BOUNDS FOR DISTORTION IN PSEUDOCONFORMAL MAPPINGS

Stefan Bergman

1. Introduction. When considering a conformal mapping of a domain, say ${ }^{1} B^{2}$, of the z-plane, it is useful to introduce a metric which is invariant with respect to conformal transformations. The line element of this metric is given by

$$
\begin{equation*}
d s_{B}^{2}(z)=K_{B}(z, \bar{z})|d z|^{2}, \quad B \equiv B^{2}, \tag{1.1}
\end{equation*}
$$

where $K_{B}(z, \bar{z})$ is the kernel function of B^{2}. (In the case of $[|z|<1]$ the metric (1.1) is identical with the hyperbolic metric introduced by Poincaré.) In addition to the invariant metric one can also introduce scalar invariants, for instance,

$$
\begin{align*}
J_{B}(z) & =-\frac{1}{C_{B}(z)}, C_{B}(z)=-\frac{2}{K^{3}}\left|\begin{array}{ll}
K & K_{0 \overline{1}} \\
K_{10} & K_{1 \overline{1}}
\end{array}\right|, K_{10}=\frac{\partial K}{\partial z}, \tag{1.2}\\
K_{0 \overline{1}} & =\frac{\partial K}{\partial \bar{z}} .
\end{align*}
$$

$\left(C_{B}(z)\right.$ is the curvature of the metric (1) at the point z.)
Using the kernel function $K_{\mathfrak{g}}(z, \bar{z}), z=\left(z_{1}, \cdots, z_{n}\right)$, one can generalize this approach to the theory of PCT's (pseudoconformal transformations), i.e., to the mappings of $2 n$ dimensional domains by n analytic functions of n complex variables (with a nonvanishing Jacobian). It is of interest to obtain bounds for the invariant $J_{\mathfrak{z}}(z)$, see (3.1), depending on quantities which are in a simple way connected with the domain, for instance, the maximum and minimum (euclidean) distances between the point z and the boundary of the domain.

In the present paper we shall determine such bounds in the case of pseudoconformal mapping of the domain $\mathfrak{B}=\mathfrak{B}^{4}$ of the z_{1}, z_{2}-space by pairs

$$
\begin{equation*}
w_{k}=f_{k}\left(z_{1}, z_{2}\right), \quad k=1,2 \tag{1.3}
\end{equation*}
$$

of analytic functions of two complex variables (with nonvanishing Jacobian). The generalization of our procedure to the case of pseudoconformal mappings of domains $\mathfrak{B}^{2 n}$ by n functions of n complex variables, $3 \leqq n<\infty$, is immediate and will not be discussed in the following.
2. The minima $\lambda_{\ni} \cdots(z)$. To obtain the desired bound we use

[^0]the minimum values $\lambda_{\Re}(z)$ of the integral
\[

$$
\begin{equation*}
\int_{\mathfrak{g}}|f(\zeta)|^{2} d \omega, \zeta=\left(\zeta_{1}, \zeta_{2}\right), \tag{2.1}
\end{equation*}
$$

\]

($d \omega=$ the volume element), under some additional conditions for f at the point $z=\left(z_{1}, z_{2}\right)$.

As indicated in [1, pp. 183 and 198 ff.$]$, many invariant quantities arising in the theory of PCT's can be expressed in terms of the minima $\lambda_{\mathfrak{3}}(z)$. For instance,

$$
\begin{equation*}
K_{\mathfrak{F}}(z, \bar{z})=\frac{1}{\lambda_{\mathfrak{F}}^{1}(z)}, \quad J_{\mathfrak{F}}(z)=\frac{\lambda_{\mathfrak{F}}^{01}(z) \lambda_{\mathfrak{F}}^{001}(z)}{\left[\lambda_{\mathfrak{F}}^{1}(z)\right]^{3}} . \tag{2.2}
\end{equation*}
$$

