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MAPS WITH 0-DIMENSIONAL CRITICAL SET

P. T. CHURCH AND J. G. TIMOURIAN

Let /: Mn -> N* be O with n - p = 0 or 1, let p ^ 2, and
let Rp-tif) be the critical set of / . If dim (Rp^(f)) S 0, then
(1.1) at each x 6 Mn, f is locally topologically equivalent to one
of the following maps:

(a) the projection map p: Rn -» Rp,
(b) σ:C->C defined by σ(z) = zd(d = 2, 3, •), where C is

the complex plane, or
(c) r: C X C->CxR defined by τ(z, w) = (2« w, M 2 - |z|2),

where w is the complex conjugate of w.
Under the additional hypothesis that dim (f(RP^{f))) g

p—2 this result was proved in an earlier paper of the authors.
They show here that dim (Rp^if)) ^ 0 implies something like
dim (/(Λp-Λ/))) SV~ 2.

For general background material, the reader is referred to that
earlier paper [5]. The branch set Bf [5, p. 616, (1.5)] is the set of
points at which / fails to be locally topologically equivalent to p.
A map g: Jn~m x Rm —> Lp~m x i?m is called a ϊατ/er map if for each
t e Rm, g(Jn~m x {ί}) c Lp~m x {ί}.

1.2. Outline of the proof. We suppose that / is not an open
map, and from some technical differential lemmas of §3 obtain in
(3.4) by restriction and change of coordinates a layer map satisfying
the hypotheses of (2.1). By that lemma dim (Bf) = p — 1, so that
dim (Rp-άf)) = p — 1, contradicting the hypothesis of (1.1). Thus /
is open, and from the local structure for open maps given in [7] we
conclude in (4.1) that dim (f(Bf)) ^ p — 2. This is (essentially) the
additional hypothesis assumed in [5], and our conclusion results. A
global structure theorem is also given (4.5).

2* A topological lemma* In order to read the proof of (2.1)
the reader will need to have at hand the definition and certain pro-
perties of spoke sets [7, (2.1), (2.2), (2.3)].

LEMMA 2.1. Let f:D2 x RP~1-^R x Rp~ι be a layer map with
Bf Φ 0 , f(dD2 x {t}) a single point not in f(Bf), and dim(i?/ Π (D2 x
{ί})) = dim (f(Bf Π (D2 x {*}))) ̂  0 for each teRp~\ Then dim Bf =

Proof. The last hypothesis implies that dim f{Bf) ^ p — 1 [9, p.
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44, Theorem IV.3], so that dimBf ^ p - 1 [9, p. 91, Theorem VI 7]
If p = 1 and J5> = 0 , then / is open and a contradiction results
from [7, (3.1)(b) or (d)]. Thus, for p = 1 dimJ5/ = 0, i.e., p - 1.
Hence we may suppose that p ^ 2, and will prove that dim 5/ ^
p - 1 .

Let I = [0, 1], let i*"1 c J* be {(xlf x2, , ap): xp = 0}, let r = 0, 1,
• , p — 1, and, for a e Ip~\ let Γa>r = {xe P'1: xt = α* for i ;> r + 1}.
For

X c Γ α , r and α > 0 ,

let X(r, a:) = {x e J11"1: (a?!, , xr, ar+19 , ap^) e X and | xt — at \ < a for
i ^ r + 1 } . T h u s Γ β , r ( r , α ) = { # e I * ' 1 : \ x t - a t \ < a f o r ί ^ r + 1).

Consider statement Sr: (1) for every ε > 0 and a e P~\ there are
a triangulation % of the r-cell Γa,r and α > 0, and (2) for every
closed r-simplex σ of %9 there are spoke sets Lj>σ(j = 0, 1, , #(<7))
satisfying conclusions (i)-(vi) of [7, (2.1) and (2.2)] with W replaced
by Cl[<7(r, a)] and E= BfΓ)(D2 x I*'1). Moreover, (3) let σ and r
be closed r-simplices of %, and let D2 x Cl [(σ Π r)(r, <x)] be denoted
by T. Then, for any Li>σ and L i>r, one of the following statements
is t r u e : L U σ Π Γ = L j > τ Π T, Litσf) Tc(LjyT - Ωj>τ) Π T, L j > τ Π T<z(Lj>σ -
β, ,σ) n Γ, or Liiσn(Li>r - fliιr) nτ= 0.

