POLYNOMIAL CONSTRAINTS FOR FINITENESS OF SEMISIMPLE RINGS

Mohan S. Putcha and Adil Yaqub

Abstract

Suppose R is an associative ring with Jacobson radical J. Suppose that for each sequence x_{1}, \cdots, x_{n} in R there exists a polynomial p homogeneous (of bounded degree) in each x_{i} and a monomial w in the x 's, in which some x_{i} is missing, such that $p=w$. Then R / J is finite. It is also shown that if the above polynomial p is a monomial, then R / J is finite and J is nil of bounded index.

In a recent paper, the authors proved the following theorem: Suppose R is an associative ring with Jacobson radical J. Suppose further, that, for all x_{1}, \cdots, x_{n} in R, there exists a word $w\left(x_{1}, \cdots\right.$, x_{n}), depending on x_{1}, \cdots, x_{n}, in which at least one x_{i} (i varies) is missing, and such that

$$
\begin{equation*}
x_{1} \cdots x_{n}=w\left(x_{1}, \cdots, x_{n}\right) \tag{1}
\end{equation*}
$$

Then J is a nil ring of bounded index and R / J is finite. In the present paper, we consider the structure of an associative ring R which satisfies, instead of the identity (1) above, an identity of the form

$$
\begin{equation*}
p\left(x_{1}, \cdots, x_{n}\right)=w\left(x_{1}, \cdots, x_{n}\right) \tag{2}
\end{equation*}
$$

In particular, we take a closer look at the structure of R in those cases where (i) $p\left(x_{1}, \cdots, x_{n}\right)$ is any fixed word involving each of the variables x_{1}, \cdots, x_{n} at least once, or (ii) $p\left(x_{1}, \cdots, x_{n}\right)$ is a variable polynomial in x_{1}, \cdots, x_{n} with integer coefficients such that each x_{i} is of the same degree in each term of $p\left(x_{1}, \cdots, x_{n}\right)$, and where these degrees are bounded. We show, for example, that if $p\left(x_{1}, \cdots, x_{n}\right)$ is as in (i) above, then the Jacobson radical J of R is nil of bounded index and R / J is finite. Moreover, we show that, if $p\left(x_{1}, \cdots, x_{n}\right)$ is as in (ii) above, then R / J is still finite. We conclude by giving some examples of the rings under consideration.

In establishing the results of this paper, we use the structure theory of rings, starting with the division ring case, then the primitive ring case, followed by the semisimple ring case

1. Main results. Throughout R will denote an associative ring, Z will denote the ring of integers, and n will denote a fixed positive integer >1. We now introduce the following.

Definition 1. Let $Z\left[x_{1}, \cdots, x_{n}\right]$ be the ring of polynomials in n
noncommuting indeterminates x_{1}, \cdots, x_{n} over Z. Let $\mathscr{\mathscr { V }}_{n}$ be the subset of $Z\left[x_{1}, \cdots, x_{n}\right]$ consisting of polynomials $p\left(x_{1} \cdots, x_{n}\right)$ such that each x_{i} appears in every term in $p\left(x_{1}, \cdots, x_{n}\right)$. By a word $w\left(x_{1}, \cdots, x_{n}\right)$ we mean a product in which each factor is x_{i}, for some i. Let $X \subseteq \mathscr{V}_{n}$. An associative ring R is called an X-ring if, for all a_{1}, \cdots, a_{n} in R, there exists a polynomial $p\left(x_{1}, \cdots, x_{n}\right)$ in X and a word $w\left(x_{1}, \cdots, x_{n}\right)$ with some $x_{j}(j$ varies $)$ missing from $w\left(x_{1}, \cdots, x_{n}\right)$, such that

$$
\begin{align*}
& p\left(a_{1}, \cdots, a_{n}\right)=w\left(a_{1}, \cdots, a_{n}\right), \text { some } a_{j} \text { missing from } \tag{3}\\
& \quad w\left(a_{1}, \cdots, a_{n}\right)
\end{align*}
$$

A division ring (respectively, primitive ring, semisimple ring) which is also an X-rind is called an X-division ring (respectively, X-primitive ring, X-semisimple ring).

The following lemma is immediate from the definition of an X-ring.

Lemma 1. (a) If $X_{1} \subseteq X_{2}$, then any X_{1}-ring is also an X_{2}-ring. (b) Any subring and any homomorphic image of an X-ring is also an X-ring.