Here $\lambda_{\Re}^{X_{0}}(z)$ is the minimum of (2.1) under the condition $f(z)=X_{00}$, $z \in \mathfrak{B}, \lambda_{\mathfrak{B}}^{X_{00} X_{10}}$ is the minimum under the condition $f(z)=X_{00},\left(\partial f(z) / \partial z_{1}\right)=$ X_{10} and $\lambda_{\mathfrak{F}}{ }^{X_{00} X_{10} X_{01}}(z)$ is the minimum under the condition $f(z)=X_{00}$, $\left(\partial f(z) / \partial z_{1}\right)=X_{10},\left(\partial f(z) / \partial z_{2}\right)=X_{01} . \quad$ (K is a relative invariant, see (25), p. 180, of [1].)

Using (23b), p. 179 of [1], one obtains the representations for the $\lambda_{\mathfrak{g}} \cdots(z)$ in terms of the kernel function $K \equiv K_{\mathfrak{g}}$ and their partial derivatives $K_{10 \overline{0}}=\left(\partial K / \partial z_{1}\right), K_{01 \overline{00}}=\left(\partial K / \partial z_{2}\right), K_{00 \overline{1} 0}=\left(\partial K / \partial \bar{z}_{1}\right), K_{00 \overline{1}}=\partial K / \partial \bar{z}_{2}$. Obviously it holds

Lemma 2.1. Suppose that $z \in \mathfrak{B} \subset \mathfrak{G}$, then

$$
\begin{equation*}
\lambda_{\mathfrak{B}}(z) \leqq \lambda_{\Theta}(z) . \tag{2.3}
\end{equation*}
$$

Here it is assumed that the minima $\lambda^{\cdots}(z)$ on both sides of (2.3) are taken under the same conditions.

Choosing for (8) a domain for which the kernel function $K_{₫}$ is a simple expression of the equation of its boundary (e.g., choosing for (5) a sphere or certain Reinhardt circular domains, see [2, p. 21]), we obtain the desired inequality.

Using the above method, we shall derive in the next section an inequality for the invariant $J_{\mathfrak{B}}(z)$.
3. Derivation of bounds for $J_{\mathfrak{F}}(z)$. Let \mathfrak{B} be a connected domain of the (four-dimensional) z_{1}, z_{2}-space, $z_{k}=x_{k}+i y_{k}, k=1,2$. Let

$$
\begin{equation*}
J_{\mathfrak{F}}(z, \bar{z}) \equiv J_{\mathfrak{F}}=\frac{K}{T_{\overline{1}} T_{2 \overline{\bar{z}}}-\left|T_{\overline{1} \overline{2}}\right|^{2}}, \quad T_{m \bar{n}}=\frac{\partial^{2} \log K}{\partial z_{m} \partial \bar{z}_{n}}, \tag{3.1}
\end{equation*}
$$

denote the invariant respect to PCT's, see (37a), p. 183 of [1]. Here with K is the kernel function of \mathfrak{B} and $T_{m \bar{n}}$ are the coefficients of the line element

$$
\begin{equation*}
d s_{\mathfrak{y}}^{2}=\sum_{m=1}^{2} \sum_{n=1}^{2} T_{m \bar{n}} d z_{m} d \bar{z}_{n} \tag{3.2}
\end{equation*}
$$

of the metric which is invariant with respect to PCT's, see [1, p. 182 ff.$]$.
Theorem I. Suppose that r is the maximum distance of the point $z, z \in \mathfrak{B}$, to the boundary $\mathfrak{\partial B}$, and ρ is the corresponding minimum distance. Then

$$
\begin{gather*}
H(\rho, r) \leqq J_{\mathfrak{B}}(z) \leqq H(r, \rho), \tag{3.3}\\
H(\rho, r)=\frac{2 r^{6}[P(\rho)]^{9}}{9 \rho^{6}[P(r)]^{9} \pi^{2}}, \quad P(\rho)=\rho^{2}-z_{1} \bar{z}_{1}-z_{2} \bar{z}_{2}
\end{gather*}
$$

