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ON LOCALLY COMPACT WREATH PRODUCTS

JOHN R. DURBIN

The conditions are given under which an algebraic wreath
product becomes a topological wreath product with respect
to the natural product topology. Various standard topological
properties are discussed, and the Haar integral is described.
All irreducible representations of the separable locally com-
pact wreath products having a type I group as first factor
are determined.

1* Introduction* Wreath products have been an important
source of examples for (discrete) group theory, as can be seen by
their use throughout [7] and [15], for example. Recent work has
also shown their usefulness outside group theory ([3], [4], [17]). The
possibilities for the theory of arbitrary topological groups seem not
to have been openly explored, however. In this paper we begin by
recording the condition under which an algebraic wreath product
becomes a topological wreath product—with respect to the natural
product topology. We next note the conditions under which the
product will have various standard topological properties, and we
then look at the Haar integral. This brings us to the first problem
of substance: to determine the irreducible representations of the locally
compact wreath products. This problem has been solved for finite
groups through the use of Clifford's work [2] on induced representa-
tions (see [9]), and it is natural to make use of induced representations
in the more general case as well. The appropriate tool here is Mackey's
extension [13] of Clifford's theory, and in the last section we apply
this to determine, in particular, all irreducible representations of the
separable locally compact wreath products having a type I group as
first factor.

2* The groups* If A and B denote groups, then the wreath
product of A and B, A I B, is constructed as follows. Let F = AB be
the direct product of copies of A indexed by the set B. Explicitly,
F is the set of all functions from B into A, made into a group by
componentwise multiplication. For feF and 6eB, define fb eF by
f\v) = f(yb~ι) for all y e B. Then, for each b e B, the mapping /1->
fb is an automorphism of F, and the group of all such automorphisms
is isomorphic to B; the wreath product of A and B, A I B, is the
extension of F by this group of automorphisms. Each element of
A I B can be written uniquely as fb, with feF and b e Bt and
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these elements multiply according to the rule /A/ 2δ 2 =
So A I B is a semi-direct product of F and B: F<\Al B, F Π B = {e},
and FB — A I B. F is called the base group of the wreath product.

The wreath product defined here is sometimes called the standard
wreath product, to distinguish it among wreath products in which
the second factor is permitted to be an arbitrary permutation group;
compare [9]. The standard case appears to bring out the essential
ideas, and it avoids the slightly more cumbersome notation of the
more general product. (See the remarks following Theorem 2.2,
also.)

Now assume A and B to be topological groups; all topological
groups will be Hausdorίf, and, to avoid degeneracy, we always assume
I A\ > 1 and \B\ > 1. Because A I B is a semi-direct product of F
and Bf it is natural to inquire whether A I B becomes a topological
group with respect to the product topology on F x B; in other words,
whether it is a topological semi-direct product in the usual sense (as
in [6, (6.20)]). Of course, we must first put a topology on F= AB,
and for this we take the product topology. It will be convenient to
have the following notation: if S is a subset of A, and b e B, then
Sb will denote {/ e F: f(b) e S and f(x) = e for x Φ b}.

THEOREM 2.1. // A and B are topological groups, then A I Bis
a topological group with respect to the product topologies on F = AB

and on F x B iff B is discrete.

Proof. For A I B to be a topological group, it is necessary and
sufficient that the map (/, b)v^ fb of F x B into F be continuous.
For each xeB, let φx\ F x B~* Ax be defined by <pβ(f, b) = f\x).
Then A I B will be a topological group iff each φx is continuous, and
thus iff

(2.1) φ~AUx) = U [(#.>-! x AB"*b-1]) x {b}]
bB
U [

beB

is open for each open set U of A and each x e B. This is certainly the
case if B is discrete. In proving the converse it suffices to show that
B must have a finite open subset, for B is Hausdorff and homogeneous.
Suppose, then, that each φx is continuous, so that in particular φe

is continuous. Choose a nonempty proper open subset U of A, and
choose fbeφ~\Ue). Then there are open subsets V1 in F and F2 in
B such that fbe V1 x V2 £ φ~7\Ue). Furthermore, it can be assumed
that there are elements blf , bk in B and open sets Wu , Wk

in A such that f{bό) e W, for 1 ^ j ^ k and V, = W, x x Wk x

k)t B u t t h e n f o r e a c h y e γ2 w e m u g t h a y e Vί χ {jyj g 7 i X 7 2 g
and thus Vx ^ Uh,-ι x ABVh'~1}. But the latter is impossible
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for some b' if V2 is infinite, as can be seen by choosing δ'<£{&r\ •••>
bk1}. Thus the open set V2 of B must be finite. Finally, we note
that F x B is Hausdorff since it is a product of Hausdorff spaces.

