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NONLINEAR HOLOMORPHIC SEMIGROUPS

T. L. HAYDEN AND F. J. MASSEY, III

Conditions are given on a nonlinear operator A in a
Banach space X under which the semigroup, S(t), generated
by —A has the property that S(t)x is analytic in t for | arg t \ < Θ
for each fixed xec\(D(A)). Analyticity in t of solutions
of uf + Tu = Fu where — T generates a linear holomorphic
semigroup in X and F maps D(Ta) analytically into X for
some a < 1 is also established. These results are applied to
establish analyticity in t of solutions to du/dt + Lu + β(u) — 0
where β: R-> R is real analytic, monotone increasing and
β(0) = 0, and L is a second order elliptic operator.

1* Introduction* Hille and Yosida proved that if A is a densely
defined linear operator on a Banach space X such that, for λ > 0,
I + λA is an isomorphism from D(A) onto X and (J + λA)"1 is a
contraction, then —A generates a strongly continuous semigroup
{S(t): t ^ 0} of contractions on X. If X is a complex Banach space
and the above conditions hold for | arg λ | < θ, instead of just for
λ > 0, then S(t) has an analytic extension in t to the sector | arg 11 < θ.
These holomorphic semigroups have a smoothing property, namely
S{t) maps X into D(A) for t Φ 0 so that u(t) = S(t)x is a solution
to n'(t) + Au(t) — 0, w(0) = x for any initial data xeX. For the
linear theory of semigroups see Yosida [24], Kato [12], and Hille-
Phillips [11].

A number of authors (see Kδmura [15, 16], Kato [13, 14], Crandall
and Pazy [6], Brezis [2], Grandall and Liggett [5], and the references
listed there) have generalized the theory of semigroups to nonlinear
operators. They have shown that if A c X x X is a (multivalued)
nonlinear operator such that, for sufficiently small λ > 0, (I + λA)""1

is a contraction and the range of (I + λA) contains cl (J5(A)), the
closure of the domain of A, then —A generates a strongly continuous
semigroup {S(t): t ^ 0} on cl (D(A)). In the case when X is a Hubert
space, Kδmura [16] has given conditions under which S(t) extends
analytically to a sector | arg t \ < θ. Brezis [2] has shown that if
A — dφ is the subdifferential of a lower semicontinuous, convex
functional on a Hubert space then the semigroup {S(t)} generated
by —A has a regularizing property similar to the linear case, namely
S(t) maps cl (D(A)) into D(A) for t > 0.

In this paper (§ 2) we give an extension of Kδmura's result to
the case where X is a Banach space by establishing conditions under
which S(t) extends analytically to | arg t \ < θ. These conditions also
imply S(t) maps cl (D(A)) into D(A) for t Φ θ\ in other words, S(t)

423



424 T. L. HAYDEN AND F. J. MASSEY, III

has a smoothing action.
In § 3 we establish local analyticity in t of solutions, u(t), of

equations of the form du/dt + Tu = Fu where — T is the generator
of a linear analytic semigroup in a Banach space X and F maps
D{Ta) analytically into X for some a < 1. We use the integral
equation approach developed by Sobolevskii [23], and Fujita and
Kato [9]. In § 4 we give applications to semilinear parabolic equa-
tions.

We wish to thank H. Brezis, M. Crandall, D. Henry, T. Kato,
J. W. Neuberger and A. Pazy for their many valuable conversations
and useful suggestions concerning this work.

2* A class of holomorphic nonlinear semigroups* In the
following X is a complex Banach space. Let C c l , and Σθ = {ze
C: I arg z \ < θ, z Φ 0} be an open sector in the complex plane. A
holomorphic semigroup on C is a function S on Σθ (j {0} such that
S(z) maps C into C for each z e Σθ (j {0}; S(z + w) = S(z)S(w) for
z, w e ΣΘ (J {0}; and, for x e C, S(z)x is a holomorphic function of z e Σθ

with S(z)x —> S(0)x — x as z —» 0 and z e Σθ. If there is also a real
number ω such

(2.1) \\S(z)x-S(z)y\\ge*"\\x-y\\9

x, y eC, ze Σθ, we will write S e £έ?ω,θ(C). Note that we do not require
S(z) to be holomorphic for fixed z as did Kδmura [16]. Kδmura
noted that a contraction mapping which is holomorphic on all of a
complex Banach space must be the translate of a linear operator (a
consequence of Liouville's theorem). Hence we wish to avoid the
hypothesis that S(z) be a holomorphic map.

