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ON GROUPS WITH A SINGLE INVOLUTION

JERRY MALZAN

This paper is concerned with the "ordinary" (over the
complex numbers) representation theory of finite groups and
in particular with matrix groups of the first and second kinds
(that is, matrix groups which are similar to real groups or,
alternatively, have real character but are not similar to real
groups. In the event that the character is non-real, we
speak of the third kind.)

The purpose of this paper is associate groups with exactly
one involution with representations of the second kind, and
this we do in two ways: First, by showing that any group
possessing an irreducible representation of the second kind
involves a non-trivial group with only one involution. Second,
by showing that a group with only one involution cannot
have a faithful irreducible representation of the first kind.

It is well and long known that groups of odd order
possess nontrivial irreducible representations of the third kind
only, so that evenness of order is a necessity if matrix groups
of the first or second kind are to be dealt with.

THEOREM 1. If G is a finite group which admits a representation
of the second kind then there is involved in G a group with exactly
one involution which is neither cyclic nor a direct product. In fact
G involves one of the groups mentioned at the conclusion of the
proof.

Proof. G possesses, by assumption, a representation p of the
second kind. If p has as irreducible components only representations
of the first or third kind then p would, in fact, be the first kind.
Hence we may assume that G possesses an irreducible representation
of the second kind. Using [1], we see that G has a subgroup H with
this same property, and that furthermore H = S2 P where

( i ) S2 is a 2-group,
(ii) P is cyclic,
(iii) (2, |P|) = 1, and
(iv) P<[H.
It is enough to show Theorem 1 for H. To this end we first

show that the irreducible representations of H are monomial. To do
this, look at CH(P), the centralizer of P in Hy and a representation
7(CE(P)) of it in which P is presented faithfully. If P is trivial
then H is a 2-group, and the monomial character of the representa-
tions of H is immediate. [2] Otherwise, we may assume that P is
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nontrivial, and that every element in H outside of CH(P) normalizes,
but does not centralize, P. From this it follows directly [3] that
Ύ(CH(P)) ί H is irreducible. But CH(P) is a direct product of p-groups
and so [2] Ύ(CH(P)) is monomial. It follows that the irreducible
representation Ύ(CH(P)) f H is monomial. Further, it is easy to see
that each faithful irreducible representation of H arises in this manner.
Finally, we note that since homomorphic images of H still have
properties (i)-(iv), nothing is lost in assuming that the representation
of H of the second kind in question is faithful. Hence we may
assume that we have a faithful irreducible representation p{H) of
the second kind such that

p = 7(1SΓ) ί H, Ί{K) of degree 1, with Pa K .

7 is necessarily complex. Also [5],

where the last sum is taken over those g in H satisfying g2 e K.
Hence

Σ ' 7(g>) = — I-KΓI, while Σ W = 0 .
K

Consider the set S = {g e H\ g2 e K). Split S into subsets g(K Π K9).
This is, in fact, a partitioning of S, for if g1 and g2 were in the
same subset, there would exist elements kl9 k2, fc3, fc4 of K such that

gfa = k2g1 = gzkz = k4g2 whence

dι — Qzh = kβg2 which implies

gλ e g2(K Π K92) and so

gi(K f) K*i) = g2(K f] K9ή .

Label a complete disjoint subset of the g(Kf) K9) as g^KΠ K9i).
We define new groups Mt = (gif Kf] K9i). gt normalizes KnKβi

9

and so \Mt\ = 2\Kf]K9^\. Also,

- Σ y(92)= -\κ\.
i,KΓ\K9i

We would like to conclude that Σ ^ ^ 2 ) is negative for at least
one i. This follows unless it is the case that for some i

KΓ\K9i

But consider ω^M^ = Ί{K Γ) K9*) \ Mi9 of degree 2. Since Ύ(K f]
K9i) is real so too is co^Mi) and
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(in which case the contribution of Σ*n*n Ύ(g2) is cancelled) or else
Σiifi Xωί(92) — 0. (The case of two complex components.) In order
for this to be the case it would be necessary that Ύ(K Π KH) involve
only ± 1 , and that gt be represented by the matrix

0 1

- 1 0

which generates all the matrices in ωt(Mi). In this case, however,
we have Ί(gikgτι) = Ύ(k) whenever ke KΠ KH, and this contradicts
the irreducibility of 7 \ H. [4] p. 329.

