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ON BOUNDED SOLUTIONS OF A STRONGLY
NONLINEAR ELLIPTIC EQUATION

NGUYEN PHUONG CAC

I. Introduction. Consider the Dirichlet problem for a
bounded domain G c Rn(n ^ 2) having smooth boundary dG:

z\dβ = 09

where ^/ is a second order differential operator of Leray-
Lions type mapping a real Sobolev space Wl 9(G)(l < q < oo)
into its dual; /, ft(i = 1, •••,%) are given functions. We have
used the notation Dt for the derivative in the distribution
sense o\dxt and the convention that if an index is repeated
then summation over that index from 1 to n is implied. We
shall assume that the real function p(t) is continuous and
satisfies the condition

(2) p(t)t ̂  0 vteR ,

but otherwise {p)t is not subject to any growth condition.
In this paper we discuss the existence of a solution of

equation (1) in Wh>'(G) Π LT(G).

Many papers appearing recently have studied equations and inequa-
tions involving strongly nonlinear elliptic operators of the type (1).
For equations we mention among others [1], [2], [7]; in [1] and [2]
the existence of a solution in W™>g(G) when the operator sf has
arbitrary order 2ra is established under the additional hypothesis:

Given e > 0, there exists Kε > 0 such that

(3) p(t)s g εp(s)s + Kε[l + p(t)t] Vί, s e R

[3], [9] among others deal with strongly nonlinear inequations in
Wmg(G).

For an operator Szf of second order, [4] proves the existence of
a solution in W\q{G) under the sole condition (2).

Finally let us mention that the existence of bounded solution of
other strongly nonlinear equations and inequations has been discussed
in [8]. However it seems to us that the technique of this paper is
different from ours; it consists of multiplying the equation with a
nonlinear expression of u; it also seems that our method when applied
to some concrete cases yields different results in the sense that we only
require the functions in the right hand side of (1) to be in Lr(G) for
some r > 1 and not in L°°(G) as in [8].

53



54 NGUYEN PHUONG CAC

II* Main result* The operator Sf is assumed to be of the form

(4) J^ς = ——at{χf u, Vu) + ao(x, u, Vu)

where Vu = grad u and the functions at satisfy the following condi-
tions:

( i ) Each α, (i = 0, 1, , n) is a function defined on G x R x Rn

and of Caratheodory type: at(xf rj, ζ) is measurable in x for fixed
Ύ] e R, ζ e iϋ71 and is continuous in (>?, ζ)e R x Rn for almost all fixed
xeG. Moreover there exist a constant c, a number q, 1 < g < oo,
a function &O) ̂  0 a.e. on G, k(x) e Lq*(G)(l/q + 1/g* = 1), such that

(5) \ai(xfvtζ)\^c(k(x) + \ηrί + \ζrί)

for i = 0,1, , ra; a.a. a eG and V( ,̂ ζ) e RxR".
(ii) For a.a. α e G,

(6) M a , 7, ζ) - at{z, V, OKC - C) > 0 if ζ Φ C

(iii) For a.a. xeG and bounded 57,

( 7 ) α ^ ^ O C i / d C I + ICr 1 ) •«> as | ζ | > ~

Condition (5) implies that the semilinear form

Jzfiu, v) = \ [aΛx, u, Au)Dtv + aQ(x, u, Fu)v]dx
JG

is defined for all u,ve Wlq(G) and there is Stfue W~iq*(G) such that
«.,.> denotes the pairing between Wίq(G) and W~iq\G))

u, v) = (J*?u, v) Vve Wo

iq(G) .

It is known that the mapping J ^ : Wo

iq(G) —* W~iq\G) is continuous
and bounded ([6], Chapter 2, Section 2.6). Moreover, under the
hypotheses (6) and (7), J ^ is pseudo-monotone and therefore it is of
type (ikf): // u§ ^u in Wι

o

q{G), JtfUj ^χ in W~ιq\G) and limsup
(J^fujf Uj — u) 5̂  0 then Szfu = χ. (Here and in the sequel "-*>" and
"-*" denote weak and strong convergence respectively.) We prove

THEOREM. Suppose that the differential operator Jzf of the form
(4) satisfies conditions (5), (6), (7) and the coercivity condition:

There exists a constant v > 0 such that for all v e Woq(G)

(8) Ar(v,v)^i>\\v\\wu*{0) .

Suppose also that the continuous function p(.) satisfies the condition
p(t)t ^ 0, Vί G R. If ft e L8{G) with s^q*,s> n/(q - 1), i = 1, ,
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n; and f(x) and the function k(x) in (5) both belong to Lr(G) with
r 7^ Q*,r > n/q, then the Dίrichlet problem (1) has a solution u e
L°°(G) Π Wig(G) in the sense that

, v) + ( p(u)vdx = \ (ftDtV + fv)dx Vv 6 W} q(G) .
JG JG

Proof. We note that if q > n then by the Sobolev imbedding
theorem, any function in WiQ(G) is continuous on G and hence bounded.
Consequently, in this case it suffices to prove the existence of a
solution in Wi*Q(G). This can be done by partially repeating and
slightly modifying the proof given below for the case q ^ n. We
also note that if q > n then q* > n/(q — 1) so that the theorem holds
if ft,f,k(x)eL»(G)(i = l, ••.,*).