In preparation for the proofs of the main results, we first establish the following lemmas.

Lemma 2. Suppose that $X \subseteq \mathscr{V}_{n}$ and D is an X-division ring. Then D is of prime characteristic.

Proof. Suppose that the characteristic of the X-division ring D is zero. Then D contains the rationals. Suppose that q_{1}, \cdots, q_{n} are the first n primes. Then, by hypothesis,

$$
\begin{equation*}
p\left(q_{1}, \cdots, q_{n}\right)=w\left(q_{1}, \cdots, q_{n}\right) \tag{4}
\end{equation*}
$$

where each term in the polynomial $p\left(x_{1}, \cdots, x_{n}\right)$ involves every x_{i}, while some x_{j} is missing from the word $w\left(x_{1}, \cdots, x_{n}\right)$. Thus, q_{j} divides the left side of (4) but q_{j} does not divide the right side of (4), a contradiction. This contradiction proves the lemma.

Lemma 3. Let R be a \mathscr{C}_{n}-primitive ring. Then R is a complete matrix ring D_{q} over a division ring D of prime characteristic.

Proof. Let R be a \mathscr{V}_{n}-primitive ring. Then, by Jacobson's Density Theorem [3; p. 33], either (i) $R \cong a$ complete matrix ring D_{q} over a division ring D, or (ii) for every positive integer l, there
exists a subring S of R such that S maps homomorphically onto D_{l} for some division ring D. We now show that (ii) never holds. For, suppose (ii) is true. Then, by taking $l=n$ in (ii) and by using Lemma 1(b), we readily obtain

$$
\begin{equation*}
D_{n} \text { is a } \mathscr{V}_{n} \text {-ring . } \tag{5}
\end{equation*}
$$

Now, let

$$
a_{i}=\left[\begin{array}{lllllll}
1 & 1 & & & & & \tag{6}\\
& 1 & \cdot & & & & \\
& & \cdot & 0 & & & \\
& & 0 & 1 & & \\
& & & & & 1 & \\
\\
& & & & & & \\
& & & & \\
\end{array}\right],(i=1, \cdots, n)
$$

where a_{i} is a diagonal $n \times n$ matrix over D with an entry of 0 in the (i, i) position and with entries of 1 elsewhere on the main diagonal. By hypothesis, there exists a polynomial $p\left(x_{1}, \cdots, x_{n}\right)$ and a word $w\left(x_{1}, \cdots, x_{n}\right)$ such that

$$
\left\{\begin{array}{l}
p\left(a_{1}, \cdots, a_{n}\right)=w\left(a_{1}, \cdots, a_{n}\right) ; \text { each } a_{i} \text { appears in every } \tag{7}\\
\text { term in } p\left(a_{1}, \cdots, a_{n}\right) ; \text { some } a_{j} \text { is missing from } w\left(a_{1}\right. \\
\left.\cdots, a_{n}\right)
\end{array}\right.
$$

Keeping in mind (6), and comparing the entries in the (j, j) positions of the two matrices in the equation in (7), we obtain $0=1$, a contradiction. This contradiction shows that (ii) above never holds, and hence (i) above holds always. We have thus shown that
(8) $\quad\left\{\begin{array}{l}\text { The ground } \mathscr{V}_{n} \text {-primitive ring } R \text { is a complete matrix } \\ \text { ring } D_{q} \text { over a division ring } D .\end{array}\right.$

Moreover, D, as a subring of $R\left(=D_{q}\right)$, is a $\mathscr{\mathscr { C }}_{n}$-division ring (see Lemma $1(\mathrm{~b})$), and hence, by Lemma 2, D is of prime characteristic. This proves the lemma.

Lemma 4. The direct sum of n rings R_{i} each of which has a unit-element is not a \mathscr{V}_{n}-ring.

Proof. Suppose that

$$
\begin{equation*}
R \cong R_{1}+\cdots+R_{n} ; \text { each } R_{i} \text { has a unit-element } . \tag{9}
\end{equation*}
$$

Let

$$
a_{i}=(1,1, \cdots, 1,0,1,1, \cdots, 1) ; 0 \text { is in the } i \text { th position }
$$

An argument similar to the one given in the proof of Lemma 3
shows that we obtain a contradiction if we assume that R is a \mathscr{V}_{n}-ring. This proves the lemma.