It follows that one of the ωif of degree 2, is of the second kind,
and induced. The matrix group o)i(Mi) has at least one involution,
since it is of the second kind. But each such involution has an even
number of —1 eigenvalues, as an immediate consequence of [5] p
62, and so the only involution in this group is — I. It follows that
Mi9 hence G, involves a subgroup which has only one involution,
which is neither cyclic nor a direct product.

While this completes the proof we can go further to give generating
relations for a group that must be so involved. Such a group may
be taken to be one of the following:

= h-1} (n odd) or

{h, g I hn = 1, g2 = hnl\ ghg~ι = hr1} (n even) .

THEOREM 2. Let G be a group with a single involution which
is neither trivial or C2. Then G does not possess a faithful irreducible
representation of the first kind.

Proof. We begin by noting that every subgroup of G is, again,
a group possessing no more than one involution so, since groups of
odd order do not possess nontrivial irreducible representations of the
first kind, we may proceed by induction on the subgroups of G. We
note also that a Sylow 2-subgroup of G must [2] be cyclic or gen-
eralized quaternion.

Suppose first that G has a normal subgroup N of prime index
p. Suppose, by way of contradiction, that G has an irreducible
representation p of the first kind (which we also assume to be faithful),
and consider the restriction p [ N. By induction, none of the irreducible
components of this restriction is the first kind. If p j Nis irreducible,
then it is also real, a contradiction. Hence p \ N is reducible, with
p irreducible components, no two of them similar. This last removes
the possibility that the components of p | N are of the second kind
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since p j N is, like p, real. We see that these components must be
of the third kind, and appear in complex conjugate pairs. It follows
immediately that p == 2.

Let the irreducible components of p [ N be σ and σ. We have

and so

G-N

Each element of G — N is of the form hk, where h is a 2-element,
k has odd order, and h and k commute. For each 2-element h in
G — N we define C (̂fc) to be the centralizer in JV of h. Because a
Sylow 2-subgroup of G is cyclic or generalized quaternion, CN(h) has
cyclic Sylow 2-subgroup generated by h2. Hence [2] the elements
of odd order in CN(h) form a normal subgroup, Q. By definition of
CN{h) we then have

CN{h) = (h2) x Q .

We claim that the cosets hCN(h) partition C — N. That every
element of G — N arises in this fashion is obvious from the remarks
above. If we suppose that JhCN(h^ Π hzCN(h2) Φ 0, then there are
elements &x and k2 of odd order in CN{h^) and CN(h2) respectively such
that hikj. = h{k2, with ί and j odd. Suppose that that 2q is the order
of h,. Then

which implies that M2q = 1, and that fcx = fc2 Hence hi = Λ|, and

It is enough, then, to show that for each h,

Σ rte2) ^ o.

Let & be a fixed element, of odd order, of CN{h) and consider
the sum

which is taken over ί = 1, 3, 5, , \h\ — 1. If M(h) is the matrix
for h in p, then

s* = Σ χ W)W) 2 - P W Σ (M\h))).
i i

The single central involution in G must be represented by the
matrix —/and so all the eigenvalues of M(g) are primitive \h\t]x
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and

\h\=4.

roots of unity.

In

In

the first

It follows that

Σ(MW= -I

case we have

V"1

 o V"1
 Λ>

2-ι sk — 2-k k
Q hCN(h)

the second case we have

2-1 sk — 1Λ Z W —
Q hCN{h)

if \h

- Σ:
CNih)

since Cy(&) is a direct product of a group of odd order and a cyclic
2-group, so that p \ CN{h) has no irreducible components of the second
kind.

We conclude that Σc? XP(Q2) ^ 0> and the case in which G admits
a normal subgroup of prime index is disposed of.