The generator, A, of a nonlinear semigroup is, in general, a
"multivalued" operator which is regarded as a subset of X x X.
For such operators we use the notation and definitions of Crandall
and Liggett [5, page 266].

THEOREM 2.1. Let A a X x X, ω, θf ε be real numbers such that
eiφA + ωl is accretive for | φ \ < θ and R(I + λ̂ 4) 3 cl (D(A)) for
I arg λ I < θ and j λ | < ε. Let Jλ = (I + XA)'1 and suppose, for
x e D{A) and n a positive integer, the map λ i—> J"x is a holomorphic
function of λ for | arg λ | < θ9 \ λ | < min (ε, | ω I"1). Then

(2.2) lim J:lnx = S(z)x
n—*oo

exists for xec\(D(A)) and zeΣθ and Se <^ω>θ(cl(D(A)). If, in
addition, A is a closed subset of X x X then for each xed(D(A))
and zeΣθ, we have S(z)xeD(A) and —(d/dz)S(z)xeAS(z)x.
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Proof. Let Ka,φ = (/ + aeiφA)~ι be the resolvent of eiφA. For
I φ I < θ, the operator eiφA satisfies the hypotheses of Theorem 1 of
Crandall and Liggett [5], so lira K?ln>φx = Tφ(t)x exists for x e cl (D(A)),
t ^ 0, and {ΪV(£): ί Ξ> 0} is a (strongly continuous) semigroup with
each Tφ(t) Lipschitz with constant eωt. Since Jλ = iίΓu,,argλ, it follows
that the limit (2.2) exists, S(z)x = Ta r g,(| 2\)x, and S(s) satisfies (2.1)
for x, y 6 cl (D(A)).

Now let ίc 6 D(A). Applying the inequalities (ii) and (iii) on p. 268
of [5] to e'*A, we get || Kt%t9x - x || ^ ί( l - te"11 ω \)~n \ e'*Ax |, t ^ 0,
ί I ft) I < %. Substituting £ = | 21, φ = arg 2, and using Jz = KlzUaτgz,
and the fact that (1 - α/n)"n ^ e | α |, α e i ? , we obtain \\Jz

n,nx - a?|| ^
|^|ei2iiωi i^/j.^ I arg ^ I < /?, |«ft)| < n. Thus when ^ is restricted to
lie in a bounded subset of Σθ, the sequence {Jz

n

ίnx} is a uniformly
bounded sequence of holomorphic functions of z which converge
pointwise to S(z)x. It follows (see [11], p. 104) that S(z)x is holo-
morphic in z and \\S(z)x — x\\ ^\z\ e | 2 | l ω i \Ax\. In particular, S(z)x—>x
as Z-—0.

Now let xec\(D(A)) and choose {xn}cD(A) with xn—*x. Then
{S(z)xn} is a sequence of functions holomorphic on Σθ and continuous
at z = 0. If ^ is restricted to lie in a bounded subset of Σθ U {0}
then the S(z) are Lipschitz with constant independent of z and, hence,
{S(z)xn} converges uniformly to S(z)x. Thus S(z)x is holomorphic on
Σθ and continuous at z = 0.

In order to show the semigroup property, let weΣθ be fixed and
<p = argw. If {ΪV(£): £ ̂  0} is the semigroup generated by — eiψA
then S(teiφ) = 2V(ί), ί ^ 0. By Crandall and Liggett, ^( ί ) is a semi-
group for real ί, so S(ίe^ + τe^) = S{teiφ)S{τe^). Thus S(̂ J + w) =
S(z)S(w) for z = tw,t^0. If # e cl (D(.A)) then S(z + w)a? and
S(z)S(w)x are holomorphic functions of zeΣθ which agree on the
ray z = £w, t ^ 0. By the identity theorem for holomorphic functions
S(z + w)x = S(z)S(w)x for all «.

In the real case (see [5]) a strong solution to the Cauchy problem

(2.3) 0 e du/dt + Au , 0 ^ t ^ Γ , ^(0) = x ,

is a function u: [0, Γ ] - > J s o that (i) u is continuous, (ii) u is the
indefinite integral of a function which is strongly integrable on
compact subsets of (0, T), (iii) w(0) = x and (iv) u'(t)e —Au(t) for
a.e. t in (0, T).