We are now in a position to prove the following
Theorem 1. Let $X \subseteq \mathscr{\mathscr { V }}_{n}$. Then every X-semisimple ring is finite if and only if every X-division ring of prime characteristic is finite.

Proof. The "only if" part of the theorem being obvious, we now proceed to prove the "if" part. Thus, suppose that
(10) Every X-division ring of prime characteristic is finite.

Suppose, further, that R is an X-semisimple ring which is not finite. We shall show that this leads to a contradiction. Since R is semisimple, there exist ideals $I_{\alpha}(\alpha \in \Omega)$ of R such that [3; p. 14]

$$
\bigcap_{\alpha \in \Omega} I_{\alpha}=(0) ; \text { each } R / I_{\alpha} \text { is primitive } .
$$

Now, by Lemma 1 and Lemma 3, it readily follows that R / I_{α} is a complete matrix ring D_{q} over a division ring D of prime characteristic. Since D is a subring of $R / I_{\alpha}\left(=D_{q}\right)$, it follows, by Lemma $1(\mathrm{~b})$, that D is an X-division ring of prime characteristic, and hence D is finite, by (10). Therefore,

$$
\begin{equation*}
R / I_{\alpha}\left(=D_{q}\right) \text { is finite } \tag{11}
\end{equation*}
$$

Now, choose $\alpha_{1} \in R$, and having chosen $\alpha_{1}, \cdots, \alpha_{k}$ so that

$$
\begin{equation*}
\sum_{i=1}^{k} R / I_{\alpha_{i}} \cong R / \bigcap_{i=1}^{k} I_{\alpha_{i}} \tag{12}
\end{equation*}
$$

choose $\alpha_{k+1} \in \Omega$ such that $\bigcap_{i=1}^{k} I_{\alpha_{i}} \not \equiv I_{\alpha_{k+1}}$. That such α_{k+1} can always be so chosen is proved as follows: suppose no such α_{k+1} exists. Then (0) $=\bigcap_{\alpha \in \Omega} I_{\alpha}=\bigcap_{i=1}^{k} I_{\alpha_{i}}$, and hence (see (12))

$$
R \cong R / \bigcap_{i=1}^{k} I_{\alpha_{i}} \cong \sum_{i=1}^{k} \cdot R / I_{\alpha_{i}}
$$

Thus, using (11), we see that R is finite, a contradiction. This contradiction shows that there exists $\alpha_{k+1} \in \Omega$ such that $\bigcap_{i=1}^{k} I_{\alpha_{i}} \nsubseteq I_{\alpha_{k+1}}$. Now, as we have seen in (11), $R / I_{\alpha_{k+1}}$ is simple. Since, moreover, $\bigcap_{i=1}^{k} I_{\alpha_{i}} \nsubseteq I_{\alpha_{k+1}}$, we have $\bigcap_{i=1}^{k} I_{\alpha_{i}}+I_{\alpha_{k+1}}=R$. Hence, by applying the second isomorphism theorem, we readily verify that

$$
R / \bigcap_{i=1}^{k+1} I_{\alpha_{i}} \cong R / \bigcap_{i=1}^{k} I_{\alpha_{i}}+R / I_{\alpha_{k+1}} \cong \sum_{i=1}^{k+1} \cdot R / I_{\alpha_{i}}
$$

by (12). In particular, we have

$$
\sum_{i=1}^{n} R / I_{\alpha_{i}} \cong R / \bigcap_{i=1}^{n} R / I_{\alpha_{i}} .
$$

Hence, using Lemma 1 (b), $\sum_{i=1}^{n} R / I_{\alpha_{i}}$ is an X-ring (and thus a \mathscr{V}_{n} ring) also. This, however, contradicts Lemma 4 (see (11)). This contradiction shows that R is finite, and the theorem is proved.

We call a field F periodic if for every x in F, we have $x^{m}=x^{n}$ for some positive integers $m, n, m \neq n$. A periodic field which is also an X-ring is called an X-periodic field. We now prove the following

Theorem 2. Let $X \subseteq \mathscr{V}_{n}$. Suppose that there exists a fixed integer N such that, for all polynomials $p\left(x_{1}, \cdots, x_{n}\right)$ in X, the degree in x_{1}, \cdots, x_{n} of every term in $p\left(x_{1}, \cdots, x_{n}\right)$ is less than N. Then, every X-semisimple ring is finite if and only if every X periodic field is finite.

