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ATTAINING THE SPREAD AT CARDINALS
WHICH ARE NOT STRONG LIMITS

JUDITH ROITMAN

It is shown to be consistent with set theory that there
is a cardinal it and a Hausdorff space X such that cf (tc) > ω
and sp (X) — K and X contains no discrete subspace of cardi-
nality κ; also, if X is a Hausdorff space such that cf (sp (X) =
ω and X does not attain its spread, then X contains a sub-
space of a certain canonical form with the same spread.

l Preliminaries* The spread of a topological space X,

abbreviated as sp (X) is defined as a supremum of cardinalities of
certain subspaces:

sp(X) = sup {| Y\: Y is a discrete subspace of X)

where \Y\ is the cardinality of Y. For brevity, we say that
spread must be attained at tc iff every Hausdorίf space X for which
sp (X) = tc has a discrete subspace of cardinality tc. A natural
question to ask, then, is whether spread must be attained at every
cardinal tc. The answer is clearly yes if tc is a successor cardinal.
If tc is a limit cardinal, it is trivial to construct spaces which are,
say, 2\ but not T2 which have a spread of tc but no discrete sub-
space of cardinality tc, thus necessitating the word "Hausdorίf" in
our definition of attaining the spread. Juhasz and Hajnal have
found classes of limit cardinals at which spread is attained; they
also have a class of spaces for which, if the spread has cofinality
ft), then the space has a discrete subspace of the cardinality of the
spread (we say that the space attains its spread). Here we look
for counterexamples: it is found consistent with the axioms of set
theory to have Hausdorίf spaces of uncountable cofinality which do
not attain their spread; in the case of countable cofinality, it is
shown that a Hausdorff space which does not attain its spread
contains a space of a certain canonical form which has the same
spread.

Notation and conventions. Lower case Greek letters are reserved
for ordinals, which may or may not be cardinals; tc is reserved for
cardinals, which are assumed to be initial ordinals.

We remind the reader of some basic concepts about ordinals.

DEFINITION 1. cf (a) = β iff β is the least ordinal such that
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for some function /: β —> a, f is increasing and sup (range /) = a.
cf (a) is the cofinalίty of ex.

DEFINITION 2. a is regular iff a = cf (a), a is singular other-
wise. We note that regular ordinals are always cardinals.

DEFINITION 3. tc is a limit cardinal iff for every cardinal
τ, tc Φ τ+. tc is a strong limit cardinal iff for every cardinal
τ < tc, 2T < tc.

DEFINITION 4. tc is weakly inaccessible iff /c is a regular limit
cardinal, /c is strongly inaccessible iff Λ: is a regular strong limit
cardinal.

Since our purpose is to find counterexamples or describe what
they must look like if we could find them, it would be useful to
know where not to look. The following result of Hajnal and Juhasz
tells us, and also insures that a counterexample must be a consistency
result, i.e. it cannot exist in all models of set theory.

THEOREM 5. (Juhasz, Hajnal [2 and 3]) If tc is a weakly compact
or a singular strong limit cardinal, and X is a Hausdorff space of
cardinality tc, then X has a discrete subspace of cardinality tc.

Thus in model of GCH spread is attained at singular cardinals.
In fact in the constructible universe L all our questions about spread
are settled, since a cardinal tc of L which is a regular limit cardinal
and not weakly compact has a /c-Suslin line, and this line has spread
tc which is not attained (see Juhasz [6]). Weakly compact cardinals
play no further role in this paper, and the curious reader is referred
to Juhasz [6] for a definition.

The results in this paper were originally proved in longer proofs
using combinatorics in an inelegant fashion. The author is grateful
to Ken Kunen and Istvan Juhasz for pointing out how they could
be shortened; she also thanks the referee for helpful comments on
organization.

2* The case cf (tc) > ω. Theorem 5 tells us that in order to
not attain the spread at tc, GCH must be violated below tc in a
strong fashion. Theorem 6 will set up machinery for constructing
spaces which do not attain their spread from spaces of small spread
and large cardinality. Corollary 7 will show that there is a class
of cardinals for which this construction works which is large in the
sense that Easton forcing makes it easy for us to find models of
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set theory in which this class is cofinal in the class of all ordinals.
Corollary 8 will point to a subclass of the class of Corollary 7 whose
consistency follows from any large cardinal axiom. Corollary 9
will connect the machinery to the existence of large spaces with
small width, which has been shown to be consistent by Hajnal and
Juhasz [5].

