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MAPS WITH 0-DIMENSIONAL CRITICAL SET

P. T. CHURCH AND J. G. TIMOURIAN

Let f: M — N? be C* with n —p=0 or 1, let p = 2, and
let B, ,(f) be the critical set of f. If dim (R,_,(f)) =0, then
(1.1) at each x € M*, f is locally topologically equivalent to one
of the following maps:

(a) the projection map p: R*— R?,

(b) ¢:C— C defined by d(z) = 24d =2, 83, ---), where C is
the complex plane, or

(¢) 7:C X C—>CxR defined by z(z, w) = (2z-w, |w|* — |2]?),
where # is the complex conjugate of w.

Under the additional hypothesis that dim (f(R,-;())) =
p—2 this result was proved in an earlier paper of the authors.
They show here that dim (R,_;(f)) < 0 implies something like
dim (f(Rp-(N) = p — 2.

For general background material, the reader is referred to that
earlier paper [5]. The branch set B; [5, p. 616, (1.5)] is the set of
points at which f fails to be locally topologically equivalent to p.
A map ¢g:J" ™ X R— L*~™ X R™ is called a layer map if for each
te R™ g(J ™ x {tHh < L>~™ x {t}.

1.2. Outline of the proof. We suppose that f is not an open
map, and from some technical differential lemmas of §3 obtain in
(3.4) by restriction and change of coordinates a layer map satisfying
the hypotheses of (2.1). By that lemma dim(B;) = p — 1, so that
dim (R,_.(f)) = p — 1, contradicting the hypothesis of (1.1). Thus f
is open, and from the local structure for open maps given in [7] we
conclude in (4.1) that dim (f(Bs)) = p — 2. This is (essentially) the
additional hypothesis assumed in [5], and our conclusion results. A
global structure theorem is also given (4.5).

2. A topological lemma. In order to read the proof of (2.1)
the reader will need to have at hand the definition and certain pro-
perties of spoke sets [7, (2.1), (2.2), (2.3)].

LEMMA 2.1. Let f: D*x R™'— R X R*™* be a layer map with
B; # @, f(OD* x {t}) a single point not in f(By), and dim(B; N (D* x
{t})) = dim (f(B; N (D* X {t}))) < 0 for each te R*'. Then dim B; =
»—1.

Proof. The last hypothesis implies that dim f(B;) < p» — 1[9, p.
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44, Theorem IV 3], so that dimB; < p — 1 [9, p. 91, Theorem VI 7].
If p=1 and B;= @, then f is open and a contradiction results
from [7, (3.1)(b) or (d)]. Thus, for p=1 dimB; =0, i.e.,, p —1.
Hence we may suppose that » = 2, and will prove that dim B; =
»— 1.

Let I=1[0,1], let I**C I?” be {(x, %z -+, %,): 2, = 0}, let r = 0, 1,
«~.,p—1,and, forac >, let I",, ={xcl* "z, = a;, fori = r + 1}.
For

Xcrl,, and a>0,

let X(r,a) ={xec P (2 ) Xpy Bpiyy**+, @p_y) € X and |2, — a;| < a for
1=2r+ 1}, Thus I, .(r, @) = {xeI* " |x, — a;| < @ for 1 = r + 1}.

Consider statement S,: (1) for every ¢ > 0 and a € I*™!, there are
a triangulation £ of the r-cell I",,, and a > 0, and (2) for every
closed r-simplex o of ¥, there are spoke sets L;.(j = 0,1, ---, q(0))
satisfying conclusions (i)-(vi) of [7, (2.1) and (2.2)] with W replaced
by Cl[o(r, @)] and E = B; N (D* x I*'). Moreover, (3) let ¢ and 7
be closed r-simplices of ¥, and let D* x Cl[(g N 7)(r, )] be denoted
by T. Then, for any L,, and L;_., one of the following statements
istrue: L, NT=L; . NT,L;,,NTc(Lj.— 2;.)NT, L;. N T<(Lj, —
2;.)NT, or L, N (Lj,. — 2;,)NT= 2.

Since I',, = {a} and {a} is the only 0-simplex of 7T, statement S,
follows immediately from [7, (2.2)]. We will suppose that S, is true
(r < p—1) and deduce S,,,.

Let ¢ >0 and ac I be given. For [u,v]C R and 7 > 0, let

U(u,v,n) ={zelPu<e,,<v and |2, — a;| <7n for 2 >r + 1}.