Crandall and Liggett, and Miyadera [20] have shown the following
result. Let B be closed in X x X, B + ωI accretive for some real
number ω, R(I + tB) => cl (D(B)) for sufficiently small t > 0, and for
x e cl (D(B)) let T(t)x = lim (/ + (t/n)B)~nx be the semigroup generated
by - £ . Then if a? e cl (2?(JS)) and T{t)x is strongly differentiate at
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U>0, with y = (d/dt)T(to)x, then [T(to)x, -y]eB. Then using the
fact that for x e D(B), S(t)x is Lipschitz continuous on bounded sets
of t, they are able to conclude that if S(t)x is differentiate a.e. then
u = S(t)x is a strong solution of (2.3).

In our case, since we have shown that S(z)x is a holomorphic
function for x e cl (D(A)), it is immediate that S(z)x can be recovered
as the indefinite integral of an analytic function along a ray.

To finish the details of the proof, let A be closed, xecl(D(A)),
zeΣθ with φ = arg zf and {Tφ(t); t ^ 0} be the semigroup generated
by -eiφA so that S(teiφ) = Tψ{t), ί ^ 0. If xecl(D(A)) then u{z) =
S(2)# is holomorphic for 2 6 2** which implies that v(t) = Tφ(t)x is
differentiable for t > 0 and v'(ί) = eiφu'(te*v).

Since — eί9A is closed, it follows from the above results of Crandall
and Liggett that -v\t)ee^Av(t). Hence -u'ite^e Au(teiφ), and
together with the comment on holomorphy of S(t)x for x e cl (D(A)),
we have established a strong solution to the Cauchy problem for
xecl(D(A)).

REMARK. We will show in an example that Jx may not be defined
on an open set, so that Jλ is certainly not a holomorphic map in
general. However in case Jλ is a holomorphic map, then the hy-
pothesis Jtx is a holomorphic function of λ for all n is satisfied.
We may argue as follows. First since Jλ is locally Lipschitz, both
Kδmura [16] and Neuberger [21] have established that Jλx is
holomorphic in λ when Jλ is a holomorphic map. Next let

is holomorphic in XL. If Xlf λ3, •••, λft are fixed, then Jχ2 Jχz Jλ%

is holomorphic in λ2 and therefore when composed with the holo-
morphic map Jλl, g is holomorphic in λ2 and so forth. Hence, as is
well known [11], p. 107, #(λ, λ, λ, . . .) is a holomorphic function
of λ.

EXAMPLE. Let β:K-+C be continuous where K is the closure
of an open, convex set UaC. Suppose 0 6 IT, /3(0) = 0 and β is
analytic on U. Assume there is θ > 0 such that | arg β\z) \ ̂  π/2 — θ,
ze U. Finally suppose there is ε < 0 such that for | arg λ | < θ,
I λ 1 < ε, one has (I + \β)(K) => K and (/ + λ/9)( U) ID U. Here I(z) = z
is the identity map on C.

Let X = LP(Ω; C) where Ω is any measure space and 1 ^ p ^ 00.
Let D(A) = {ueX:u(x)eK a.e. and β(u)eX}, where β(u) is the
composition of β and u. Let A^ = β(u) for u e D(A). We shall
show that A satisfies the hypotheses of Theorem 2.1 with ω — 0 and
0, ε as above.
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The hypothesis | arg β'(z) | ^ π/2 — θ, z e U, implies eiφβ is accre-
tive for I φ I < θ. In particular I + Xβ is one-to-one and (I + λ/S)""1

is a contraction for | arg λ | < θ. Let S = {X e C: | arg λ | < θ, \ X | < ε}.
The assumption that (/ + Xβ)(K) Ό K, Xe S, implies the function
j(w, X) — (I + Xβ^iw) is well defined for we K,Xe S. It is a con-
traction in w for fixed λ. Since β is analytic on ί7and (1 + Xβ)(U)Z) U,
the implicit function theorem implies j:Ux S—*U is analytic. Since
β(0) = 0 we have j(0, X) = 0. Since i( , λ) is a contraction we have
\j(w,\)\ £\w\.