Since jΓα,0 = {α} and {a} is the only 0-simplex of Γ, statement So

follows immediately from [7, (2.2)]. We will suppose that Sr is true
(r < p — 1) and deduce S r + 1.

Let e > 0 and α e ? " 1 be given. For [u, v] a R and η > 0, let

^(w, v, η) = {cce/*"1: w<# r + 1 <ΐ; and | ^ — α j < 57 for i > r + 1} .

If c e Γβ, r + 1, then Γc>r c Γα > r + 1 and Γc>r(r, η) = ?Γ(cr+1 - 97, c r + ] + 57,77).
For c e Γa,r+1, let a(c) > 0, X(c), and {LC)jJ be as given by Sr for ε (and
α replaced by c). There are c(i)(ί = 1, 2, •••, m) such that {iΓβuj.rί̂  *
^(Ci))} covers jΓα,r+]. We may suppose that {cr+1(i)} are in increasing
order and the cover is minimal. If the open interval (cr+1(i) — a(c(i)),
cr+1(i) + a(c(i)) is denoted by Ai9 then 0 6 A, - \JiΦ1Au leAm- \JiΦmAί9

and Aέ Π Aj Φ 0 if and only if j = i — 1, i, or i + 1. Choose
δ(i)eΓ β ι r + 1 , 0 < br+1(i) < 1, and 7 > 0 so that the intervals Ft =
[br+ί(i) — 7, br+1(i) + 7] are mutually disjoint and Ft c At Π -A<+, ΓΊ
(0,l)(i = l,2, . . . , m - l ) .

Let Ω = {Ju,oΩeli),JtO. Since 5/ n Ω = 0 (by S r (2) (iii) and (iv)),
there is a δ with 0 < d < min (ε, d(B/, Ω)) (d is distance). Let a(b(ϊ)) >
0, 2:(δ(i)), and {Lbu)iJ)O} be as given by Sr for ε replaced by δ and a
replaced by b(i)(i = 1, 2, , m — 1); let /3 = min {^(δ(i)), <x(c(i)), 7}.
By S r (2) (vi) each d i m L 5 ( ί U < δ < <£(£/, β) and by Sr (2) (iv) β/ Π
Lh{i),όΦ 0 ; thus (*) if
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(D2 x Γa,r+1(r, β)) Π Lbii)J,σ n Lc{huktV Φ 0 ,

then (D2 x Γβ, r(r, β)) Π L M i ) i ί > c ( J ) 2 x Γβ, r(r, β)) n (Lc{h)fk,r - Ωc{hhk>τ).
Let d(£)(£ = 1, 2, , 2m) be the numbers 0, 1, br+1(i) — β, and

δr+1(ΐ) + β(i = 1, , m — 1) in increasing order. Then ¥(d(2i — 1),
cZ(2i), yS) (resp., Ψ(d(2i), d(2i + 1), /S)) is contained in ΓcU)fT(r, a(c(ί)))
(resp., Γb(ihr(r, a(b(i)))).

For each closed r-simplex σ of £(c(i)) (resp., %(b(i))), let J? c Γa>r+i

be the closed (r + l)-cell defined by xeΣ if and only if (xlf -—,xr,
ar+i, , ap^) e σ, d(2i — 1) ^ # r + 1 ^ ώ(2ΐ) (resp., ^(2^) ^ # r + 1 ^ d(2ΐ +
1)), and xt — a{ for i > r + 1. There is a triangulation X of / \ r + 1

such that each such I is a subpolyhedron [13, Chapter 1, p. 5]. For
each closed (r + l)-simplex p of 2, there is an r-simplex σ of Z(c(i))
or X(b(i)) with p e l . Define LίtP = Lj>σ Π (ί>2 x p(r + 1, ^)) (j = 1,
2, , ^(p) = ^((7)). It follows that Sr+ί is satisfied for ε and α, with
β>0,%, and {L,-̂ } (conclusion (3) follows from (*) and Sr (3)).