If cel,,,syy then I, I, ,., and I, (7, 7)) = T(Cry, — 0, Cryy + 7, 7).
For cerl, .., let a(e) > 0, Z(c), and {L, ;,} be as given by S, for ¢ (and
o replaced by ¢). There are ¢(z)(t =1, 2, ---, m) such that {I",,.(7,
a(c,))} covers I', ..,. We may suppose that {c,,,(2)} are in increasing
order and the cover is minimal. If the open interval (c,.,(t) — a(c(7)),
¢,.,(1) + a(e(?)) is denoted by A;,then 0€ A, — U,»4;, 1€ 4,, — Uizndss
and A;NA4;+# @ if and only if j=¢—1,7, or 7+ 1. Choose
b(7)el,,+1,0<b,,, (1) <1, and ¥ >0 so that the intervals F, =
[6,,:(3) — 7, b, (%) + 7] are mutually disjoint and F,C A, N A4, N
0,1)z=1,2,---, m — 1).

Let 2 = U, ;..20.50.- Since By N2 = @ (by S, (2) (iii) and (iv)),
there is a 6 with 0 < 6 < min (¢, d(By, 2)) (d is distance). Let a(b@i)) >
0, T(b(¢)), and {L,,;.} be as given by S, for ¢ replaced by ¢ and a
replaced by b(@)(:=1,2, .-+, m — 1); let B = min {a(b(z)), a(c(z)), 7}.
By S, (2) (vi) each dim L, ; < 6 < d(B;, 2) and by S, (2) (iv) B; N
Lyy,; # @; thus (*) if
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then (D* x I', (7, B)) N Lywy,j.0 C(D* X Lo (7, B)) N (Letnr, e — Lotar,he)e

Let d(t)t=1,2, ---,2m) be the numbers 0,1, d,,,(?) — B, and
b..,(?) + B¢ =1, .--,m — 1) in increasing order. Then ¥(d(2¢ — 1),
d(27), B) (resp., ¥(d(27), d(2¢ + 1), B)) is contained in I, (r, a(c(7)))
(resp., Iy, .(r, a(b(3)))).

For each closed r-simplex ¢ of ¥(c(7)) (resp., T(b(¥))), let X I, .4,
be the closed (7 + 1)-cell defined by xz€ 2 if and only if (x, ---, z,,
Criyy *0 0y By ) €0, (20 — 1) < 2, < d(27) (vesp., d(2;) = x,, = d(20 +
1)), and z, = @, for © > r + 1. There is a triangulation £ of I, ,,,
such that each such Y is a subpolyhedron [13, Chapter 1, p. 5]. For
each closed (r + 1)-simplex o of &, there is an r-simplex o of Z(c(7))
or I(b(i)) with pc¥. Define L;,=L;, N(D*x p(r+1,8)(G =1,
2, +++,q(p) = q(0)). It follows that S,,, is satisfied for ¢ and a, with
B >0,%, and {L;,} (conclusion (3) follows from (*) and S, (3)).

Thus S,_, is true for(say) 0 and any ¢ > 0; note that I, ,_, = I*™*
itself, and @ does not arise in this case.

Let e=1,2,-.-. Let ¥, be the triangulation of I?' and let
{Lj,.} be as given in S,_, for ¢ = 1/e, let L, = U;.Lj.., and let 2, =
Ui 2;,. HEach %, is rectilinear in 1™, so we may suppose that each
Z,,, is a subdivision of E,.

Define an equivalence relation ~ on L, by: for every ac I, o,
and j, and for every w,veL;,,N(D* X {a}), u ~v. Let Y, be the
resulting identification space, and let w,: L, — Y, be the identification
map. Let L, N (D? x 0I*') be denoted by G,, and w,(G,) by 07Y,.
Then w,: (L,, G,) — (Y,, 0Y,) is a homotopy equivalence, Y, is a (p — 1)-
dimensional finite polyhedron, viewed as a cell complex [13, Chapter
1, p. 5], its closed (p — 1)-cells are w,(L;,,.), their interiors @ .(L;,, N
(D*? X int 0)) = 7;,,. are mutually disjoint for distinct pairs (7, 0).

With the index & of [7, (2.1)] 3.5, &(Lj0.e)*Vis,. 18 @ (p — 1)-chain
B. of (Y, 0Y,). From the index formula [7, (2.3)] and from (2) (v)
and (8) in S,_, (note that Cl[(g N 7)(«)] is merely o N7 in this case),
it follows that B, is a cycle of (Y,,0Y,). Since &(D* X {s}) =1, it
follows again from the index formula that 3}; é(L;,) = 1 for each o,
so that B, # 0. Since dimY, = p — 1, B, defines a nonzero element
of H, (Y, 0Y,; Z)~ H,_(L,, G,., Z) (Z the ring of integers). Let
7. = 0x(B.}) € Hy_ (L., G Z).