Suppose now that a maximal proper normal subgroup N of G
is larger than Z{G). G/N is a noncyclic simple group having either
dihedral or cyclic Sylow 2-subgroup. It could not be cyclic [2], and
so N has cyclic Sylow 2-subgroup. It follows that N is a semi-
direct product PQ, where Q contains all the elements of odd order
in N9 and is characteristic in N. Hence Q <| G. If Q Φ 1, we con-
sider p I Q. The irreducible components of this representation occur
with equal multiplicity and are permuted transistively among them-
selves by the action under conjugation of G. Further, since p is
faithful, and is odd, these components are all of the third kind.
Let σ be one of these components, and let Hσ be the subgroup of G
which stabilizes σ, and let β be the irreducible representation of Hσ

associated with σ in p \ Hσ. In order that Σ G 1P(Q2) be positive it is
necessary and sufficient (since p = β j (?) that

where S = {g e G\g2eHσ}. As in the previous theorem, S — H is
partitioned by cosets g^Ha Π Hf), and it is necessary that one of
the representations in p j (gif Hσ Π Hg

σi) be of the first kind. This,
however, is impossible since (gif Hσ Π H9

σi) is a proper subgroup of
G (otherwise, G would admit a subgroup of index 2) and all the
irreducible components of p \ (gi9 Hσ D H9

σϊ) take Z{G) to — J, so that
the homomorphic image of (gu Hσ Π Hg

σi) in any of these components
is still a group with exactly one involution which is neither trivial
nor C2. We conclude that Q = 1.

The possibility remains that N is a cyclic 2-group greater than
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Z(G). But in this case, an element h of N of order 4 cannot be
centralized by G for otherwise, by Schur's lemma, p could not
possibly be real. Hence h is centralized by half the elements of (?,
and inverted by the rest. But now G has a subgroup of index 2,
a possibility which has already been seen to.

We conclude that G/Z(G) is simple, with dihedral Sylow 2-sub-
group. Such simple groups have been classified [6] and are one of
(i) PSL(2,g), q odd, g > 3 ,

(ϋ) A7.
A7 has no central extension of degree 2 [8] and so need not

concern us here. The obvious central extension of degree 2 of PSL(2,
q) is to SL (2, q), the group of 2 x 2 matrices wich determinant 1,
and entries from the GF (q). But [7] this is the only such extension
of PSL (2, q). It is enough to show that none of the faithful irre-
ducible representations of SL (2, q) is real. To do this we first exhibit
the classes, C, of SL (2, q), showing a representative from each class,
the number of such classes in each row, and the order, \C\f of each
class, as well as the order of the restriction of each of these to the
subgroup H of SL (2, q) consisting of the matrices

ίx 0

\y x-1

H has index g -f 1 in SL (2, q) which, in turn, has order q(q2 — 1).

geC

±1

(-i o)
β Φ a + ar1.

#c
2

< « -

4

(q-

3)/2

w

\c\

1

q(q +

(<?2-

q(q -

1)

D/2

1)

\Cf)H\

1

q + q
(splitting)

(q - l)/2

0

H i s a semi-direct product of a cyclic group of order q — 1 and
a group Cp x Cp x x Cp9 normal in Jff, where q = p% and there
are % terms in this direct product. The irreducible characters of H
can be directly calculated, as well as the characters of the induced
representations. In these calculations, only representations of H which
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do not have — I in the kernel will be considered since all the others
yield representations of PSL (2, q) and are not faithful on SL (2, q).
The table below lists representatives from the classes of G, the character
of these representatives in an irreducible representation σ of H, the
character of these representatives in the induced representation

σ}SL(2,q)

and, finally, the number of such representations. In this table w
will designate a generator of the multiplicative group of the GF (q)
and z is a (q — l)th root of unity. λ« and λ{ are pth roots of unity
(possibly 1) and the sums
1.
Cp

a n ( i Σ* λ ί satisfy Σ* λ< + Σ * λ* — —
Each λf corresponds to a nontrivial irreducible character of

x x Cp.
x

σx{H)

σs(H)

σ, ί SL(2,

σ* ί SL(2,

MSL(2,

Q)

Q)

1)

±

±
±

±

±
±

±

I

1

(Q

(<?

- l )/2

- D / 2

+ 1)

(w3

\o

(z>^

)
Λ

>
Λ

0\ /I 0>

z2 ± 1
o ± Σ λ f

o ± Σ λ !
i

h 2"8) ± 1

o ±Σλ,
o ±Σλί

\ + l1 °\l β

) ~ W l/V-i

± 1

i

± ? V J "
± 1 0

±Σ^ί o
i

±Σλ, o

oj

•
•

~l)/2

1

1

. . .

