PROJECTIVE QUASI-COHERENT SHEAVES OF MODULES

RICHARD A. LEVARO

Let R be a commutative ring and \tilde{R} the structure sheaf over the prime spectrum of R.

THEOREM: Suppose R has only finitely many minimal primes. Then \tilde{R} is a projective \tilde{R} -Module if and only if R is a finite direct product of local rings.

Let R be a nonzero commutative ring with identity, and let $x = \operatorname{Spec}(R)$, the prime spectrum of R endowed with the Zariski topology. Let \tilde{R} be the structure sheaf of R on X. We shall use the terminology and notation of [5] in describing the category of \tilde{R} -Modules, Mod (\tilde{R}) .

There is a functor $T: \mod(R) \to \operatorname{Mod}(\tilde{R})$ given $T(M) = \tilde{M}$ and $T(f) = \tilde{f}$, where \tilde{M} is the \tilde{R} -Module associated to M, and \tilde{f} is defined at each stalk of \tilde{M} to be the localization of f. The functor T is full, faithful and exact; moreover T preserves direct sums [5, Corollaire I.1.3.8 and I.1.3.9.]. In addition, T determines an equivalence between mod (R) and the category of quasi-coherent \tilde{R} -Modules. In § 1, we shall show that if \tilde{R} is a generator, then Mod (\tilde{R}) is equivalent to mod (R). In §2 necessary and sufficient conditions are given for \tilde{R} to be a projective \tilde{R} -Module.

The author wishes to thank J.J. Rotman and the Referee for their suggestions regarding the preparation of this paper.

1. The equivalence of $Mod(\tilde{R})$ and mod(R). C. J. Mulvey [8] has given a necessary and sufficient condition for \tilde{R} to be a generator in $Mod(\tilde{R})$. For the case of the affine scheme (X =Spec $(R), \tilde{R})$, we can state Mulvey's condition as follows:

PROPOSITION 1.1 (Mulvey, [8]). A necessary and sufficient condition that \tilde{R} be a generator in Mod (\tilde{R}) is that the stalks of \tilde{R} may be generated by global sections of \tilde{R} of arbitrarily small support. If this condition holds, then X = Spec(R) is necessarily a regular topological space.

THEOREM 1.2. The following are equivalent:

(i) $T: \mod(R) \to \operatorname{Mod}(\tilde{R})$ is an equivalence of categories, i.e., every \tilde{R} -Module is quasi-coherent;

- (ii) \tilde{R} is a generator for the category Mod (\tilde{R});
- (iii) $X = \operatorname{Spec}(R)$ is T_1 ;
- (iv) R/N(R) is von Neumann regular, where N(R) is the nil-

radical of R. If \tilde{R} is a flabby (flasque) \tilde{R} -Module, then the equivalent conditions (i)-(iv) are satisfied.

Proof. (i) implies (ii). Since R is a generator of mod(R), this implication is clear.

(ii) implies (i). Since \tilde{R} is a generator, it is immediate that every \tilde{R} -Module is of the form \tilde{M} .

(ii) implies (iii). Because \tilde{R} is a generator, by Proposition 1.1, X = Spec(R) is a regular topological space. But X is always T_0 , so it is also T_1 .

(iii) implies (iv). This is well-known and appears as a exercise in [2, page 143].

(iv) implies (ii). Since R/N(R) is von Neumann regular and X =Spec (R) is homeomorphic to Spec (R/N(R)), X has a basis of closed and open sets. We shall use the criterion of Proposition 1.1 to show \tilde{R} is a generator. Let $x \in X$, and let U be an open set in X with $x \in U$. Let V be an open and closed (basic) set such that $x \in V \subseteq U$. Define sections $s_1 \in \tilde{R}(V)$ and $s_0 \in \tilde{R}(X - V)$ by $s_1(z) = 1_z \in R_{p_z}$ for all $z \in V$, and $s_0(z) = 0_z \in R_{p_z}$ for all $z \in X - V$. Since V partitions X, we can collate s_1 and s_0 to obtain a global section s of \tilde{R} with $s(z) = 1_z$ if $z \in V$ and $s(z) = 0_z$ if $z \notin V$. Clearly s generates \tilde{R}_x , and the support of s is $V \subseteq U$. Therefore, by the Proposition, \tilde{R} is a generator.