Let j\w, X) = j(w, λ), weK,XeS and i%(^, λ) = jtf^iw, λ), λ),
w e ίΓ, λ G S, Tϊr ̂  2. Since i ( ^ , λ) is a contraction in w, it follows
that jn(w, X) is a contraction in w for fixed λ. Since i : UXS—+ U
is analytic, it follows that j n : UXS~> U is analytic. We claim that
jn(w, X) is analytic in λ for fixed w, even if we K. To see this,
choose a sequence {w w }cϊ7 with wm—>w. Then {iw(wm, λ)} is a
sequence of functions each analytic in X and jn(wm, X) —•> ;/w(w, λ)
uniformly in λ since jn(w, X) is a contraction in w. It follows that
jn(w, X) is analytic in λ. Finally we note that | jn(w, X) \ ̂  | w \ since
I i ( w , λ ) | S\w\.

Now consider the operator A. We have i; = (J + λA)i6 if and
only if v(x) = (I + λ£)(iφ)) a.e. If | arg λ | < ^ then J + λ^ is 1 - 1
so v = (I + XA)u is equivalent to u(x) = (I + λ β ) " 1 ^ ^ ) ) a.e. In
particular / + λA is 1 — 1 and Jλ = (J + λA)"1 is contraction. It
follows that eiφA is accretive for \φ\ < θ.

To show cl (D(A)) c i2(/ + λA), note that cl (D(A)) c F where
F = {v G X: v(ίc) G ίΓ a.e.}. The assumption Ka (I + Xβ)(K), XeS and
the definition of j implies that F c i2(/ + λA) for XeS, and J X # ) —
j(y(x), X),veF,Xe S.

To show J*v is analytic in λ for fixed veF, note that J*v(x) =
jn(v(x), X). It follows from | jn(v(x), X) \ ̂  | 'y(a ) | and the Cauchy
integral formula that

(2.4) I i;(v(aj), λ) I ^ I v(x) \ dist (λ, 3S)

(2.5) I JUΦ), λ) I ̂  I v(a?) I [dist (λ, 3S)]2

where jn

λ = djn/dX, j n

n = d2jn/dX2. In the case 1 ^ p < oo in order to
show JT^ is analytic in λ it suffices to show weak analyticity, i.e.

(d/dX) \ jn(v(x), X)w{x)dx = ί Λ(^(α;), λ)w(ίc)dα? for all w e Lq(Ω), p'1 +
JΩ JΩ

q~ι = 1. This is true because jn(v(x), X) is analytic in X for fixed a?,
and the estimate (2.4) implies that differentiation under the integral
sign is valid. In the case p = oo we must show r(μ)—*0 as μ~»0
where r(μ) = || [iw(v, \ + μ) - jn(v, X)]μ-' - i;(v, λ) \\m. Note that (2.4)
implies that j*(v, X) is in L°°(Ω) for each λ. Since jn(v, X + μ) ~
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S λ + μ

3%v, V)dV a computation shows that

r(μ) ^ sup {| fi(v(x), λ + tμ) - j%v(x), λ) | : x e Ω, 0 g t ^ 1}

x e β , O^t ^ 1 } .

Using (2.5) we get r(μ) ^ 4 | μ | || v IU [dist (λ, 3S)]2 for | μ | <
2"1 dist (λ, 3S). Thus r(μ) -» 0.

A special case of this example is β(z) — z2,ze K = {zeC:\ arg z | ^
π/4} U {0}. We have | arg β'(z) | ^ ττ/4, x e K, so we can take θ = π/4.
Note that (/ + XβY'w = [-1 + (1 + 4λw)1/2]/2λ for w e R(I + λ/3),
arg λ I < 7r/4. A simple geometric argument shows that if | arg λ | <

τr/4 and | arg w \ S ^/4 (resp. | arg w \ < ττ/4) then | arg (/ + Xβ)~xw \ ^
ττ/4 (resp. < ττ/4). Thus iΓc (I + λ/9)(iQ and U(z(I+ λ/5)( ?7),
I argλ I < 7r/4, where ί/ is the interior of ΛΓ.

