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BEHAVIOR OF Φ-BOUNDED HARMONIC FUNCTIONS
AT THE WIENER BOUDARY

YOUNG K. KWON

For a strongly convex Φ(t), denote by HΦ the class of
0-bounded harmonic functions, and by CΦ the class of con-
tinuous functions / on the Wiener harmonic boundary such
that the composite 0(1/1) is integrable with respect to a har-
monic measure. Theorem: ueHΦ if and only if u is a
solution of the Dirichlet problem with boundary values feCΦ
on the Wiener harmonic boundary.

1* For a strongly convex Φ(t) Nairn [4] developed an integral
representation of Φ-bounded harmonic functions in terms of the
Martin minimal boundary and fine topology, and for Φ(t) = tp (p > 1)
Schiff [7] extended the results in the framework of the Wiener com-
pact ificat ion. In view of the fact that the Wiener compactification is
"smaller" than the Martin, the latter sharpens the former.

The purpose of the present paper is to show that Nairn's theory
of Φ-bounded harmonic functions does carry over in its full generality
to the Wiener compactification setting.

2 The set-up is, as in Nairn [4], a locally compact, noncompact,
connected and locally connected Hausdorff space Ω with a Brelot
harmonic sheaf H such that 1 is superharmonic (cf. Brelot [1]). An
increasing nonnegative function Φ(t) on [0, oo) is said to be strongly
convex if Φ(t) is convex and l i m ^ t~ιΦ{t) = oo. Following Parreau
[5], a harmonic function u is said to be Φ-bounded if the function
φ(\ u I) has a harmonic majorant, and u is said to be quasibounded
if u = Uι — uz where uu u2 are limits of nondecreasing sequences of
nonnegative bounded harmonic functions.

Throughout this paper we base our arguments on the Wiener
compactification (cf. Sario and Nakai [6], and Loeb and Walsh [3]).
Let Δ be the Wiener harmonic boundary, P(x, t) the harmonic kernel,
and μ the harmonic measure (centered at x0 e Ω, say). It is now
classic that u is quasibounded if and only if u(x) = \ P(x, t)f(t)dμ{t)
for some ^-integrable function / on A. In this case u has a con-
tinuous extension to Δ and u — f μ-a.e.

3* Denote by HΦ{Ω) the class of Φ-bounded harmonic functions
on Ω, and by CΦ(Δ) the class of extended real-valued continuous
functions / on Δ such that Φ(\f\) is μ-integrable.
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THEOREM 1. A harmonic function u belongs to the class HΦ(Ω)
if and only if

(1) u(x) = ^P(x,t)f(t)dμ(t)

for some fe CΦ{Δ). In this case u — f on A.

Proof. First assume fe CΦ{A). Since | /1 ^ Φ{\ f |) + M for some
constant M, f is μ-integrable and therefore the function (1) is a
quasibounded harmonic function. By Jensen's inequality

2sί P(x9t)Φ(\f(t)\)dμ(t)
JΔΔ

and the last function is a harmonic function since Φ(\f\) is μ-
integrable.

Conversely let u e HΦ(Ω). In view of the fact that every Φ-
bounded harmonic function is quasibounded for a strongly convex Φ
(Parreau [5]), it suffices to show that the function Φ(\u\) is μ-
integrable on A. Choose a positive harmonic function h on Ω such
that h^Φ(\u I). Set

un{x) = \ P(x, t)[(u(t) f]n)\J (-n)]dμ(t)
J Δ

for n ^ 1. Here U and Π stand for point wise maximum and mini-
mum operations on functions. It is easy to see that each un is
bounded and harmonic, and that the subharmonic Φ(\ un |) monotoni-
cally increase to Φ(\u\) as n—>oo.

Take an exhaustion {42Jίez of Ω by regular inner regions (Loeb
[2]), and denote by vt the harmonic function on Ωt with the boundary
value Φ(\un\)\dΩi. Clearly vt<*h for all iel, and taking the
supremum over i e I we conclude that

\ P(x9t)Φ(\un(t)\)dμ(t)^h(x)
J Δ

on Ω. In particular

\ Φ(\ un{t) \)dμ{t) = \ P(x0, t)Φ(\ uκ(t) \)dμ(t) ^ h(x0) < oo
JΔ JΔ

and by monotone convergence theorem the function Φ(\ u |) is μ-
integrable on Δ> as desired.

4* A function ueHΦ(Ω) is said to be ίZΦ-minimal if u ^ 0 and
every v e HΦ{Ω) with 0 ^ v ^ u is proportional to u.
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THEOREM 2. u is HΦ-minimal if and only if u is HB-minimal.

Proof. Clearly every iίS-minimal function is iϊΦ-minimal.
Conversely assume that u is iJΦ-minimal. It suffices to show that
u is bounded. In fact the bounded harmonic function

\ P(x, t)(u(t) Π n)dμ(t)
jΔ

is in the class HΦ(Ω) and has u as a harmonic majorant. Therefore
u is bounded as a constant multiple of a bounded function.

COROLLARY. // the space HB(Ω) of bounded harmonic functions
is of finite dimension, then HΦ(Ω) = HB{Ω).

5* In general the class HΦ{Ω) is not a linear space (it is linear
if, for instance, Φ{t)'[Φ{lj2t)]~ι is bounded for all large t). But it
always forms a lattice with respect to the lattice operations V, Λ
induced from the usual function ordering in the class of all harmonic
functions.

THEOREM 3. Let u, v e HΦ(Ω). Then the least harmonic major-
ant u V v and the greatest harmonic minorant u Λ v belong to the
class HΦ(Ω). Moreover

(u V v)(x) = ί P(x, t){u(t) U v(t))dμ(t) ,
J Δ

(u A v)(x) = ( P(x, t)(u(t) Π v(t))dμ(t)
jΔ

on Ω.
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