So let us suppose that q ^ n. For each positive integer N we
denote by pN(t) the function

= p(t)

= N

= -N

if

if

if

1 Pit) 1
Pit)
Pit)

VII

>
<

N,

-N.

The mapping TN: u -> J / u + pN{u) from Wlq(G) into W~iq\G) is of
type (M). In fact, consider a sequence uά-^uin Wig(G) with TNUj-±
χ in TF~1>9*((?) and limsup,- (TNuJ9 u5 — w> ^ 0. By the Sobolev imbed-
ding theorem, we can assume without loss of generality that uά(x) —•
u{x) for a.a. xeG. Condition (2) on p{t) and Fatou's lemma then
give

lim inf 1 pN(uj)ujdx ^ I pN(u)udx .
3 JG JG

On the other hand, Lebesgue's dominated convergence theorem gives

lim I pN(Uj)vdx = 1 pN(u)vdx VΊ?G Wiq(G) .
3 JG JG

We then deduce that pN(u/) -^ pN{u) in W~ig*(G), hence J / M ^ -^ χ —
P^(M) as i —• oo and

l i m s u p < J*fuh Uj — u ) ^ 0 .

Since s/ has property (ikf), it follows that J^tc = χ — p ^ ) i.e. ϊ^u =
χ. It is clear that TN is also bounded and hemicontinuous. The
coercivity of J ^ implies that of TN. Therefore (cf. e.g. [6], Remark
2.1, page 173) there exists uNe WZq(G) such that for all ve Wo

iq(G)

(9) (j^uN + pN(uN), v) = <- Dtft + / , v)
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We now find a bound for the LΓ-norm of uN.
Taking v = nN in (9) and bearing in mind that pN(t)t ^ 0, we

obtain from the coercivity condition (8) that

(10) \\uN\\wι^{G) < C

here and in the sequel C denotes various constants independent of
N. Next we take in (9)

v(x) = max {uN(x) — h, 0}

where h ^ 1. If we denote by Ah the set {x\x e G, uN(x) > h} then

1 [a^x, uN, FuN)DtuN + ao(x, uN, VuN){uN — h)]dx

(11) + \ VN{UN){UN - h)dx

= [fiDtuN + f-(uN- h)]dx .

On the set Ah, uN(x) > h ^ 1, hence by condition (2), p(uN(x)) ^ 0.
Therefore, taking into account the coercivity condition (8) and con-
dition (5), from (11) we obtain

(12)
+ k(x)(uN - h) + ulr\uN - h) + (uN -

We now make use of the well known inequalities

uN. I AuNΓι ^ (v/A)\FuN\q + Cu%

IΛ A ^ I ^ (v/in)\FuN\q + C I Λ Γ (i = 1, •••, n)

We then deduce from (12) that

(13) \ IFuN\qdx SC\ Γl + Σ I Λ Γ + {I/1 + k{x)}uN + u%~\dx

By hypothesis q > 1, f(x), k(x) e Lr(G) with r > n/q and /< e LS(G),
hence |/, | g * e Ls/g*(G) with s/q* > n/q. Remembering that on 4A,
^JV(^) > Λ ̂  1, we obtain from (13) that

(14) ( \FuN\qdx^\ \uN\qφ(x)dx
JAh jAh

where φ(x) ^ 0 a.e. on G,φ(x)eLβ(G) with β > n/q. From (14)
Holder's inequality gives

(15) ^ \FuN\qdx ^ [ ^ | | J [ ^
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with q/a + 1/β = 1. Therefore

(16) ^ \FuN\« dx ^ C\\φ\\Lβισ^Λ (uN - h)*dx)qι* + W

Since β > n/q, oc < nq/(n — q) and we deduce from (16) and (10) by-
using Theorem 5.1, Chapter 2 of [5] that essG max uN(x) < C. Simi-
larly, by taking in (9)

v(x) = max { — uN(x) — h, 0} ,

we obtain a bound from below for uN(x). Thus

(17)

We now pass to the limit as N—> oo. Because of (10), (17) and
the Sobolev imbedding theorem, we can extract a subsequence of
positive integers, still denoted by {N} for convenience, such that

nN u in Wo1 g(G) ,

uN(x) > u(x) a.e. on G ,

uN tends to u in the weak* topology of L°°(G),

pN(uN) tends to p(u) in the weak* topology of L°°(G) ,

^fuN > χ in W~ιq\G) .

Then by the Lebesgue convergence theorem we have

lim \ pN(uN)(uN — u)dx = 0 .
N JG

Therefore taking v = uN — u in equation (9) and letting N~* oo we
obtain

lim (J^uNf uN — u) = 0 .
iV

Since J ^ is of type (M), it then follows that Sfu — χ i.e. S*fuN

in W~iq\G). From (9) we deduce

ί p(u)vdx = \ (fiDtV
Jί? JG

with ueL°°(G)nW
I wish to thank the referee for a number of helpful suggestions.
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