Thus Sp^ is true for(say) 0 and any ε > 0; note that A^-i = ΐ9'1

itself, and a does not arise in this case.
Let β = 1, 2, . Let %e be the triangulation of Ip~ι and let

{Lj,σJ be as given in Sp^ for ε = 1/e, let Le = Ui,Λ,σ>er and let β e =
U J , A > , , . Each Ze is rectilinear in P " 1 , so we may suppose that each
Xe+1 is a subdivision of %e.

Define an equivalence relation ~ on Le by: for every a e Ip~\ σ,
and y, and for every u, veLJtσ>e Π (D2 x {α}), ^ ^ v. Let F e be the
resulting identification space, and let ωe: Le —+ Ye be the identification
map. Let Le Π (D2 x dp-1) be denoted by Ge, and ωe(Ge) by 3Ye.
Then ωe: (Le, Ge) —>(Ye, dYe) is a homotopy equivalence, F e is a (p — 1)-
dimensional finite polyhedron, viewed as a cell complex [13, Chapter
1, p. 5], its closed (p — l)-cells are ωe(Lj)σ>e), their interiors coe(Ljyσ>e Π
(D2 x int σ)) — Ti?<T,e are mutually disjoint for distinct pairs 0", σ).

With the index ξ of [7, (2.1)] Σ M ^ M ) * ^ , is a (p - l)-chain
βe of (F e , 3Ye). From the index formula [7, (2.3)] and from (2) (v)
and (3) in Sp^ (note that Cl [(σ Π τ)(a)] is merely σ Π τ in this case),
it follows that /3e is a cycle of (Ye,dYe). Since f(Z>2 x {s}) = 1, it
follows again from the index formula that Σ i £(Ls,σ) — 1 for e a c h >̂
so that /3e ^ 0. Since dim Ye — p — 1, βe defines a nonzero element
of Hp-1{Y.9dY.\Z)~Hp-ι{L.,G.,Z)(Z the ring of integers). Let
Ve - o)7i({βe}) e Hp-iL., Ge; Z).

Since Ωef)Bf = 0 (by S ^ (2) (iv)), there exists δ(e) with 0 <
δ(e) < d(Ωe, Bf) (e = 1, 2, •), and there is a subsequence {e(&)} such
that e(l) = 1 and l/e(fc + 1 ) < min {ί(β(i)): i ^ *} (Λ = 1, 2, •)• For
every Ly,α>β(fc+j,, there are a unique τ e Te{k) with σ c r and #ejB/Γi
LjyθMk+ι) by S,-! (2) (iv). For a unique i,xe LUτMk) by Sp_2 (2) (iv) and
(F), and from the size of lfe(k + 1) and Sp^ (2) (vi), (t) LίtOf9{k+1)<z



62 P. T. CHURCH AND J. G. TIMOURIAN

Lt,τMk). Let \k+ι:(L.ιk+ι),GΦik+1>)-*(LΛ{k),G.{k)) be inclusion. Prom (t)
and the index formula [7, (2.3)] it follows that X%+1(Veu+i)) = η,{k)(Φθ).
Thus the inverse limit of [ηe{k)} is nonzero, so that the Cech homology
group flp_! (Πe Le, Πe Ge> Z) Φ 0 by the Continuity Theorem. Hence

dim ( Π i J ^ P - l
e

[9, p. 152, Theorem VIII 4], and since Γie Le c 5/(5,.! (2) (iv) and (vi)),
dim Bf ^ p — 1.

3* Differential lemmas* The following two lemmas are gene-
ralizations of lemmas that have been used repeatedly, and these
generalizations will also be used elsewhere.

LEMMA 3.1. Let f:Mn-+Np be Cm, let Kq be a Cm q-manifold
(m = 1, 2, •; or m — oo; or m = ω; q = 0,1, , p — 1), let p be a
Cm diffeomorphism of a region in Np onto Kq x Rp~q, and let Ω be
a nonempty compact subset of f^ip^K9 x {0})). If f\Ω is transverse
regular on p~\Kq x {0}), then there are ε > 0, aCm(n — p + q)-manifold
Ly and a Cm diffeomorphism o of L x S(0, ε) onto a neighborhood
of Ω in Mn such that p°f°σ is a layer map.