By the wreath product of topological groups we shall always
mean the product referred to in Theorem 2.1. The next theorem
follows readily from standard facts about product spaces and the
topological properties involved.

THEOREM 2.2. Let A and B denote topological groups, (a) A I B
is compact iff A is compact and B is finite, (b) A I B is locally
compact iff either A is locally compact and B is finite, or A is
compact and B is arbitrary (but discrete), (c) A I B is separable
(has a countable open base) iff A is separable and B is countable.

In (discrete) group theory it is often useful to consider, in place
of A I B, the restricted (standard) wreath product. This is constructed
by using A{B) = {/:/€ AB and f(x) Φ e for at most finitely many
xeB}, rather than Aβ, for the base group. This restricted wreath
product is a subgroup of A IB, and is, of course, a topological group
with the relative topology. However, when one is interested only
in locally compact groups, as we are in studying representations,
such a restricted group yields nothing new, for it will be locally
compact only if B is finite, in which case it is the same as A I B.

Philip Hall was the first to show the usefulness of wreath products
for the theory of infinite discrete groups, making use of the "gen-
eralized" wreath product, Wr{Hλ:XeΛ}, constructed with arbitrary
ordered set Λ and arbitrary transitive permutation groups Hλ; see
[5] as well as references to HalΓs paper in [IS]. It follows readily
from the law of segmentation [5, p. 172] for general wreath products,
together with Theorem 2.1, that such a wreath product will become
a topological group in our context only if A has a least element μ
and all Hλ for λ φ μ are discrete. With A = Hμ and B = Wr{Hλ:
X Φ μ}, the group will have the form A I B, and thus will, in fact,
be in the class we are considering.

Any extension of a discrete group A by a discrete group B can
be embedded in the discrete wreath product A I B. Lakshmi [10]
considered the corresponding statement for topological groups, obtain-
ing an analogous theorem with suitable conditions on the groups, and
with the compact-open topology, rather than the product topology,
on the base group of the wreath product. His theorem implies that
if A is locally compact and B is discrete, then any topological extension
of A by B can be embedded in (our) A I B.

Finally, we point out that an example of Mackey's [13, pp. 309-
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310], showing that a semi-direct product need not have trivial "Mackey
obstruction", is a variation on a wreath product.

3* The Haar integral* We now describe how the Haar integral
for locally compact A I B can be given explicitly in terms of the Haar
integrals for its component subgroups. We make use of the known
characterizations of the Haar integral for arbitrary direct and semi-
direct products.

First consider F = AB, the base group. Because of Theorem
2.2(b), there are two cases to consider: (1) A locally compact and
B finite, and (2) A compact and B arbitrary (discrete). In case (1),
Fubini's Theorem and induction yield that the right Haar measure
on F is that corresponding to the product of \B\ copies of the right
Haar measure on A:

(3.1) ]g(f)df = \ ]\g(au a2, dan

where dau , dan correspond one-to-one with the elements of B,
the order being irrelevant, and where each da. designates Haar
measure for the corresponding copy of A in the base group [6,
(13.16) and (15.29)]. Case (2) is similar, although in general involving
nets and thus slightly more complicated; the details follow from [6,
(13.8) and (15.17)(j)].

With F taken care of, we are ready to look at A I B considered
as a semidirect product of F and B. It is easy to show [6, (15.29)] that
the right Haar integral for a semi-direct product simply corresponds
to the right Haar measures for the two component groups. We
formalize this for Al B as follows.

THEOREM 3.1. Let dw, df, db designate Haar measure on W
A I B, F — AB, and B, respectively. Then

for each function g with compact support on W, with df as described
accompanying (3.1).

There remains the question of the modular function. For μ and
v left and right invariant Haar measures on W = A I B, respectively,
we take Δw to be the function given by

\g(w)dv(w) = γw{w)g{w)dμ{w)

(for appropriately chosen factors of proportionality for μ and v). In
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the same way, we get the modular functions ΔA, ΔF, and ΔB for A,
F, and B.