Proof. The "only if" part of the theorem being obvious, we now proceed to prove the "if" part. Thus, suppose that R is an X-semisimple ring. Now, in view of Theorem 1, it suffices to show that

$$
\left\{\begin{array}{l}
\text { Every } X \text {-division ring } D \text { of prime characteristic is } \tag{13}\\
\text { a periodic field. }
\end{array}\right.
$$

Thus, suppose that D is an X-division ring of prime characteristic p, and suppose $a \in D$. We first show that

$$
\begin{equation*}
a \text { is algebraic over } G F(p) \tag{14}
\end{equation*}
$$

Clearly, we may assume that $a \neq 0$. Now, suppose that
(15) $\quad q_{1}, \cdots, q_{n}$ are fixed distinct primes; each $q_{i}>N$, and

$$
\begin{equation*}
h_{i}=\left(q_{1} \cdots q_{n}\right) / q_{i} ;(i=1, \cdots, n) . \tag{16}
\end{equation*}
$$

Then

$$
\begin{equation*}
q_{j} \text { divides } h_{i} \text { if and only if } i \neq j \tag{17}
\end{equation*}
$$

Let $b_{i}=a^{h_{i}}$. Then since D is an X-ring there exists a polynomial $p\left(x_{1}, \cdots, x_{n}\right) \in X$, and a word $w\left(x_{1}, \cdots, x_{n}\right)$ with some x_{k} missing such that

$$
\begin{equation*}
p\left(b_{1}, \cdots, b_{n}\right)=w\left(b_{1}, \cdots, b_{n}\right) \tag{18}
\end{equation*}
$$

Since x_{k} is missing from $w\left(x_{1}, \cdots, x_{n}\right)$ we have by (17),

$$
\begin{equation*}
w\left(b_{1}, \cdots, b_{n}\right)=a^{t} ; q_{k} \mid t \tag{19}
\end{equation*}
$$

Now let $d_{\imath r}$ be the degree of x_{i} in the r th term of $p\left(x_{1}, \cdots, x_{n}\right)$. Then each $d_{\imath r}>0$ and

$$
\begin{align*}
& p\left(b_{1}, \cdots, b_{n}\right)=\sum_{r} m_{r} a^{c} r \text { where } c_{r}=\sum_{i=1}^{n} d_{i r} h_{i} \text { and } m_{r} \text { are } \tag{20}\\
& \quad \text { some integers. }
\end{align*}
$$

By hypothesis each $d_{i r}<N$ and thus, by (15), $q_{k}>d_{i r}$. We therefore have, by (17), that $q_{k} \nmid c_{r}$ for every r. In particular, by (19), $c_{r} \neq t$ for any r. We now have, by a combination of (18), (19) and (20),

$$
\begin{equation*}
\sum_{r} m_{r} a^{c_{r}}=a^{t}, c_{r} \neq t \text { for all } r \tag{21}
\end{equation*}
$$

Hence a is algebraic over $G F(p)$ and (14) is proved.
Now, consider the field $(G F(p))(a)$. Since, by (14), a is algebraic over $G F(p)$, it is easily seen that $(G F(p))(a)$ is a finite field, and hence

$$
a^{m}=a^{n} ; m, n \text { positive integers; } m \neq n ;(a \in D)
$$

Thus, by Jacobson's Theorem [3], D is a periodic field. The theorem now follows from Theorem 1.

In preparation for the proof of the next theorem, we now introduce the following notations and lemmas.

Suppose a and b are positive integers, $a>b$, which are relatively prime, and suppose

$$
\begin{equation*}
V_{n}=a^{n}-b^{n},(a>b \geqq 1 ;(a, b)=1) \tag{22}
\end{equation*}
$$

Let $n_{1}, n_{2}, \cdots, n_{k}$ be all the distinct positive divisors of n which are less than n. Then V_{n} is divisible by $V_{n_{1}}, V_{n_{2}}, \cdots, V_{n_{k}}$. A divisor of V_{n} which is relatively prime to all of the $V_{n_{i}}(i=1, \cdots, k)$ is called a primitive divisor of V_{n}. For example, 5 is a primitive divisor of $2^{4}-1^{4}$.

The following lemma was proved by Birkhoff and Vandiver [1];
Lemma 5. Let n be a positive integer, $n \neq 2$, and let V_{n} be as in (22). Then V_{n} has at least one primitive divisor other than unity, with the single exception $V_{n}=2^{6}-1^{6}$.