Label the representations σ* ] SL (2, g) as
and write G = SL (2, g). We compute

i — 1, 2, .., (q + 3)/2)

\G\
and

ισι
. V

noting that if jOs = Σ i w i Λi» where μs is an irreducible representation
of G, and a component of pt with multiplicity mj, then

and do,, ft)

where c3- = 1, —1 or 0 according as m\ is, respectively, of the first,
second, or third kind. Also, we note that since the centre of G is
represented by —I in each of the pif each of the μs is a faithful
representation of G. Further, each faithful irreducible μ, appears
as a component in one of the pt.

We note also that if
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then M2 has character 0 in each of the ρt unless 41 g — 1 and β = 0.
This follows from the fact that ikf2, as a matrix in SL(2, q), has
trace /32 — 2 and, if it has nonzero character, this trace must satisfy
β2 — 2 = a + or1 for some a. But then β2 = ar^a + I)2 whence
either β = 0, and 41 # — 1, or else /3 ̂  0, α is a square, say α = 72,
and β2 = 7"2(72 + I)2 and so £ = ±7"1(72 + 1) = ±(7 + 7"1), a con-
tradiction.

Using these observations one obtains, from a straightforward,
although lengthy computation, the following results:

If 41 q — 1, then At = — 1 and (ft, ft) = 1, so that the first (q — l)/2
irreducible induced representations of G in the last table are irre-
ducible, and of the second kind. We find also that

A2 = Az = -(q + l)/2 , (p2 + ft, p2 + ft) = 2q .

If 4|g — 1, then A1 = — 1 and (ft, i^) = 1 for all but one of the
induced representations subsumed under ft. This is induced from a
real representation of degree 1 of H. For it we have A^ = 0, (ft, pj =
2, and we conclude that this representation has two irreducible com-
ponents, both of which have complex character. We have also A2 =
At = - ( ^ - l)/2, (ft + ft, ft + ft) = 2g.

We need concern ourselves only with the representations p29 and
ft, for which we do not yet know enough to categorize their irreducible
components by kind. Computation shows that (pu p2) = (p19 ft) = 1
for each of the representations under ft. Hence with the exception
of the representation induced from a real character of H, p2 and pz

each contain each of the px exactly once. In the exceptional case,
ρ2 and p3 contain, separately, the two inequivalent complex irreducible
components of ft. Denote by /?4 and p5 the characters obtained by
subtracting from p2 and ft respectively the various ft. It is enough
to deal with p4 and ρδ. For these we have:

If 4|9 - 1, A* = A, = -(q + l)/2 + (? - l)/2 = - 1 and

(p4 + ft, ί>4 + ft) - 2q - 4(g - l)/2 = 2 .

Hence p4 and ft are both irreducible, of the second kind and, in this
case, we are done.

If 4|g - 1, A* = Aδ = -for - l)/2 + for - 3)/2 = - 1 while

(ft + ft, p* + ft) = 2? - 4for - 3)/2 - 2 = 4 .

This can happen only in two ways: Either ft and ft are irre-
ducible, and both of the second kind, or else p4 and pδ each have
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two irreducible components, no two of them similar, with at least
two of the four of the second kind. But then, since A* = Aδ = —1,
the remaining two components must be of the third kind, and the
proof is complete.

We have, as an easy corollary, a result first proved by G. Vincent
[9].

COROLLARY 1. If G is a finite group of real matrices of degree
>1, irreducible over the field of complex numbers, then one of the
matrices of G, other than the identity, has a + 1 eigenvalue.

Proof. G must have even order and so has at least one involution.
Theorem two excludes the possibility that G has only one involution.
At least one of these lies outside the centre of G since, by Schur's
lemma, each central involution in G is represented by — I. Now a
noncentral involution M has eigenvalues ± 1 and, since Mφ —I, at
least one of these is + 1 , as claimed.

We also have

COROLLARY 2. If G is a real, irreducible group of matrices of
degree greater than 1, then G has a dihedral subgroup.

Proof. A dihedral subgroup is, by definition, a group generated
by two distinct involutions. (Here we are admitting C2 x C2 as
dihedral.) Theorem 2 shows that G does, in fact, have two distinct
involutions.
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