THEOREM 3.2 1/ B is infinite, then A I B is unimodular. If
B is finite, then A I B is unimodular iff A is unimodular. In any
case, for B finite, the modular function Δw for W = A I B is given by

w

(fb) = ΔF{f) = Π
xeB

Proof. We require, tentatively, the function δ determined as
follows.

Fact 3.1 [6, (15.29)]. If a is an automorphism of a locally compact
group H, and v is a right invariant Haar measure on H, then there
exists a unique real number δ(a) > 0 such that

(3.2)

for each function g with compact support on H.
We now recall that each beB determines an automorphism 6: / H*

fh of F. Applying [6, (15.29)], we find that

(3.3) Δw(fb) = δ(b)ΔF(f)ΔB(b)

for all fb e A I B (f e F, b e B). But b merely permutes the components
of each f e F, and thus, taking into account the irrelevance of the
order of the daό in (3.1) (and the corresponding fact for B infinite),
we see that in our case (3.2) takes the form

\g(f)df = \g(b-\f))df -

That is, δ(b) = 1. Furthermore, B is discrete and therefore unimodular,
so that ΔB(b) ~ 1 as well. Thus (3.3) reduces to Δw(fb) = ΔF(f). In
case B is infinite, then A must be compact (Theorem 2.2(b)), whence
F is compact and therefore unimodular, and so Δw{fb) — ΔF{f) = 1.
So the question of nontrivial unimodular function arises only when
B is finite, and then [6, (15.29)(a)], induction, and the special nature
of direct products as semi-direct products yield

Δw(fb) = ΔF(f) - Π ΔAf(x) .
xeB

Noting that if B is infinite then A must be compact and hence
unimodular, we have the following corollary.

COROLLARY. A I B is unimodular iff A is unimodular.
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4* Representations* The appropriate tool for use in determining
the irreducible representations of the groups A I B is, as noted in
the Introduction, the theory of induced representations. The irreducible
representations of the base group can be described in terms of the
irreducible representations of A. These irreducible representations
of the base group can then be used to generate representations of
A I B by induction from an intermediate subgroup. There are two
questions: (1) Is every representation of A \ B obtained in this
way irreducible? (2) Does every irreducible representation of A I B
appear as such an induced representation? In the case of finite
groups this program is completely successful: the answer to both
questions is Yes. We shall see in this section that the program can
be shown to be successful for a much larger class of separable
locally compact A I B. For the finite case see [16], [1], [7, pp.
583-585], [8], [9].

We consider groups that are separable and locally compact; the
wreath products in this class are specified by Theorem 2.2. We
also assume A to be of type I: this includes the possibilities that A
is compact, or Abelian, or a semi-simple Lie group, or discrete and
Abelian-by-finite. We assume acquaintance with Mackey's papers on
induced representations, especially [11]. By a representation of a
group N we mean a continuous homomorphism x i—> Lx of N into the
group of all unitary transformations of a separable Hubert space
H(L) onto itself, where continuity means that for each ψ e H{L) the
function x i-> Lx(φ) is continuous from N into H(L). If JVis a closed
subgroup of a group G, then L\ G will denote the representation of
G induced by the representation L of N. If G is a group, then G
will denote a set of irreducible representations of G, one from each
equivalence class.

We begin by considering the base group, F = AB. Its irreducible
representations are the tensor products of those of its component
subgroups Ab; let us make this explicit.

LEMMA 4.1. There is a one correspondence between the set F
and the set of all maps μ:B—>A having the property that μ(b) is
the trivial representation almost always. Given μ, the corresponding
representation L of F is defined by

where μ{b) is trivial for b Φ bu , bn.

Proof. If B is infinite, then A must be compact, and this is [6,
II, (27.43)]. If B is finite, then A is (still) of type I, and the result
follows from [11, pp. 199-200].



ON LOCALLY COMPACT WREATH PRODUCTS 105

Consider the action of B on F defined as follows: for LeF and
beB, L\-*Lh, where Lb

f = Lbfb-i = L/δ-i. Then, for each LeF, the
stability factor of L in B is defined to be

HL = {beB: Lh ~ L) ,

where ~ denotes equivalence. The stability group of L is FHL. We
can characterize the stability factors of elements of F by using the
following notion.