Since 2, N By = @ (by S,_, (2) (iv)), there exists d(e) with 0 <
0(e) < d(R,,Bs)(e=1,2, ---), and there is a subsequence {e(k)} such
that e(1) =1 and 1l/e(k + 1) < min {0(e(?)):2 =k} (k= 1,2, ---). For
every Lj, .+, there are a unique 7€ T,, with 67 and xe BN
Lioewsn Y Sp—i (2) (iv). For a unique 7, x€ L, . .y bY S,—. (2) (iv) and
(V), and from the size of 1/e(k + 1) and S,_, (2) (vi), () Ljs.e+0C
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L e Let Npiit (Logerns Getnrny) = (Leys Gery) be inclusion. From ()
and the index formula [7, (2.8)] it follows that )u,fﬂ(m(kﬂ,) = Npw(#0).
Thus the inverse limit of {7,.,} is nonzero, so that the Cech homology
group H,_,(N. L., N.G.; Z) # 0 by the Continuity Theorem. Hence

dim(nLe)gp_l

[9, p. 152, Theorem VIII 4], and since (). L. < B#(S,_, (2) (iv) and (vi)),
dim Bf = P — 1.

3. Differential lemmas. The following two lemmas are gene-
ralizations of lemmas that have been used repeatedly, and these
generalizations will also be used elsewhere.

LEMMA 3.1. Let f: M"— N? be C™, let K* be a C™ q-manifold
m=1,2, .+ 0r m=oo; 0r m=w;¢g=0,1,--,p—1), let p be a
C™ diffeomorphism of a region in NP onto K* X R*™?, and let 2 be
a nonempty compact subset of f~(0 (K x {0})). If f|R2 is transverse
regular on 0 (K? x {0}), then there are € > 0, aC™(n — p + q)-manifold
L, and a C™ diffeomorphism o of L x S(0,¢) onto a neighborhood
of 2 in M™ such that po fo0o is a layer map.

This is proved in [6, (4.1)] and is a generalization of [8, p. 80,
(3.5)] and [3, p. 876, (2.7)]. The condition that “f|2 is transverse
regular” means that f is transverse regular at x for each x € Q.

LeEMMA 3.2, Let ¢q=1,2, ---,let f: M*— N? be a C" map with
max(n —q+1,1) < r < oo, let QCM" be compact, and let Y C N*
be closed, with dimY = q. Then for some m (m=0,1,---,p —q)
there is a C” embedding N of S™ X R* ™ in NP such that f|R2 is
transverse regular on MS™ x {t}) and MS™ X {th NY = @ for each
te R*~™,

If Q is omitted, “f|2 is transverse regular” is replaced by “f is
transverse regular”, and f is assumed proper, this is [8, p. 80, (3.7)].
The proof is an immediate generalization of that proof. (Although
we do not need it in this paper, the same comments apply to [8, p. 82,
(3.8)], except that J need not be compact.)

DEFINITION 3.3. Let K" and L? be Cr-manifolds with nonempty
boundary, and let f: K*— L? be a C"(r = 1) proper map with f~(0L*) =
0K? and f(R,_.,(f))Cint L*. Let D(K") and D(L*”) be the doubles K*
and L?, respectively [10, p. 52, (5.10) and p. 62, (6.3)]. We now
define a C" map g: D(K") — D(L?), called a double of f, such that
the restriction of g to each half is C" equivalent to f [5, p. 616,
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1.3)].
Let K,= K x4, let L, =L x 14, and let f,: K,— L, be defined

by fi(z, i) = (f(x), 2)¢@ = 0,1). Let J,=1[0,1) and J, = (—1, 0]. There
is an open neighborhood U of 6L in L disjoint from f(R,_.(f)) and C~
diffeomorphisms «,;: U, = U x ¢ — 0L, x J; [10, p. 51, (5.9)]. Let
a;: f7Y(U,)— U, and B;: 0K, — 0L, be the restrictions of f,.

There exist manifolds V, = V! with 6V, = @ and f(U)CV,
and W, = W? with 0W, = @ and U, C W,, and a C" extension 7;: V,—
W, of a,. By restricting v, we may suppose that it is proper. Now 7,
is the projection map of a C” bundle (e.g. from (3.1) with K a single
point), so that «, and B, are also. Thus there are diffeomorphisms
#:: f7Y(U,)— 0K, x J; such that ,oca, = (B8; X ¢)cg, (Where ¢ is the
identity map on J;) [11, p. 53, (11.4)].