Proof. By (97), p. 198 of [1],

$$
\begin{equation*}
J_{\mathfrak{B}}(z)=\frac{\lambda_{\mathfrak{8}}^{01}(z) \lambda_{9}^{001}(z)}{\left[\lambda_{\mathfrak{B}}^{1}(z)\right]^{3}} \tag{3.4}
\end{equation*}
$$

and in accordance with (2.3) for $\mathfrak{J} \subset \mathfrak{B} \subset \mathfrak{彐}$ the inequality

$$
\begin{equation*}
\frac{\lambda_{3}^{01}(z) \lambda_{3}^{001}(z)}{\left[\lambda_{\mathfrak{\varkappa}}^{1}(z)\right]^{3}} \leqq J_{\mathfrak{8}}(z) \leqq \frac{\lambda_{\varkappa}^{01}(z) \lambda_{\mathfrak{x}}^{001}(z)}{\left[\lambda_{\mathfrak{S}}^{1}(z)\right]^{3}} \tag{3.5}
\end{equation*}
$$

holds. If r is the maximum distance of the point z from the boundary $\partial \mathfrak{B}$, and ρ is the minimum distance of z from $\partial \mathfrak{B}$, then one can use for \mathfrak{A} the hypersphere $\left|z_{1}\right|^{2}+\left|\boldsymbol{z}_{2}\right|^{2}<r^{2}$ and for \mathfrak{J} the hypersphere $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<\rho^{2}$. By (23b) ${ }^{2}$, p. 179 of [1] and by (5a), p. 22 of [2] it holds for the hypersphere $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<r^{2}$,

$$
\begin{gather*}
\lambda_{\varkappa}^{01}(z) \lambda_{थ 1}^{001}(z)=\frac{\pi^{4}[P(r)]^{8}}{36 r^{6}}, \tag{3.6}\\
\lambda_{\varkappa}^{1}(z)=\frac{1}{K_{\mathfrak{2}}(z, \bar{z})}=\frac{\pi^{2}[P(r)]^{3}}{2 r^{2}} . \tag{3.7}
\end{gather*}
$$

Analogous formulas hold for $\lambda_{3}^{01}(z) \lambda_{3}^{001}(z)$ and $\lambda_{3}^{1}(z)$. Consequently (3.3) holds.
4. An application of Theorem I. A domain which admits the group

$$
\begin{equation*}
z_{k}^{*}=z_{k} e^{i \varphi_{k}}, \quad 0 \leqq \varphi_{k} \leqq 2 \pi, \quad k=1,2, \tag{4.1}
\end{equation*}
$$

[^1]of PCT's onto itself (automorphisms) is called a Reinhardt circular domain (see [3], pp. 33-34).

A domain, say \mathfrak{R}, bounded by the hypersurface

$$
\begin{equation*}
\left|z_{2}\right|=r\left(\left|z_{2}\right|\right), \tag{4.2}
\end{equation*}
$$

where $y_{2}=r\left(x_{1}\right)$ is a convex curve, is a Reinhardt circular domain. Its kernel function is

$$
\begin{gather*}
K_{\Re}(z, \bar{z})=B_{00}+B_{10} z_{1} \bar{z}_{1}+B_{01} z_{2} \bar{z}_{2}+B_{02} z_{1}^{2} \bar{z}_{1}^{2}+B_{11} z_{1} \bar{z}_{1} z_{2} \bar{z}_{2}+\cdots, \tag{4.3}\\
B_{m p}^{-1}=\int_{\Re}\left|z_{1}\right|^{2 m}\left|z_{2}\right|^{2 p} d \omega,
\end{gather*}
$$

$d \omega$ volume element ($B_{m p}$ are the inverse of moments of \Re), see [2], p. 20 ff .