Next we introduce the following
Notation. Z will denote the set of all positive integers. Let $s \in Z^{+}$. Then,

$$
\begin{aligned}
& D(s)=\left\{m \mid m \in Z^{+}, m \text { divides } s\right\} \\
& P(s)=\{m \mid m \in D(s), m \text { is prime }\}
\end{aligned}
$$

If S is any nonempty subset of Z^{+}, then

$$
D(S)=\bigcup_{s \in S} D(s) \quad \text { and } \quad P(S)=\bigcup_{s \in S} P(s)
$$

The following lemma is an immediate consequence of Lemma 5.
Lemma 6. Let $p \in Z^{+}, p>1$, and let $\left\{k_{i} \mid i \in Z^{+}\right\}$be a strictly increasing sequence of positive integers such that k_{i} divides k_{i+1} for each i. Let

$$
S=\left\{p^{k_{i}}-1 \mid i \in Z^{+}\right\}
$$

Then $P(S)$ is infinite.
We are now in a position to prove the following
Theorem 3 (Principal Theorem). Let $X \subseteq \mathscr{V}_{n}$. Suppose that there exists a fixed integer N such that, for all polynomials $p\left(x_{1}\right.$, \cdots, x_{n}) in X, the degree in x_{1}, \cdots, x_{n} of every term in $p\left(x_{1}, \cdots, x_{n}\right)$ is less than N. Suppose, further, that for all polynomials $p\left(x_{1}, \cdots\right.$, x_{n}) in X, each x_{i} is of the same degree in each term in $p\left(x_{1}, \cdots, x_{n}\right)$. Then every X-semisimple ring is finite.

Proof. In view of Theorem 2, it suffices to show that every X-periodic field F is finite. Suppose not; that is, suppose that F is an infinite X-periodic field. Then F is of prime characteristic p, since F is periodic. Moreover, the subfield $\langle x\rangle$ generated by a single element x in F is finite, and hence

$$
\begin{equation*}
x^{p^{k}}=x \text { for some positive integer } k=k(x) \tag{23}
\end{equation*}
$$

Now, for each $j \in Z^{+}$, define

$$
\begin{equation*}
F_{j}=\left\{x \mid x \in F, x^{p^{j!}}=x\right\} \tag{24}
\end{equation*}
$$

Then, in view of (23) and (24), we have (since if $x \in F$ satisfies (23), then $x \in F_{k}$)

$$
\begin{align*}
& F_{1} \subseteq F_{2} \subseteq F_{3} \subseteq \cdots ; \text { each } F_{i} \text { is a finite subfield of } F ; \\
& \bigcup_{i \in Z^{+}} F_{i}=F \tag{25}
\end{align*}
$$

Now, since F is infinite, we can find a subsequence of (25) such that

$$
\begin{equation*}
F_{i_{1}} \subset F_{\neq} F_{i_{2}} \subset F_{\neq} \subset \cdots, \text { and again } \bigcup_{i_{3} \in Z^{+}} F_{i_{k}}=F \tag{26}
\end{equation*}
$$

Moreover, the order of $F_{i_{\sigma}}=p^{k_{\sigma}}\left(\sigma \in Z^{+}\right)$. Next, let

$$
S=\left\{p^{k_{\sigma}}-1 \mid \sigma \in Z^{+}\right\}
$$

Then, as is well known, $k_{\sigma} \mid k_{\sigma+1}$ for each $\sigma \in Z^{+}$, and $k_{\sigma}<k_{\sigma+1}$, by (26). Henc by Lemma 6, $P(S)$ is infinite, and there, therefore, exist n distinct primes q_{1}, \cdots, q_{n} in $P(S)$, such that

$$
q_{i}>N+p, \quad(i=1, \cdots, n) .
$$

Thus, there exists $m_{j} \in Z^{+}$such that

$$
q_{j} \in P\left(p^{k_{m_{j}}}-1\right), \quad(j=1, \cdots, n)
$$

Now, since the nonzero elements of the field $F_{i_{m_{j}}}$ form a multiplicative group of order $p^{k_{m_{j}}}-1$, and since the prime $q_{j} \mid p^{k_{m_{j}}}-1$, it follows, by Cauchy's theorem, that there exists $a_{j} \in F_{i_{m_{j}}}(\subseteq F)$ such that

$$
\begin{equation*}
\text { order of } a_{j}=q_{i} ; a_{j} \neq 0 \quad(j=1, \cdots, n) . \tag{28}
\end{equation*}
$$