We may define the (C" structures on the) doubles D(K") and
D(L*) using the maps ¢, and +,; (identify (z, 0) in 0K, with (y,1) in
0K, if ¢,(x, 0) and ¢,(y, 1) have the same first coordinate), and let \;:
K, — D(K") and y,: L,— D(L") be the natural (C") embeddings. Define
g by g(x) = fi(x) for xe K,. Clearly g is C" except possibly on JK.
If U =U,UU, and v: U’ — oL x (—1, 1) and ¢: g7(U) — 0K x (—1.1)
are defined by the -, and ¢,, respectively, then reg|g~(U’) = (8 X ¢)o¢
(where ¢ is the identity map on (—1,1) and 8 = B, = B.), so that ¢
is C" everywhere.

LEmMmA 3.4. Let f: M*— N? be a C* map with n — p =0 or 1,
dim By < p — 2, and dim(B; N f7'(y)) =0 for each ye N*. Then f
1S open.

Proof. In case » = p, f is light and the conclusion is given by
[2, p. 94, (2.3)], so we may suppose that » = p + 1. Suppose that
f is not open. Let E; be the set of points at which f fails to be
open, and let z€ E;. According to [5, p. 622, (2.6)] there is a con-
nected (not necessarily compact) manifold K**'C M*** with boundary
such that xcint K**'(=K?*' — 0K**') and the closure K?** of K**'in
M+t ig compact; there is an open p-cell D* C N? with f(K**')C D?;
and the restriction map g: K**'— D” is proper with B, N 0K*™ = (.
Let ¢ = g|int K**, and let 2 Cint K*** be the compact set Ey. Since
f is not open, dim(Ey) = p — 1 [5, p. 623, (3.4)], and by (3.2) there
is a C*™ embedding M: S™ x R*~™— D* such that |2 is transverse
regular on A(S™ x {t}) and MS™ x {t}) N ¥y (Ey) + @ for each te R* ™
and m = 0 or 1. From (3.1) m # 0 and, for some ¢ > 0, the restriction
of 4 to some neighborhood of Ey, is C**' equivalent to the C?+*
layer map a:Q* x R*'— S' x R*™* with E,N(Q* x {t}) # @ for every
te R*.

Since B, C R,_,(«) (the Rank Theorem [5, p. 617, (1.6)], dim (a(B,) N
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(S* x {t})) <0 for each te R*~* (by Sard’s theorem); and since
dim(B,Na*(u,t) =0

for each (u,t)eS' x R*™* by hypothesis, dim (B, N (Q* x {t})) =0 [9,
p. 91, Theorem VI T7].

Let (q,s)e E,c B, (we may suppose that s = 0), and let TC @* X
R be a closed (p + 1)-cell neighborhood of (g, 0). Since {(g, 0)} is
the component of a~*(a(q, 0)) containing (g, 0) [5, p. 622, (3.2)], there
is an interval I < S* with ayq) €int I and 6 > 0 such that the component
F of a (I x S(s, 0)) is contained in int T. We may suppose that the
endpoints of I are regular values of «, and thus, for ¢ sufficiently
small, of a, for every te S(0,6). Thus F is an n-manifold with
boundary, and each F, = FN(Q* x {t}) is compact. Let G be the
double of F, and let B: G — S* x S(0, 6) be the double of the proper
map «|F: FF— I x S(0, 9) (3.3).

Choose an open 2-cell U with qe U and U x {0} C int F,C G,, and
choose 7, 0 <7 < 0, with U x S(0, ) cint FC G. There exists &, 0 <
& <7, and an interval JC int I S* such that RB,g) €intJ, the com-
ponent X of B87(J x S(0, &) containing (g, 0) is contained in U x S(0, &),
and the end points of J are regular values of g, for each ¢t e S(0, &).
Thus X N (U x {0}), call it A% is a 2-disk with holes, and a,(0A%) CdJ.

We now apply [1, p. 196, (3.4)] to B, K, = §* x {0}, I", = J x {0},
K, = or',, and p the identity map. There exists {,0<{ < ¢, and a
C**t (layer) diffeomorphism @ of B7%(S* x {0}) x S(0, {) onto B7*(S* x
S(0, ©)) with w(4? x S(0,{)) = X. Let D be the closed 2-cell with
A*c Dc U and 0DcC0A? and let 7: Dx S0, {) —int I x S(0, {) be the
restriction of Bow. Now (0,9)e E,cC B, and by (2.1)dim B, = p — 1,
so that dim B; = »p — 1, and a contradiction results.