THEOREM 6. Let tc be a limit cardinal of uncountable cofinality,
and suppose there exists a Hausdorff space (X, ^~>, \X\ = tc, such
that the spread of {X, ^~> is less than the cofinality of tc. Then
there is a finer topology Jf1 on X such that <X, _^'> has a spread
of tc which is not attained.

Proof. Let ξ = cf (fc). We may write the set X then as the
disjoint sum X = Σ«<ί Xa> where \Xa\ = tca for every a < ζ, tc —
sup{Λ:α: a < £}, and if a < β < ζ then tca < tcβ. Let ^~' be the
topology on X derived from sub-basic sets of the following form:

Suppose x e X. Then for some unique a, x e Xa.

Let u e y , xeu. Then {x} U (u — Xa)e^'. Since each (Wa,
> is discrete, <X, ^"'} has spread tc. (X, ^~') is Hausdorff

because (X, ^~) is. We need to show that (X, ^f) does not attain
its spread.

Proceeding by contradiction, suppose 7 is a discrete subspace
of {X, ^~'> of cardinality tc. Then since cf (Λ:) = f, there is some
Yf c Y with I Y'\ = ζ and for every a < ζ, \ Y'Π Xa\ £1. If F is
discrete, so is Y'. Let U = {ux: x e Y'} be a subset of ^' where
xeux and if y Φ x then uxf] uyf) Y' = 0 . We may assume each
ux is a basic open set, hence of the form

ux = Zx U

where Ax is a finite subset of ξ, Zx a finite subset of \JaeAxX^
x e Zx Π ̂ J, and u* e ^T Hence F' c %ί Π ̂  for every xe Y'

But then each ut Π Y' is finite, and since Y' has a cover by
sets in Jf which are finite when relativized to Yf, it is easily seen
that Y' is a discrete subspace of (X, ^~) of cardinality, ξ. But
this contradicts the hypothesis that £ > sp (X, ^~) and the proof
of Theorem 6 is complete.

COROLLARY 7. Let tc be a limit cardinal of uncountable cofinality,
and suppose there is some τ < cf (fc) such that 2Γ > K. Then spread



548 JUDITH ROITMAN

is not attained at fc.

Proof. The set of functions 2Γ under the product topology has
a basis of cardinality τ, since the set of functions into 2 whose
domains are finite subsets of τ is isomorphic to a basis. But the
spread of a space cannot be larger than the cardinality of some
basis, so any subspace of 2τ has spread ^ τ. In particular, any
I c 2 : where | X\ = tt can be used in the hypothesis of Theorem 6.

Now Easton forcing (1) gives us a technique for the following:
let M be a transitive model of ZFC + GCH and let F be a non-
decreasing function whose domain is the cardinals of M such that
if K is a regular cardinal of M then cf (F(tc))>tc. Then there is a
model of set theory, N, which has the same cardinals as M, where
cardinals have the same cofinalities they had in M, and in which
if /c is regular they 2K = F(ιc). Using this technique it is easy to
get models of set theory in which the class of cardinals satisfying
Corollary 7 is cofinal in the class of cardinals of the model.

COROLLARY 8. Let fc be weakly inaccessible but not strongly
inaccessible. Then the spread need not be attained at tc.

Proof. Then the hypothesis of Corollary 7 is satisfied.

For a last example of cardinals to which Theorem 6 applies, we
look at a model of set theory due to Juhasz and Hajnal and found
in [5]. Here a forcing argument is used over a model M in which
2K = tc+ to make a model with the same cardinals and cofinalities in
which 2K is still fc+ but 2{ff+) is now "as large as you want" and
there is a hereditarily /^-separable Hausdorff space (equivalently a
space of width fc) of cardinality 2(/c+). In particular, we may make
2(κ+) > ωκ+. Since a width of K implies a spread which is ^ fc, this
model justifies the conclusion of

COROLLARY 9. It is consistent with the axioms of set theory to
have a cardinal /c such that 2K = tc+ and spread is not attained
at o)κ+.

An explicit examination, not performed here, of each of the
spaces of Corollaries 7 and 9 shows that none of them is regular.
It will also be noted that in these corollaries a cardinal bounded
by the cofinality of ιc has the large power set necessary to avoid
Theorem 5. So the following open questions remain:

Must spread be attained in the class of regular spaces?
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What happens when K is not a strong limit but 2τ < /c for all
τ < cf

3* The case cf (fc) = α>* Here we do not have a counter-
example, but if one exists we know what it must look like.