To obtain an "unbounded generator" version of the above
example, let X = l\ D(A) =^{xe I2: Ax e l\ | arg ^ | ^ π/4}. Let 2"̂  =
{λ e C: I arg λ | < ττ/4} and let A(^, x2, x3, . . •) = (̂ 2, 2a?|, 3x3

2, •)• The
hypotheses of Theorem 1 are easy to verify in this case.

Our results include some, but not all, of the linear theory of
holomorphic semigroups. If A is an m-sectorial operator in a Hubert
space with vertex zero (so that its numerical range is a subset of a
sector I argφ | ^ π/2 — θ, θ < π/2), then A satisfies the hypotheses of
Theorem 2.1.

3* A perturbation theorem* In this section we consider the
equation du/dt + Tu(t) = Fu(t), t^O, u(0) = x, where T is a linear

operator in a complex Banach space X and F is a function with
domain and range in X. Equations of this type have been studied
by Sobolevskii [23], Fujita and Kato [9], Friedman [8], Henry [10]
and others. We establish analyticity in t of solutions u{t) of this
equation under suitable conditions on T and F. In particular, we
assume that

The resolvent of T exists for Re λ ^ O and there exists

(3.1) a constant C such that || (λ - Γ)"11| ^ C(l + | λ I)"1,

Re λ ^ 0 .

Using the Neumann series representation for the resolvent [12,
pp. 37, 173] it is not hard to show that there exists Cl9 ω > 0 such
that the resolvent of T exists and satisfies ]| (λ — Γ)"11| ^ C11 λ I"1 for
I arg λ - π \ < (π/2) + ω. This is a well known ([12, p. 488], [8, p. 101])
condition for — T to generate a holomorphic semigroup {U(t): \ arg t \ <co}.
The map t —* U(t) is a bounded holomorphic map from {t: \ arg t \ < θ,
t Φ 0} into B(X) for any 0 < ω.
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The assumption (3.1) implies that T has fractional powers, Γ r,
for 7 e R (see [24, 8, 18]). For 7 £ 0, T e B(X). For 7 ^ 0 , P i s a
closed operator in X with domain, Xr = D{Tr), dense in X. For all
7, T r is invertible with (TO"1 = T~r; see [8, pp. 158-159]. For 7 > 0 , we
define || x | | r = || JΓ'a? ||, x e Xr (cf. [10, p. 29]). The fact that {Tr)~ι e B(X)
implies || | | r is a norm on Xr which is equivalent to the graph norm,
III \\\, of T', s m c e \ \ \ x \ \ \ ^ \ \ T r χ \ \ + \ \ x \ \ £ ( l + \ \ T - r \ \ ) \ \ T r χ \ \ . Xr

is a Banach space with the norm || | | r since Tr is a closed operator.
In § 4 we shall need the following imbedding theorem for domains
of factional powers.

If Y is a Banach space with ΰ ( Γ ) c 7 d and 0 ̂  β < 1

and there exists C such that || u \\γ S C \\ Tn \\β

x \\ u \\ιχβ,

ueD(T), then D(Ta) is continuously imbedded in Y

f or β < a ^ 1 .

(See Sobolevskii [23, p. 22], Friedman [8, p. 177], and Henry [10,
p. 29].)

We shall also need the following facts which relate the semigroup
to the fractional powers. For all 7 ^ 0 , U(T) maps X into D(Tr)
and, for θ < ω there exists a constant M7 such that

(3.3) \\TrU(f)\\£Mr\t\-r , \2LTgt\<θ .

(See [8, pp. 105-106, 158-160] where this is proved for real t. The
same argument works for complex t.)

For 0 < 7 ^ 1, θ < ω one has

(3.4) \\U{t)x - x\\ ^ M^Ί-^tV \\T?x\\ ,

I argί I <θ,xeXr. (To prove this, note that (d/ds) U(s)x = - TU(s)x =

-T^U&Tx. Thus U{t)x - x = -[ T-?U{s)Txds. Using (3.3) to
Jo

estimate || T1-ri7(s)||, one obtains (3.4). This proof is due to Henry
[10].)