For the last statement, suppose \tilde{R} is flabby and $s \in R$. Then the restriction map $\tilde{R}(X) \to \tilde{R}(D(s))$ is onto, and hence the localization map $R \to R_s$ is onto. Now $D(s) \approx \text{Spec}(R_s)$, and because $R \to R_s$ is onto, Spec (R_s) is a homeomorphic to a closed set of X. Hence the usual basis is both open and closed; therefore points in X are closed and X is T_1 .

R. Wiegand has shown, using different techniques, that a reduced prescheme (X, \mathscr{B}) is regular (i.e., X can be covered by open sets U_i such that $(U_i, \mathscr{B} \mid U_i)$ is the affine scheme of a von Nuemann regular ring) if and only if every \tilde{R} -Module is quasi-coherent [9].

The Theorem provides examples of rings for which there are projectives in Mod (\tilde{R}) .

COROLLARY 1.3. Suppose R/N(R) is von Neumann regular where N(R) is the nilradical of R. The \tilde{R} -Module F is projective if and only if F(X) is a projective R-module. In particular, P is a projective R-module if and only if \tilde{P} is a projective \tilde{R} -Module.

2. Projective quasi-coherent \tilde{R} -Modules. Suppose \tilde{R} is a projective \tilde{R} -Module. If P is a projective R-module, then there is an R-module Q such that $P \bigoplus Q \cong \sum R$; hence $\tilde{P} \bigoplus \tilde{Q} \cong \sum \tilde{R}$ since T

preserves direct sums. Therefore, \tilde{P} is a projective \tilde{R} -Module. Thus, to discover when projective R-module yield projective \tilde{R} -Modules, it is enough to determine when \tilde{R} is projective.

PROPOSITION 2.1. If R is a local (not necessarily Noetherian) ring, then \tilde{R} is a projective \tilde{R} -Module.

Proof. Since $\operatorname{Hom}_{\widetilde{R}}(\widetilde{R}, F)$ is naturally isomorphic to F(X) for every \widetilde{R} -Module F, we need only show the global section functor is exact. Let p_x be the unique maximal ideal of R. For any \widetilde{R} -Module $F, F_x = \lim_{x \to \infty} F(U)$ where the direct limit is taken over all open sets containing x. Because $X = \operatorname{Spec}(R)$ is the only open set containing $x, F_x = F(X)$. Now, the formation of stalks is exact, so $\operatorname{Hom}_{\widetilde{R}}(\widetilde{R},)$ is exact, i.e., \widetilde{R} is projective.

R. Bkouche [1] introduced the notion of soft rings.

DEFINITION. The ring R is soft (mou) if Max (R), the maximal spectrum of R, is Hausdorff and J(R) = 0, where J(R) is the Jacobson radical of R.

For our purposes, we need a notion a bit more general.

DEFINITION. The ring R is quasi-soft if for every $x \in Max(R)$, the localization map $\alpha_x : R \to R_{p_x}$ is onto.

Every local ring is quasi-soft, but not necessarily soft. Every von Neumann regular ring is quasi-soft. The relation between soft and quasi-soft rings is given by the following.

PROPOSITION 2.2. If R is quasi-soft, then R/J(R) is soft, where J(R) is the Jacobson radical of R. Every soft ring is quasi-soft.

Proof. If R is quasi-soft, then Max (R) is regular as can be seen by imitating the proof for soft rings [1, Proposition 1.6.1 and 1.6.2]. But Max (R) is always T_i ; hence Max (R) is Hausdorff. Since Max (R) \approx Max (R/J(R)) and J(R/J(R)) = 0, R/J(R) is soft.

Now suppose R is soft, $x \in Max(R)$, and let $\alpha_x \colon R \to R_{p_x}$ be the localization map. Because J(R) = 0 and Max(R) is Hausdorff, $V_{\mathcal{M}}(\ker(\alpha_x)) = \{x\}$, where $V_{\mathcal{M}}(I) = Max(R) \cap V(I)$ for an ideal I of R. Therefore, $R/\ker(\alpha_x)$ is a local ring with maximal ideal p_x , and so every element outside p_x is invertible. By the universal mapping property of localization, $R/\ker(\alpha_x) \cong R_{p_x}$; hence R is quasi-soft.

Quasi-softness is the condition we must investigate to find necessary conditions for \tilde{R} to be a projective \tilde{R} -Module in view of the following result.

PROPOSITION 2.3. If \tilde{R} is a projective \tilde{R} -Module, then R is quasi-soft.