THEOREM 10. Suppose X is a Hausdorff space whose spread
has cofinality ω. Then X contains a downward subspace with the
same spread.

Theorem 10 tells us that if we want a counterexample to attaining
a spread of countable cofinality we need only look at the class of
downward spaces, which we define forthwith.

DEFINITION 11. Let X be a topological space. Then X is
downward iff X is set-theoretically the disjoint sum Σne«-X» where
each Xn is a discrete subspace and for every meω, \Jn<m Xn is
open.

The proof of Theorem 10 relies on a combinatorial theorem of
Hajnal, which we state as

THEOREM 12. (Hajnal) Let f be a function mapping a set X
into its power set and such that for some cardinal τ <\X\f

1/0*0 \ <τ for every xeX. Then there is a set 7 £ l , | Y\ = \X\,
such that if x, y are elements of Y then x£f(y). Then set Y is
called a free set for f.

It is clear that if / is a function taking each element of X into
an open neighborhood, then the set Y which is free for / is also
discrete in the topology for X. The proof of Theorem 12 can be
found in Juhasz [6].

Proof of Theorem 10. Let X be a Hausdorff space whose spread
has cofinality α>, sp (X) ~ tc, and suppose fc is the limit of the
strictly increasing sequence tcn, neω. Then X contains disjoint
discrete subspaces Xn where each Xn has cardinality tcn, so without
loss of generality we assume X is the union of these Xn's. There
are three cases to consider.

Case 1. Every open set in X has cardinality /c. Then since X
is Hausdorff it has a countable infinite family of disjoint open sets,
call them un, neω. Then each un, having cardinality /c, contains
at least fcn elements from some XmnJ say u% Π Xmn — Y%. Then
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Y = Uneω Yn is discrete, and hence trivially downward.

Case 2. For some τ < tc, every point in X has a neighborhood
of cardinality strictly less than τ. Then we let / be the map taking
each point in X into such a small neighborhood. By Theorem 12
we then have a free set Y for / of cardinality tc, which as we
have noted is a discrete subspace and hence downward.

Case 3. For every n < ω | {x e X: x has a neighborhood of
cardinality >̂ tcn) \ — tc. By Case 1 we may without loss of generality
assume that no point in X has a neighborhood of cardinality tc.
We now may proceed to construct a downward space by induction.

Assume for i < n we have discrete spaces Yt c X such that if
i < j < n then each point of Yt has a neighborhood whose inter-
section with Yj is empty, that each Yt has cardinality κt, and for
each i < n there is some mi such that each point of Yt has a
neighborhood in X of cardinality ^ A:W<, say to the point y we have
assigned the small neighborhood uy. Let Zn — Ui<nU»eri^y Since
\Zn\ < /c there is some mn such that {xeX — Zn: x has a neighbor-
hood of cardinality <£ £mJ = !?„ has cardinality ^ £Λ. But then for
some kn9 Bn Π X^ ^ Λ:%. Let 7 , c 5 B n Xfc% of the required cardinality,
and to each y e Yn associate a neighborhood uy of cardinality S &mn-
By construction, the space Y = \Jneω Yn is a downward subspace
of X.

Theorem 10 is proved. But in the proof we actually learn
more, since if X has a subspace Xf of cardinality tc in which either
Case 1 or 2 holds, spread is attained. Thus a counterexample must
contain a space which is not only downward, but in which every
subspace of cardinality tc satisfies Case 3 of the proof of the theorem.

In fact a theorem of Juhasz and HajnaΓs tells us more.

THEOREM 13. If X is a strongly Hausdorff space whose spread
has countable cofinality, X attains its spread. (A strongly Hausdorff
space is a Hausdorff space in which every infinite subset has an
infinite subset which can be separated by a disjoint open family
in the original space.)

The proof of Theorem 13 is given in Juhasz [6] and in its light
the question of attaining a spread of countable cofinality reduces to
the question: does every space whose spread has countable cofinality
have a strongly Hausdorff subspace with the same spread? Actually,
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since every known example of a Hausdorff space which is not
strongly Hausdorff is essentially countable (i.e. a countable space
tacked on to any other space which is strongly Hausdorff) an open
question of considerable interest is the following: for any cardinal
tz is there a Hausdorff space of cardinality tz such that no subspace
of cardinality tz is strongly Hausdorff?
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