This is proved in [6, (4.1)] and is a generalization of [8, p. 80,
(3.5)] and [3, p. 376, (2.7)]. The condition that "f\Ω is transverse
regular" means that / is transverse regular at x for each xeΩ.

LEMMA 3.2. Let q = 1, 2, , let f: Mn~>Np be a Cr map with
max(n — q + 1, 1) ^ r ^ °°, let ΩdMn be compact, and let YdNp

be closed, with dim Y ^ q. Then for some m (m = 0,1, , p — q)
there is a Cr embedding X of Sm x Rp~m in Np such that f\Ω is
transverse regular on X(Sm x {t}) and X(Sm x {t}) Π Y Φ 0 for each
16 Rp~m.

If Ω is omitted, "f\Ω is transverse regular" is replaced by " / is
transverse regular", and / is assumed proper, this is [8, p. 80, (3.7)].
The proof is an immediate generalization of that proof. (Although
we do not need it in this paper, the same comments apply to [8, p. 82,
(3.8)], except that J need not be compact.)

DEFINITION 3.3. Let Kn and Lp be Cr-manifolds with nonempty
boundary, and let / : Kn-+Lp be a Cr(r ^ 1) proper map with f~\dLp) -
dKp and f{RP-if)) c int Lp. Let D(Kn) and D(LP) be the doubles Kn

and ZΛ respectively [10, p. 52, (5.10) and p. 62, (6.3)]. We now
define a Cr map g: D(Kn) — D(Lp)f called a double of / , such that
the restriction of g to each half is Cr equivalent to / [5, p. 616,
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(1.3)].
Let Kt = K x i, let Lt = L x ΐ, and let /<: J5Γ,—*£< be defined

by/,(«, i) = (/(a?), i)(i = 0,1). Let Jo = [0,1) and Jx = ( -1 , 0]. There
is an open neighborhood U of dL in L disjoint from /(i?P_i(/)) and Cr

diffeomorphisms ψt: Ut = U x i-+dLi x Ji [10, p. 51, (5.9)]. Let
<*i' fϊι(Ui)—* Ui and βi\dKi—+dLi be the restrictions of /,.

There exist manifolds Vt = V? with 3F, = 0 and Π F J c V ;
and Wt = Wf with dWt = 0 and [7, c W,, and a Cr extension 7,: F,—
Wi of α<. By restricting Ύt we may suppose that it is proper. Now yt

is the projection map of a Cr bundle (e.g. from (3.1) with K a single
point), so that at and βt are also. Thus there are diffeomorphisms
Φi'. fϊ1(Ui)-+dKi x Ji such that ψiθat = (β, x r)©^ (where r is the
identity map on /*) [11, p. 53, (11.4)].

We may define the (Cr structures on the) doubles D(Kn) and
D(LP) using the maps φt and ψt (identify (x, 0) in dK0 with (?/, 1) in
dKλ if ^0(^, 0) and φx(y, 1) have the same first coordinate), and let λ,:
Kt -> Z>(̂ Γ̂ ) and μt: L€ — -D(LP) be the natural (Cr) embeddings. Define
9 by #(#) = /<(») for xeKt. Clearly g is Cr except possibly on dK.
If U' ^UoϋU, and ψ:U'~+3L x (-1,1) and ^: g~ι{U)-+dK x (-1.1)
are defined by the ψt and ^, respectively, then ψ°g\g~1(U') = (/3 x *)°0
(where ^ is the identity map on ( — 1, 1) and β — β1 = /32)» so that ^
is Cr everywhere.

LEMMA 3.4. Let f: Mn—>NP be a Cn map with n — p = 0 or 1,
dim 5/ ^ p - 2, α^d dim (5/ n f"\y)) S 0 /or eαcΛ yeNp. Then f
is open.