4. Conclusions.

PROPOSITION 4.1. Let f: M?*'— N? be C*?** with By + @, dim By <
p—2, and dim(f(y)N B;) <0 for each ye N*. Then dim B; =
» — 3 and there is a closed set Y C By such that dim Y < p — 3 and,
for every x€ By — Y, f at x is locally topologically equivalent to

T xid: B* X R?®—— R* X R**.

According to the Rank Theorem [5, p. 617, (1.6)] B;C R,_.(f)
and the following corollary results.

COROLLARY 4.2. Let f: M** — N? be C*** with critical set R,_(f),
let dmR, (f)=<p—2, and let dim(f(¥) N R,_(f)) =0 for each
y€ N?. Then there is a closed set Y < M** such that dimY < p — 3
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and, for each xe M — Y, f at x is locally topologically equivalent
to either the projection map o: R*™ — R” or to

T X id: R* X R**—— R® x R?™®.

Proof of (4.1). By (3.4) f is open, and p = 2 since B;* @ and
dim B; < p — 2. According to [7, (4.1) and (1.1)], if f: M**"'— N* is
a C° open map with dim (B; N f(y)) = 0 for each y € N?, then there
is a closed set X < M**" such that dim f(X) £ p — 2 and, for every
rxeM?™ — X, there is a natural number d(x) with f at z locally
topologically equivalent to the map

¢d(x): C X Rp—l_____) R X Rp—l

defined by ¢4 (7, 1) = (F(2*), t)(F (2*®) is the real part of the
complex number).

Since dim B; < p — 2 by hypothesis, By c X, so that dim f(B;) <
p — 2. Thus f satisfies the hypothesis of [5, p. 626, (4.7)]. (For
n = p + 1 that proposition is identical with the present one except
that the hypothesis dim B; < p — 2 is replaced by dim f(B;) < p — 2.)

COROLLARY 4.3. If f: M*™ — N? 4s a C**' map with dim By =
0 and p =2, then » = 3 and at each x € By, f s locally topologically
equivalent to T.

4.4. Proof of (1.1). From the Rank Theorem [5, p. 617, (1.6)]
B;c R,_(f), and the conclusion for » — p =1 results from (4.3). For
n=p=3 dim(R,_(f)) <0 implies B, = @ [2, p. 94, (2.2)]; for n =
p =2, f is light open [2, p. 94, (2.3)], and so has the desired structure
(e.g. by [2, p. 90, (1.10)]).

Let G be a compact, connected Lie group, and let M be a closed,
connected, oriented G-manifold with orbit space a manifold. The action
is called almost free if it is free except for the fixed point set F, and
F' is discrete nonempty set. In [4] Church and Lamotke classified such
actions globally, up to equivariant homeomorphism (they also treated
the smooth case): invariants are the oriented homeomorphism type of
the orbit space and the number (which is even) of fixed points. This
classification gives significance to the following corollary of (1.1), a
global classification of maps with 0-dimensional critical set.

COROLLARY 4.5. Let M**™ and N? be closed, connected, oriented
manifolds, and let f:MP™ — N be a C*™ map with critical set
R,_(f) of dimension at most 0. Then there is a wnique factoriza-
tion f = hog, where g: M**' — K? is the orbit map of a topological
St free or almost free action on M?P*' (and thus is classified by [4]),
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and h: K* — N* is an r-to-1 covering map (r =1,2, ---).

Proof. By (1.1) either the branch set B, = &, or » = 3 and at
each point of B, f is locally topologically equivalent to z,i.e., to
the cone map of the Hopf fibration +:S®*— S* [5, p. 618, (1.10)].
According to [12, p. 64, (2.5)] there is a natural number & such that
S (y) has exactly k& components for each y € N* — f(By), and at most
k components for each ye f(B;). From the local structure, f'(y)
has exactly k& components for every ye N?, and thus according to
[12, p. 63, (2.1)] there is a (unique) factorization f = hog, where
g: M7 — K* is a C*?*' monotone map and h: K* — N? is an r-to-1
covering map.

In case By = @, B, = @ also, so that g is a bundle map [5, p.
618, (1.9)] with fiber S*. The structure group can be reduced to S* =
SO(2) [12, pp. 64-65], and thus g is the orbit map of a free S* action.
In case By + @, the map a: M?** — B, — K? — g(B,) defined by restric-
tion of ¢ is also a free S* action; since B, is discrete, g itself is the
orbit map of an almost free action.
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