DEFINITION. Let H denote a subgroup of B. A function μ on
B is barely constant on the {left) cosets of H if

(4.1) μ(bτ) = μ(bj) whenever bάbτι e H

but if (4.1) does not hold with EL replaced by any subgroup of B
strictly containing H.

LEMMA 4.2. Assume μ:B~>A, trivial almost always. Then μ
is barely constant on the cosets of H iff H is the stability factor for
the representation L (of F) corresponding to μ.

Proof. Let L denote the representation corresponding to μ as
in Lemma 4.1. Typical components of Lf and Lh

f will be μ{b%)f[hi)

and μ(bό)f{h.h), respectively. For B infinite, we can argue as in [8] (or
[7, pp. 583-585]) merely extending from finite to arbitrary compact
groups. We see that if μ is barely constant on the cosets of H,
and if b eH, then μ{b%) = μ(b3) when bt = bόb\ thus L and V have
equal characters and are, therefore, equivalent [6, II, (27.32)]. Assume,
conversely, that b is in the stability factor for L, and choose / e F
with f(x) = e for x Φ bk (any fixed k). Take characters, and deduce
that

tr μ{bk)f{hk)-άegμ{bkb-1) = tr μihb^f^.deg μ(bk)

for all f(bk)eA. Using [6, II, (27.30)], this implies that μ(bk) and
μibicb'1) must be equivalent. Thus μ must be constant on the cosets
of <6>, and the lemma is established for infinite B. If B is finite,
the lemma is a consequence of [11, pp. 199-200].

We must next extend representations of F to representations of
their stability groups. This can always be done [13], but it might
necessitate the introduction of protective representations corresponding
to nontrivial multipliers, even in the case of semi-direct products; in
fact, as pointed out at the end of §3, Mackey has used a variation
on a wreath product to illustrate this point. In our case, however,
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protective representations are not required, as the next result shows.

LEMMA 4.3. (Specht). Each LeF can be extended to L'eFHL.
(The Mackey obstruction is trivial.)

Proof. With L as in Lemma 4.1, each 6/rComponent can be
represented in matrix form with entries μ{bk)f{bk){ak9 βk) [14, pp. 112-
114]. Then Lf will be represented by the matrix with α̂ /3, ••• anβn

entry as indicated:

(ΦdfibMu iSi) — M& W ( « > β*)

Following Specht [16, p. 330], the desired representation U will have
matrix form with the aj3t ocnβn entry of L'fh as indicated:

(MδO/c^O*!, /SO MW/«,)(«« βn)) ,

for & = βs when b5 = ί^ίr1. Then L' j JP = L, so that 1/ is irreducible
because L is irreducible.

If M is a representation of HL, and ττz: FHL —> FHJF ~ jffjr is
the natural homomorphism, then we can form the representation Z/(x)
MπL of -FΉi. We can now state our main theorem on representations.
The terminology is that of [13].

THEOREM 4.1. Assume A of type J, and A I B separable and
locally compact. Then the correspondence M*->(L' (x) MπL) f (A I B) is
one-one between the of set primary representations of HL and the set
of primary representations of Al B which yield a multiple of L on
restriction to F. The correspondence preserves irreducibility and type.

Proof. The theorem is a consequence of the preceding lemmas and
Theorem 8.4 of [13], if only we verify that F is regularly embedded
in Al B. However, F is of type I and thus F is standard, and so
Theorem 9.2 of [13] applies; that there is a Borel set meeting each
orbit exactly once can be seen from [12, p. 64] and [13, p. 294].

COROLLARY 4.1. The equivalence classes of irreducible represen-
tations of Al B are in one-one correspondence with the set of triples
(H, φ, M), where H denotes a finite subgroup of Bf φ —* A is trivial
almost always and barely constant on the cosets of H, and MeH,
provided functions φ, ψ: B—>A are identified whenever the correspond-
ing representations of F are conjugate (that is, whenever φ «-> K and
ψ*-*L and Kb = L for some 6 e B).
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COROLLARY 4.2. // B is torsion-free then all irreducible repre-
sentations of A I B are induced from representions of the base group.

COROLLARY 4.3. // A is of type I, then A I B is of type I.

Proof. This is a consequence of Theorem 9.3 of [13], if we note
that all stability factors HL are finite and thus of type I.

COROLLARY 4.4. All irreducible representations of A I B are
finite dimensional iff B is finite and all irreducible representations
of A are finite dimensional.
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