Proof. In case n = p, f is light and the conclusion is given by
[2, p. 94, (2.3)], so we may suppose that n — p + 1. Suppose that
/ is not open. Let Ef be the set of points at which / fails to be
open, and let xeEf. According to [5, p. 622, (2.6)] there is a con-
nected (not necessarily compact) manifold Kp+1 c Mp+1 with boundary
such that xeintKp+ί(=Kp+1 - dKp+1) and the closure Kp+1 of Kp+1 in
Mp+1 is compact; there is an open p-cell DpaNp with f(Kp+1)ciDp;
and the restriction map g: Kp+ι~+ Dp is proper with Bg Π dKp+1 = 0 .
Let ψ = g\int Kp+1, and let Ω c int Kp+1 be the compact set Eψ. Since
/ is not open, Aimψ(Eψ) ^ p - 1 [5, p. 623, (3.4)], and by (3.2) there
is a Cp+1 embedding λ: Sm x Rp-m-+Dp such that ψ|i2 is transverse
regular on \(Sm x {ί}) and λ(Sm x {ί}> Π ψ{Eψ) Φ 0 for each t e Rp~m

and m = 0 or 1. From (3.1) m Φ 0 and, for some ε > 0, the restriction
of τ/r to some neighborhood of Eψ is Cp+1 equivalent to the Cp+1

layer map a: Q2 x ^ " ' ^ S 1 x Rp~ι with Eaf)(Q2 x {ί}) =£ 0 for every

Since 5α c Rp^(a) (the Rank Theorem [5, p. 617, (1.6)], dim (a(Ba) Π
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(S1 x {t})) ̂  0 for each t e Rp~' (by Sard's theorem); and since

dim (Ba n a~ι(u, t)) ^ 0

for each (u, t) e S1 x Rp~' by hypothesis, dim {Ba Π (Q2 x {*})) ^ 0 [9,
p. 91, Theorem VI 7].

Let (g, s)eEacz Ba (we may suppose that s = 0), and let TaQ2 x
iί*"1 be a closed (p + l)-cell neighborhood of (q, 0). Since {(q, 0)} is
the component of a-τ(a(qf 0)) containing (g, 0) [5, p. 622, (3.2)], there
is an interval IczS1 with <xo(q) e int / and δ > 0 such that the component
F of a~ι(I x 5(s, δ)) is contained in int Γ. We may suppose that the
endpoints of / are regular values of a0, and thus, for δ sufficiently
small, of at for every t e S(0, δ). Thus F is an ^-manifold with
boundary, and each Ft = Ff) (Q2 x {t}) is compact. Let (? be the
double of F, and let β: G-+S1 x S(0, δ) be the double of the proper
map a\F: F->Ix S(0, δ) (3.3).

Choose an open 2-cell U with qeUand Ϊ7 x {0}cint FQc Go, and
choose 7), 0 < 27 < δ, with C7 x S(0, η) c int F c G. There exists ί, 0 <
f < η, and an interval J c i n t / c S 1 such that /90(tf)eint J, the com-
ponent X of β-'GT* x S(0, ξ)) containing (q, 0) is contained in U x S(0, f),
and the end points of J are regular values of βt for each t e S(Q, ξ).
Thus i n (U x {0}), call it A2, is a 2-disk with holes, and aQ(dA2)czdJ.

We now apply [1, p. 196, (3.4)] to β, Ko = S1 x {0}, Γ, = Jx {0},
JBL, = 3ΓX, and ^ the identity map. There exists ζ, 0 < ζ < ξ, and a
Cp+1 (layer) diffeomorphism ω of /^(S 1 x {0}) x S(0, ζ) onto β-'iS1 x
5(0, ζ)) with ω(A2 x S(0, ζ)) = X. Let D be the closed 2-cell with
A2c Dc f7 and 3Dc 3A2, and let τ : ΰ x S(0, ζ) — int J x S(0, ζ) be the
restriction of βoω. Now (0, q)eEra Br and by (2.1) dim Br = p — 1,
so that dim Bf ^ p — 1, and a contradiction results.

4* Conclusions*

PROPOSITION 4.1. Let f: MP+1->NP be Cp+1 with Bf Φ 0 , dim5> ^
2) - 2, αraZ dim (f'\y) Π J5/) ^ 0 for each yeNp. Then dim Bf =
p — 3 cmd ίΛere is α closed set YaBf such that dim Y < p — 3 and,
for every xeBf — Y, f at x is locally topologically equivalent to

τ x id: R* x Rp~* • Rz x Rp~z .

According to the Rank Theorem [5, p. 617, (1.6)] BfCzR^if)
and the following corollary results.