Lemma. The kernel function K_{\Re} and its derivatives at the center 0 of \mathfrak{R} equal

$$
\begin{align*}
& K_{\Re} \equiv K=B_{00} \\
& K_{10 \overline{0} 0} \equiv K_{z_{1}}(0)=0, \quad K_{10 \overline{10}} \equiv \frac{\partial^{2} K}{\partial z_{1} \partial \bar{z}_{1}}=B_{10}, \quad K_{010 \overline{0}}=0 \tag{4.5}\\
& K_{01 \overline{01}}=B_{01}, \cdots
\end{align*}
$$

Therefore

$$
J_{\Re 刃}(0)=\frac{K}{\left|\begin{array}{lll}
K & K_{00 \overline{0}} & K_{000 \overline{1}} \tag{4.6}\\
K_{10 \overline{00}} & K_{10 \overline{10}} & K_{10 \overline{1}} \\
K_{01 \overline{00}} & K_{01 \overline{10}} & K_{010 \overline{1}}
\end{array}\right|}=\frac{B_{00}^{4}}{\left|\begin{array}{ccc}
B_{00} & 0 & 0 \\
0 & B_{10} & 0 \\
0 & 0 & B_{01}
\end{array}\right|}=\frac{B_{00}^{3}}{B_{10} B_{01}}
$$

(see [1], p. 183, (37a)).
Theorem II. Let $\mathfrak{B}=\boldsymbol{B}(\mathfrak{R})$ be a pseudoconformal image of a Reinhardt circular domain \Re, and let r and ρ be the maximum and minimum distances from the boundary, respectively, of the image $z^{0}=\left(z_{1}^{0}, z_{2}^{0}\right)=\boldsymbol{B}(0)$ of the center 0 of \mathfrak{R} in \mathfrak{B}. Then

$$
\begin{equation*}
H(\rho, r) \leqq \frac{B_{00}^{3}}{B_{10} B_{01}} \leqq H(r, \rho) \tag{4.7}
\end{equation*}
$$

Here $B_{m n}$ are the inverse moments (introduced in (4.4)) of \Re.
Proof. Since $J_{\mathfrak{\Re}}$ is invariant and \mathfrak{B} is a pseudoconformal image of \mathfrak{R}

$$
\begin{equation*}
J_{\mathfrak{z}}(0)=J_{\mathfrak{F}}\left(z^{0}\right)=\frac{B_{00}^{3}}{B_{10} B_{01}} . \tag{4.8}
\end{equation*}
$$

By Theorem I it follows that for $J_{\mathfrak{z}}\left(z^{0}\right)$ the inequality (4.7) holds.
Similar results as above can be obtained for other interior distinguished points, for instance, for critical points of $J_{\mathfrak{s}}(z, \bar{z})$.

Remark. One obtains a generalization of Theorem I by assuming that \mathfrak{F} and \mathfrak{N} are domains $\left|z_{1}\right|^{2 / m}+\left|z_{2}\right|^{2}<\rho^{2}$ and $\left|z_{1}\right|^{2 / M}+\left|z_{2}\right|^{2}<r^{2}$, respectively. The kernel function for the above domains is given in (5), p. 21, of [2].

References

1. S. Bergman, The kernel function and confomal mapping, Math. Surveys V, Amer. Math. Soc., $2^{\text {nd }}$ ed., 1970.
2. .-. Sur les fonctions orthogonales de plusieurs variables complexes avec applications à la théorie des fonctions analytiques, Mémorial des Sciences Mathématiques 106, 1947.
3. H. Behnke-Thullen, Theorie der Funktionen mehrerer complexer Veränderlichen, $2^{\text {nd }}$ ed., Springer-Verlag, 1970.
4. B. Epstein, Orthogonal Families of Analytic Functions, MacMillan Co., New York 1965.

Received August 30, 1974.
Stanford University

[^0]: ${ }^{1}$ The upper index at a set indicates its dimension.

[^1]: ${ }^{2}$ In the last term of the expression for $\lambda^{x_{00} x_{10} x_{01}(t) \text { of (23b) are misprints, in the }}$
 last term of (23b) the last term K_{0101} in the third row should be replaced by $K_{011 \overline{1} .}$. In the denominator the first term $K_{01 \overline{0} 1}$ of the third row should be replaced by $K_{010 \overline{0}}$.