Let l < ^ ^ o o , 0 ^ 7 < l - p~\ 0 < ε < τ. Then there exists a
constant M such that if w: [0, τ]->X is differentiable, u(t)eD(T),
0 ^ t ^ τ, and u'{t) + Tu(t) = f(t), 0 ^ ί ^ r, with / e 1/(0, r; X) then

(3.5) || Tru{t) || ^ Jlf

ε <^ t <> τ. To prove (3.5), first note that

u{t) = U(t)u(0) + Γ U(t- s)f(s)ds
Jo

(see [12, p. 486]). By (3.3) we have || T^U(t)u(0) \\ ^ Mre~r \\u{0) ||,
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ε £ t £ τ, and Γ || TU{t - s)f(s) || ds ^ Λfr Γ || f(s) \\ (t - s)^ds ^
Jo Jo

G t \ίip/rt \i/g / f r \i/j>

JI/OOIlW) (\o(t-syrή £ const. (jo II f(s)\\*ds) , Org^r,
p-i + gf-i — i. Note that Ίq < 1 since 7 < q~ι = 1 — p" 1. This proves

(3.5).
THEOREM 3.1. Assume T satisfies (3.1), 0 ^ a < 1, 0 < ω, and F

is a function whose domain, D(F), is an open subset of Xa and
F:D(F)—»X is Frechet analytic (as a map from Xa to X). Then
for each x e D(F) there exists r > 0 and a unique function u mapping
Wr = {ί G C: I arg £ | < β, 0 < | ί | < r} analytically into Xγ = D(T) such
that for each teWr, u(t) e D(F) and u\t) + Tu(t) = Fu(t), and
\\u{t) — x |U —>• 0 as ί—*0.

Let Ud D(F) Π Xr for some 7 > a and suppose there exists δ > 0
and K such that if xeU and \\y — x\\a<δ then y e D(F) and
\\Fy\\ < K. Suppose also that Uis bounded in Xr. Then the value
of r can be chosen independently of xe U.

If, in addition, F maps D{F) Π Xs+a analytically into Xs for
0 ^ s ^ n, then u is analytic from Wr to Xn+1.

Proof. The differential equation du/dt + Au = Fu is transformed
into the integral equation (3.7) below. This method was introduced
by Sobolevskii [23] and Fujita and Kato [9] and is now standard.
We use methods similar to Henry [10], and therefore we are as brief
as possible.

Choose 3 > 0 and K so that || y — x\\a < δ implies ye D(F) and
H-FVII ^ K. Using the Cauchy integral formula, one has

(3.6) \\Fyι^Fyt\\^AKδ"\\yι-y1\\af

if || ?/; — x \\a ^ δ/2, i = 1, 2. Let Sr be the set of all analytic functions
u: Wr ~> Xa such that || u(t) - x \\a ^ δ/2, t e Wr and || u{t) - x \\a -> 0
as ί^>0. Sr is a complete metric space if we define d(u, v) =
sup x {|| u(t) - v(t) | |β: t e T7r}, w, v e Sr.

For u e S r put

(3.7) G u ( t ) = U(t)x + Γ U ( ί - s ) F u ( s ) d s , t e W r f
Jo

where the integral is taken over the line segment {s = λί, 0 ^ λ ^ 1}
joining 0 to t. We shall show G is a strict contraction from Sr into
Sr if r is chosen small enough.

First consider the integral on the right of (3.7); we denote its

value by v(t). Putting s = Xt, 0 <̂  λ <; 1, we get ^(ί) = 11 ^(ί, λ)ώλ

where g(t, λ) = C7(ί ~ ίλ)/(ίλ), where /(ί) = 1^(4). Using°(3.3) one
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sees that there is a constant C such that \\g(t, λ) | | β <: C\t\~a(l — X)~a,
t G Wr9 0 < λ < 1. Thus the integral in (3.7) is absolutely convergent
i n X α a n d \\v(t)\\a^ d | ί Γ", te Wr. In particular, ||i;(ί)IL—0 as ί->0,
and we can make ||t;(ί)IL ^5/4, t e TFr, by choosing r sufficiently small.

Since || U(t)x - x\\a = \\ U(t)Tax - Tax || approaches 0 as ί--*0,
we can make || U(t)x — x\\a < 5/4 by making r small. If a e l ^ for
some Ί > a, then the size of r necessary to make || U(t)x — x \\a < 5/4
is determined by | | # | ] r . This is because (3.4) implies

|| U(t)x - x \\a ^ c o n s t . I ί Γ * || Tr~aTax \\ £ c o n s t . 11 \r~a \\ x \\r .