Proof. Let $x \in Max(R)$ and set $A = \{x\}$. Then $A \subseteq X$ is closed, and we have the exact sequence

$$0 \longrightarrow \widetilde{R}_{X-A} \longrightarrow \widetilde{R} \xrightarrow{\alpha} \widetilde{R}_A \longrightarrow 0$$

of \tilde{R} -Modules [4, Théorème 2.9.3.]. Since \tilde{R} is projective, $\operatorname{Hom}_{\tilde{R}}(\tilde{R},)$ is exact, and hence $\operatorname{Hom}_{\tilde{R}}(\tilde{R}, \tilde{R}) \xrightarrow{\alpha_*} \operatorname{Hom}_{\tilde{R}}(\tilde{R}, \tilde{R}_A)$ is onto. Now $\operatorname{Hom}_{\tilde{R}}(\tilde{R}, \tilde{R}) \cong R$ and $\operatorname{Hom}_{\tilde{R}}(\tilde{R}, \tilde{R}_A) \cong R_{p_x}$, and it is routine to check that α_* may be identified with the localization map $\alpha_x \colon R \to R_{p_x}$ (i.e., the obvious diagram commutes). Therefore R is quasi-soft.

We can now state and prove the

MAIN THEOREM. Suppose R has only finitely many minimal primes. Then \tilde{R} is a projective \tilde{R} -Module if and only if R is finite direct product of local rings.

Proof. Since R has only finitely many minimal primes, R is the finite direct product of connected rings, say $R = R_1 \times R_2 \times \cdots \times R_n$ each having only finitely many minimal primes. If \tilde{R} is a projective \tilde{R} -Module, \tilde{R}_i is a projective \tilde{R}_i -module for each *i*. By Proposition 2.3 R_i is quasi-soft. Hence Max (R_i) is finite, since each prime ideal of a quasi-soft, ring is contained in a unique maximal ideal [1, Proposition 1.6.1]. Also, since R_i is quasi-soft, Max (R_i) is the continuous image of Spec (R_i) [1, Proposition 1.6.2]. (See also [3]). Thus, Max (R_i) is finite and discrete, but also connected being the continuous image of Spec (R_i) . Therefore Max (R_i) consists of a single point, and hence R_i is local.

Conversely, if $R = R_1 \times \cdots \times R_n$ where each R_i is local, then \tilde{R}_i is a projective \tilde{R}_i -Module by Proposition 2.1. Hence, \tilde{R} is a projective \tilde{R} -Module.

The Main Theorem resolves the problem of determining the projectivity of \tilde{R} for rings with only finitely many minimal primes; in particular, for Noetherian rings and integral domains.

Let R be a discrete valuation domain. In this case; $X = \text{Spec}(R) = \{(0), p\}$, where p is the unique maximal ideal of R. Since R is local,

 \widetilde{R} is a projective \widetilde{R} -Module. Since $U = \{(0)\}$ is smallest open set containing (0), \widetilde{R}_{v} is also a projective \widetilde{R} -Module. Thus, there are examples of projective \widetilde{R} -Modules which are not quasi-coherent. Furthermore, since $\widetilde{R} \oplus \widetilde{R}_{v}$ is a generator for Mod (\widetilde{R}) [6, Proposition 3.1.1], in this case Mod (\widetilde{R}) has a small projective generator. Hence Mod (\widetilde{R}) is equivalent to a category of modules [7, Theorem 4.1, page 104], but the functor T is not the equivalence since X =Spec (R) is not T_1 .

References

1. R. Bkouche, Couples spectraux et faisceaux associés. Applications aux anneaux fonctions, Bull. Soc. Math. France, **98** (1970), 253-295.

2. N. Bourbaki, *Elements of Mathematics, Commutative Algebra*, Addison-Wesley, Reading, Massachusetts, 1972.

3. G. De Marco and A. Orsatti, Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc., **30** (1971), 459-466.

 R. Godement, Topological Albébrique et Théorie des Faisceaux, Hermann, Paris, 1958.
A. Grothendieck and J. A. Dieudonné, Eléments de Géométrie Algébrique I, Springer-Verlag, Berlin, 1972.

6. A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J., **9** (1957), 119-221.

7. B. Mitchell, Theory of Categories, Academic Press, New York and London, 1965.

8. C.J. Mulvey, A condition for a ringed space to be a generator in its category of modules, J. Algebra, 15 (1970), 312-313.

9. R. Wiegand, Generators of modules over commutative rings, J. Algebra, 27 (1973), 454-461.

Received November 11, 1974 and in revised form March 10, 1975.

WASHINGTON UNIVERSITY