COROLLARY 4.2. Let f: MP+1—>NP be Cp+1 with critical set R^if),
let dim RP-tf) ^ p - 2, and let dim (f"\y) Π i?,-,(/)) ^ 0 for each
y e Np. Then there is a closed set Yd Mp+1 such that dim Y < p — 3
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and, for each x e Mp+1 — Y, f at x is locally topologically equivalent
to either the projection map p: Rp+1 —* Rp or to

τ x id: R* x Rp~z > Rz x Rp~" .

Proof of (4.1). By (3.4) / is open, and p ^ 2 since BfΦ<Z and
dimj?, ^ p - 2. According to [7, (4.1) and (1.1)], if f:Mp+ί->Np is
a C3 open map with dim (Bf Π f~ι(y)) ^ 0 for each y e Np, then there
is a closed set Xcikfp+I such that dim/(X) <̂  p — 2 and, for every
xeMp+1 — X, there is a natural number cZ(x) with / at x locally
topologically equivalent to the map

< W C x Rp-' > R x Rp-1

defined by 0d(ar)(s, t) = (^(zd{x)), t)(^(zd{x)) is the real part of the
complex number).

Since dim Bf <£ p — 2 by hypothesis, 5/ c X, so that dim f(Bf) g
ί> - 2. Thus / satisfies the hypothesis of [5, p. 626, (4.7)]. (For
n — p 4- 1 that proposition is identical with the present one except
that the hypothesis dim Bf ^ p — 2 is replaced by dim/(!?/) ^ p — 2.)

COROLLARY 4.3. If f: MP+1—>NP is a Cp+1 map with dim Bf =
0 αwd p ^ 2, £Λβ% p = 3 and at each x e Bf, f is locally topologically
equivalent to τ.

4.4. Proof of (1.1). From the Rank Theorem [5, p. 617, (1.6)]
BfdRp-ίif), and the conclusion for n — p = 1 results from (4.3). For
n = p ^ 3 dimίΛp.^/)) ^ 0 implies Bf = 0 [2, p. 94, (2.2)]; for n =
p = 2, / is light open [2, p. 94, (2.3)], and so has the desired structure
(e.g. by [2, p. 90, (1.10)]).

Let G be a compact, connected Lie group, and let M be a closed,
connected, oriented G-manifold with orbit space a manifold. The action
is called almost free if it is free except for the fixed point set F, and
F is discrete nonempty set. In [4] Church and Lamotke classified such
actions globally, up to equivariant homeomorphism (they also treated
the smooth case): invariants are the oriented homeomorphism type of
the orbit space and the number (which is even) of fixed points. This
classification gives significance to the following corollary of (1.1), a
global classification of maps with 0-dimensional critical set.

COROLLARY 4.5. Let Mp+1 and Np be closed, connected, oriented
manifolds, and let f:Mp+1—+Np be a Cp+ι map with critical set
Rp-x(f) of dimension at most 0. Then there is a unique factoriza-
tion f = hog, where g: Mp+1 —>Kp is the orbit map of a topological
S1 free or almost free action on Mp+1 (and thus is classified by [4]),
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and h: Kp —• Np is an r-to~l covering map (r = 1, 2, •).

Proof. By (1.1) either the branch set Bf = 0 , or p = 3 and at
each point of Bf f is locally topologically equivalent to τ, i.e., to
the cone map of the Hopf fibration ^ : S 3 — S 2 [5, p. 618, (1.10)].
According to [12, p. 64, (2.5)] there is a natural number k such that
f~~\y) has exactly k components for each yeNp — f(Bf), and at most
k components for each yef(Bf). From the local structure, f~ι{y)
has exactly k components for every y e Np, and thus according to
[12, p. 63, (2.1)] there is a (unique) factorization f = hogf where
g: Mp+ί ~^> Kp is a Cp+1 monotone map and h: Kp -+NP is an r-to-1
covering map.

In case Bf = 0, Bg = 0 also, so that # is a bundle map [5, p.
618, (1.9)] with fiber Sι. The structure group can be reduced to S1 =
SO(2) [12, pp. 64-65], and thus g is the orbit map of a free Sι action.
In case Bf Φ 0 , the map a: Mp+1 - Bg~+Kp - g(Bg) defined by restric-
tion of g is also a free S1 action; since Bg is discrete, g itself is the
orbit map of an almost free action.
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