
\ya\ ^ m for a :> am. Again, convergence to other points is defined
by translation.

The following theorem is a consequence of two results in [12]:
Satz 1.1 and Satz 1.4. For convenience, we include a complete
proof of the theorem.

THEOREM 4. Let Y be a completely regular topological space
and υY its Hewitt realcompactification. A net converges in Cc(υY)
if and only if it unbounded order converges in C(υ Y) as a subspace
of C(υY)00 (or, by identification, in C(Y) as a subspace of C(Yf°.)

Proof. Let X denote υY. We first suppose that net {fa}
unbounded order converges to zero in C(X) as a subspace of C(X)00.
Corresponding to the bounded net {\fa\ Λ 1} there is a subset M of
C(X) directed downward with infimum zero in C(X)00 such that for
each me M there is an am satisfying | / β | Λ l ^ m for a ^ am. For
peX and 0 < ε < 1, Lemma 3 (a) implies that m(p) is less than
ε/2 for some m in M. Since m is continuous, there is a neighborhood
UP of p such that for a >̂ am,

( | / β | Λ l ) ( l 7 , ) = I Λ I ( l 7 , ) s [ 0 f e ) .

This implies that {fa} converges to zero in CC(X). Conversely,
suppose that {fa} is a net convergent to zero in CC(X). If {ga} is a
net bounded by a function g0 in C(X) and satisfying \ga\ ^ | / α | ,
then clearly {ga} converges to zero in CC(X). Thus for pe X and
ε > 0 there is a neighborhood Up of p such that ga(Uv) gΞ ( — ε, ε)
for all a beyond some a'. By the complete regularity of X there
exists a function hp>ε ^ ε in C(X) with value ε at p and values
greater than or equal to g0 on X\UP. The set M of all infima of
finite subcollections of {hp>ε:peX and ε > 0} is directed downward,
and for each me M there is an am such that \ga\ ^ m for a ^> am.
Lemma 3 (a) implies that A ί m : m e ilί} is zero in C(Xf\ completing
the proof.

In contrast to Theorem 3, we have the following.

COROLLARY 1. Let Y be a completely regular topological space.
The space Y is realcompact if and only if the topology of compact
convergence is the finest locally convex topology τ on C(Y) with the
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property that every net which unbounded order converges in C(Y)
as a sub space of C(Y)m also converges in τ.

Proof. This is an immediate consequence of the fact that the
topology of compact convergence is the finest locally convex topology
on C{Y) coarser than the continuous convergence structure (see [4]).

COROLLARY 2. Let X be realcompact. Unbounded order con-
vergence of nets in C(X) as a subspace of C(X)00 defines a topology
if and only if X is locally compact. This topology is the topology
of compact convergence.

Proof. It is known (see [3], p. 329) that the continuous con-
vergence structure on C(X) defines a topology if and only if X is
locally compact.
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