Combining these results, one has || Gu(t) — x \\a —>0 as t—>0, and
|| Gu(ί) ~ a; | |β ^ 5/2, ί e Wr for r small.

Since U(t)x is analytic in ί, it remains to show the integral v(t)
is analytic in t with values in Xa. For fixed λ e (0, 1), g(t, λ) is an
analytic function of t with values in Xa and

, λ) = - ( 1 - λ)ΓΪ7(ί - ίλ)/(ίλ) + U(t - ίλ)/'(ίλ)λ ,

where #* — 9^/3ί. The function / is bounded by iΓ, so by the Cauchy
integral formula || fit) \\ ^ K\t I"1 esc (θ - \ arg 11). Using this and
(3.3), one sees that \\gt(t, λ ) | | β is bounded by const. (1 — λ)~α for t in
a compact subset of Wr. Thus the difference quotients || [g(t, λ) —
g(s,X)]/(t — s)\\a are similarly bounded. Using the dominated con-
vergence theorem, it follows that v: Wr-+Xa is analytic. Therefore
Gu: Wr—+Xa is analytic.

We have shown G maps Sr into Sr for r small. To show G is
a contraction, we use (3.3) and (3.6) to get

|| G u ( t ) - Gv(t) | U ^ M α ( I ί - s \-« || F % ( « ) - F u ( s ) \ \ d \ s \
Jo

^ const. 1111""" sup || u(s) — v(s) \\a ,

16 Wr, u, v e S r . By making r sufficiently small we can make G a

strict contraction. By the fixed point theorem for strict constractions

on a complete metric space, there is a unique u e Sr such that Gu — u.

In order to show u satisfies the differential equation u'(t) + Tu(t) = Fu(t)

we will use a known result (see Kato [12], Theorem 1.27, p. 491) on

solutions to inhomogeneous equations for holomorphic semigroups. In

order to apply this theorem it is necessary to make two changes of

U(Xt — s)x
Fu(s)ds. Putting s = σt, O^σ^λ, we get v(X)= V(X)x+ \ V(X~σ)f(σ)dσ

Jo

where V(X) = U(Xt) is the (holomorphic) semigroup generated by —tT9

and f(σ) = tFu(σt) is continuous on [0, r/\ 11) and analytic on (0, r/\ 11)
with values in X. Fixing r < 1, it is not hard to show ^(λ + r) =
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V(X)v(τ) + Γ V(X - p)f(p + τ)dρ, 0 ̂  λ < r/\ t | - τ. The function
JoJo

+ r) is Holder continuous on [0, r/| t \ — r) . By the above
mentioned theorem in [12], it follows that v(s)e D(T), τ < s < r/\t\,
with v'(s) + tTv(s) = f(s). Putting s = l shows u(t)eD(T) and
u'(£) + Tu(ί) = Fu(t). So far we know u: Wr—>Xa is analytic. If we
rewrite the equation as u — T~\Fu — u') it follows that u: Wr—>X1 is
analytic. The solution of u' + Tu = Fu, u(0) = x is unique because any
% satisfying the conclusions of the theorem must also satisfy Gu = u.

Suppose JP is analytic from U Π X8+a to X8, 0 <̂  s ^ w. If % is
analytic from Wr to Xs+a for such an s, then the equation u — T~\Fu — u')
shows u: Wr —> Xs+1 is analytic. Repeating this argument shows that
w: Wr-+Xn+1 is analytic.

4* Semilinear parabolic equations* In this section the results
of § 3 are applied to the mixed problem du/dt -f Lu + β(u) — 0,
(x, t)eΩ x [0, oo); %(», 0) = <p(x), xeΩ; u(x, t) = 0, (a?, ί)63i3 x [0, oo);
where L is a second order elliptic operator of the form Lu =
~ΈJZ,3 Sjlatjdtu] + Σ i 9<[«î ] + α^- Here d̂  = d/dxj and sums are from
1 to n. Ω is the closure of a bounded, open subset of Rn, and i2 has
smooth boundary dΩ. The α o , aif a are real valued functions on Ω
with α o = αy<; α^ , α, 6 Cx(i2), α 6 C(β) and there exists μ > 0 such that
Σϋ^ii ί i ί i ^ i" I ί I2> ί e/ί71, xeΩ. β is an analytic function whose
domain, D(β), is an open subset of the complex plane containing the
real axis; β maps the real line into itself; for t real, β(t) is an
increasing function of t, and /3(0) = 0.