Now, since F is an X-ring, there exists a polynomial $p\left(x_{1}, \cdots, x_{n}\right)$ in X and a word $w\left(x_{1}, \cdots, x_{n}\right)$ such that

$$
\left\{\begin{array}{l}
p\left(a_{1}, \cdots, a_{n}\right)=w\left(a_{1}, \cdots, a_{n}\right) ; \text { each } x_{i} \text { appears in every } \tag{29}\\
\text { term in } p\left(x_{1}, \cdots, x_{n}\right) ; \text { some } x_{j} \text { is missing from } w\left(x_{1}, \cdots, x_{n}\right) ; \\
\text { all coefficients in } p\left(x_{1}, \cdots, x_{n}\right) \text { are integers . }
\end{array}\right.
$$

Moreover, recalling that F is commutative, and using the hypothesis regarding the degrees of the x_{i} 's in the various terms of $p\left(x_{1}, \cdots\right.$, x_{n}), we see that

$$
\left\{\begin{array}{l}
p\left(a_{1}, \cdots, a_{n}\right)=m w_{1}\left(a_{1}, \cdots, a_{n}\right) ; m \text { an integer } ; \tag{30}\\
w_{1}\left(a_{1}, \cdots, a_{n}\right) \text { a word involving every } a_{i} .
\end{array}\right.
$$

Furthermore, $m \neq 0$, since $w\left(a_{1}, \cdots, a_{n}\right) \neq 0$ (see (29), (30) and recall that each $a_{i} \neq 0$). Hence, by Fermat's Little Theorem (recall that F is of prime characteristic p), we have

$$
\begin{equation*}
m^{p-1}=1 . \tag{31}
\end{equation*}
$$

Now, let c_{j} be the degree of x_{j} in the word $w_{1}\left(x_{1}, \cdots, x_{n}\right)$. Then, by hypothesis,

$$
c_{j}<N ; \quad(j=1, \cdots, n) .
$$

Let

$$
\begin{equation*}
M=\frac{q_{1} \cdots q_{n}}{q_{i}} \cdot(p-1) . \tag{33}
\end{equation*}
$$

Then, by (29), (30),

$$
\begin{equation*}
\left(m w_{1}\left(a_{1}, \cdots, a_{n}\right)\right)^{m}=\left(w\left(a_{1}, \cdots, a_{n}\right)\right)^{n} . \tag{34}
\end{equation*}
$$

Hence by (31), (28), (33), and the fact that a_{j} is missing from the

POLYNOMIAL CONSTRAINTS FOR FINITENESS OF SEMISIMPLE RINGS 527
word $w\left(a_{1}, \cdots, a_{n}\right)$, the above equality reduces to

$$
\left(a_{j}^{c_{j}^{c}}\right)^{H}=1 .
$$

Therefore (see (28)), q_{j} divides $c_{j} M$. This is absurd, however, since q_{i} does not divide c_{j} (recall that $q_{j}>N>c_{j}$; see (27), (32)), and q_{j} does not divide M (recall that $q_{j}>p$, by (27); also see (33)). This contradiction proves the theorem.

Next, we prove the following
Theorem 4. Let X be a collection of words in $\mathscr{\mathscr { F }}_{n}$ each of which is of degree $<N$ in x_{1}, \cdots, x_{n}. If R is an X-ring with Jacobson radical J, then J is a nil ring of bounded index, and R / J is finite.

Proof. Clearly, X satisfies the hypotheses of Theorem 3, and hence the X-semisimple ring R / J is finite. Now, to prove that J is nil, let $a \in J$, and suppose that

$$
\begin{equation*}
q_{1}, \cdots, q_{n} \text { are distinct primes, each } q_{i}>N . \tag{35}
\end{equation*}
$$

Let

$$
\begin{equation*}
h_{i}=\frac{q_{1} \cdots q_{n}}{q_{i}} ; \quad(i=1, \cdots, n), \tag{36}
\end{equation*}
$$

and let

$$
b_{i}=a^{h_{i}} ; \quad(i=1, \cdots, n) .
$$

Then, since R is an X-ring, there exist words $w_{1}\left(x_{1}, \cdots, x_{n}\right)$ and $w\left(x_{1}, \cdots, x_{n}\right)$ such that

$$
\left\{\begin{array}{l}
w_{1}\left(b_{1}, \cdots, b_{n}\right)=w\left(b_{1}, \cdots, b_{n}\right) ; w_{1}\left(x_{1}, \cdots, x_{n}\right) \in X ; \tag{38}\\
\text { some } x_{j} \text { is missing from } w\left(x_{1}, \cdots, x_{n}\right) .
\end{array}\right.
$$

Now, let

$$
\begin{equation*}
\text { degree of } x_{i} \text { in } w_{1}\left(x_{1}, \cdots, x_{n}\right)=c_{i} ; \quad(i=1, \cdots, n) . \tag{39}
\end{equation*}
$$

Then, by (38), (37), (39), we obtain

$$
\begin{equation*}
a^{c_{1} k_{1}+\cdots+c_{n} h_{n}}=a^{t} . \tag{40}
\end{equation*}
$$

Moreover, since x_{j} is missing from the word $w\left(x_{1}, \cdots, x_{n}\right)$, it is easily seen (see (36)) that
q_{i} divides t.
On the other hand, since $q_{j}>N$, by (35), and $c_{j}<N$ (since $w_{1}\left(x_{1}\right.$, $\left.\cdots, x_{n}\right) \in X$), q_{j} does not divide c_{j}. Also, by (36), q_{j} does not divide
h_{j}, and hence the prime q_{j} does not divide $c_{j} h_{j}$. However, by (36), q_{j} divides h_{i} for each $i \neq j$. Therefore,

$$
\begin{equation*}
q_{j} \text { does not divide } c_{1} h_{1}+\cdots+c_{n} h_{n} \tag{42}
\end{equation*}
$$

Comparing (41), (42), we see that

$$
\begin{equation*}
c_{1} h_{1}+\cdots+c_{n} h_{n} \neq t \tag{43}
\end{equation*}
$$

Now, let $c_{1} h_{1}+\cdots+c_{n} h_{n}=l$, and let

$$
\begin{equation*}
M=N h_{1}+\cdots+N h_{n} ;\left(M>l, \text { since each } c_{i}<N\right) . \tag{44}
\end{equation*}
$$

Then, by (40), (43), (44), it is easily seen that

$$
\begin{equation*}
a^{M}=a^{s}, \text { for some positive integer } s ; s \neq M \tag{45}
\end{equation*}
$$

Now, if in (45), $s<M$, by iterating in (45), we can eventually make $s>M$. We have thus shown that

$$
\begin{equation*}
\alpha^{M}=a^{s} ; s>M>0 ; M \text { fixed } \tag{46}
\end{equation*}
$$

Equation (46) readily implies that a suitable power of α is an idempotent element in J (recall that a is in J), and hence by (46), $a^{M}=0$, (M fixed). Thus J is nil of bounded index, and the theorem is proved.

In view of Theorem 4, it follows that J is locally nilpotent [2; p. 28].

The following corollary is an immediate consequence of Theorem 4 as well as Theorem 3.

Corollary 1. Let X consist of a single fixed word involving each of the variables x_{1}, \cdots, x_{n}. Then every X-semisimple ring is finite.

If, further, we let X consist of the single fixed word $x_{1} \cdots x_{n}$, we obtain, as a further corollary of Theorem 4, the following result which has already been proved by the authors [5]:

Corollary 2. Let R be an associative ring with Jacobson radical J and with the property that, for all x_{1}, \cdots, x_{n} in R, there exists a word $w\left(x_{1}, \cdots, x_{n}\right)$ depending on x_{1}, \cdots, x_{n}, in which at least one x_{i} (ivaries) is missing, and such that $x_{1} \cdots x_{n}=w\left(x_{1}, \cdots, x_{n}\right)$. Then J is a nil ring of bounded index and R / J is finite.
2. Examples and remarks. In the following examples, we show that the class of X-rings subsumes all finite rings and all nilpotent rings. We also give an example of an X-ring which is neither finite
nor nilpotent.
Example 1. Let R be any finite ring with exactly m elements. Let x_{1}, \cdots, x_{m+1} be any elements of R. Then $x_{i}=x_{j}$ for some $i>j$, and hence

$$
\begin{aligned}
x_{1} \cdots x_{m+1} & =x_{1} \cdots x_{j} \cdots x_{i-1} x_{j} x_{i+1} \cdots x_{m+1} \\
& =w\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{m+1}\right) .
\end{aligned}
$$

Thus R is an X-ring, where $X=\left\{x_{1} \cdots x_{m+1}\right\}$.

Example 2. Let R be any nilpotent ring, say $R^{m}=(0)$. Then, for all elements x_{1}, \cdots, x_{m+1} of R, we have

$$
x_{1} \cdots x_{m+1}=0=x_{1} \cdots x_{m}
$$

Thus R is an X-ring, where $X=\left\{x_{1} \cdots x_{m+1}\right\}$.
Example 3. Let R_{0} be an infinite field of characteristic 2, and let

$$
R=\left\{\left.\left(\begin{array}{ll}
a & u \\
0 & 0
\end{array}\right) \right\rvert\, a \in G F(2), u \in R_{0}\right\}
$$

Let x_{1}, x_{2}, x_{3} be any elements of R. Then, as is readily verified,

$$
\begin{array}{lll}
x_{1} x_{2} x_{3}=x_{2} x_{3} & \text { if } & x_{1}=\left(\begin{array}{ll}
1 & u \\
0 & 0
\end{array}\right) ; \\
x_{1} x_{2} x_{3}=x_{1} x_{2} & \text { if } & x_{1}=\left(\begin{array}{ll}
0 & u \\
0 & 0
\end{array}\right) .
\end{array}
$$

Hence R is an X-ring, where $X=\left\{x_{1} x_{2} x_{3}\right\}$. Observe that R is neither finite nor nilpotent. In fact, R is not isomorphic to any finite direct sum of finite or nilpotent rings.

Returning to our Principal Theorem (Theorem 3), we have the following

Remark. In the proof of Theorem 3, we showed that every X periodic field is finite. We claim that the group-theoretic analogue of this result is false. To see this, consider the group $Z\left(p^{\infty}\right)$, which consists of the set of all p^{n} th roots of unity, where p is a fixed prime and $n=0,1,2, \cdots\left[4\right.$, p. 4]. Suppose that $x_{1}, x_{2} \in Z\left(p^{\infty}\right)$. Then, for some integer $n, x_{1}, x_{2} \in Z\left(p^{n}\right)$, where $Z\left(p^{n}\right)$ is the group of all p^{n} th roots of unity. Let σ be a generator of $Z\left(p^{n}\right)$. Then

$$
x_{1}=\sigma^{r}, x_{2}=\sigma^{s} ; 1 \leqq r \leqq p^{n}, 1 \leqq s \leqq p^{n} .
$$

Now let

$$
r=r_{0} p^{i}, s=s_{0} p^{j} ;\left(r_{0}, p\right)=1,\left(s_{0}, p\right)=1
$$

and suppose, without loss of generality, that $i \leqq j$. Since $\left(r / p^{i}, p\right)=1$, there exists a solution x to

$$
\left(r / p^{i}\right) x \equiv s / p^{j} \bmod p^{n}
$$

and hence $r x p^{j-i} \equiv s \bmod p^{n}$. Thus, $r+s \equiv r\left(1+x p^{j-i}\right) \bmod p^{n}$, and hence

$$
\sigma^{r+s}=\left(\sigma^{r}\right)^{1+x p^{j-i}}
$$

since $\sigma^{p^{n}}=1$. Therefore $x_{1} x_{2}=\left(x_{1}\right)^{1+x p^{j-i}}$. Note that $Z\left(p^{\infty}\right)$ is an infinite group.

We leave as an open question whether or not Corollary 1 is true when X consists of a single fixed polynomial in which each term involves every variable x_{1}, \cdots, x_{n}. In view of Theorem 2 , this question reduces to whether or not an X-periodic field is finite in this case.

References

1. G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^{n}-b^{n}$, Annals of Math., 5 (1903), 173-180.
2. I. N. Herstein, Theory of rings, Math. Lecture Notes, University of Chicago, Chicago, Ill. 1961.
3. N. Jacobson, Structure of rings, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R. I. 1964.
4. I. Kaplansky, Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, Mich., 1954.
5. M. S. Putcha and A. Yaqub, Rings satisfying monomial constraints, Proc. Amer. Math. Soc., 39 (1) (1973), 10-18.

Received October 18, 1974.
University of California, Berkeley
AND
University of California, Santa Barbara