Equations of this type have been studied by Brezis, Crandall
and Pazy [3], Brezis and Strauss [4], Da Prato [7], Konishi [17],
Ouchi [22], and Brezis [2]. Our main result is that the solution of
the mixed problem above is an analytic function of t > 0; see Theorem
4.4 below. This result is similar to those of Ouchi, but he only
considers the case where β is a polynomial.

Wk>p(Ω; R) (resp. Wkp(Ω; C)) is the Sobolev space of real-valued
(resp. complex-valued) functions whose derivatives up to order k lie
in LP(Ω; R) (resp. LP(Ω; C)). We write Wk>p{Ω) if it is clear from the
context whether R or C is intended. The norm in Wk>p(Ω) (resp. LP{Ω))
is denoted by || \\kiV (resp. || \\p). Wί>p(Ω) is the closure of d(Ω°)
in the space Wkp(Ω). Here Ω° is the interior of Ω. If u is a function,
then β(u) = β o u is the composition of β and u.

For 1 < v < oo, let D(TP) = W2p(Ω; C) n ^ ^ ( β ) and, for p = 1,
let DίΓO = {ue WlΛ(Ω; C): LueL\Ω)}f where Lu is understood in the
sense of distributions. Let Tpu — Lu for ueD(Tp), 1^ p < °o, For
1 ^ p < oo, let D ^ ) = {u e LP(Ω; R): ue D(TP), β(u) e Lp(Ω)}f and
Apu = Γ,,u + β(tt), W
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PROPOSITION 4.1. // 1 < p < oo and keR is sufficiently large,
then X = LP(Ω, C) and T = Tp + kl satisfy (3.1) am? there exists a
constant Cp such that \\u \\2>p ^ Cp\\ Tu\\p, ue D(T). If 0 < a ^ 1 and
p~x — 2αw~1 < q~ι then Xa = D(Ta) is continuously imbedded in U(Ω)
{or C(Ω) if q = oo; q = oo corresponds to n/2p < a :g 1).

Lei DOF) ={ue Xα: w(α )G D(β), xeΩ} and Fu = ku-β{u), ue D(F).
If n/2p < a < 1 ίλβw Z?(F) c C(β) and β{u) e C{Ω) for each u e D(F).
Furthermore X, T, oc and F satisfy the hypotheses of Theorem 3.1.
Let R > 0 and A be a compact subset of D(β) and U — {ue
W2>P(Ω; C): \\ u \\2>p < R; u{x) eA,xeΩ}. Then U also satisfies the
hypotheses of Theorem 3.1.

Proof. The assertions in the first sentence are well known, see
Sobolevskii [23, p. 54] and Friedman [8, p. 101]. If p~ι - 2an~ι < q'1

then it follows from Friedman [8, Theorems 10.1, 11.1] that W2Ί>{Ω)a
L\Ω) (or W2p(Ω) c C(Ω) if q = oo) and there is μ < a and C such
t h a t WuW^CWuWl.WuW'-^ue W2'P(Ω). Thus \\u\\q£ C\\ Tu\\μ

9\\u\\p-
μ,

ueD(T). Thus I α cL ? ( f l ) follows from (3.2).
Now let n/2p <a<l. The fact that D(F) c C(Ω) follows from

the first part of the proposition, and β(u) e C(Ω), u e D(F) follows
from the fact that β is continuous. To show that D(F) is open in
Xa, let ueD(F). Then u(Ω) = {u(x):xeΩ} is compact and contained
in D(β) which is open. Thus, the distance, δ, from u(Ω) to C\D(β)
is greater than 0. It follows that v(x)eD(β) if || v — %||«, < δ.
Since X α c C(Ω) one has \\v — uW^ < δ if the Xa norm of v — u is
sufficiently small. Thus D(F) is open in Xa.

To show F: D(F)-+X is analytic, it sufficies to show || F(u + h) —
F(u)-(kh-β'(u)h)\\p^e(h)\\Tah\\ where ε(h)-+0 as | | Γ β A | | - > 0 .
In view of the imbeddings I α c C ( f l ) c I , it suffices to show || β(u + h)~
β(u) - β'(u)h |U ^ ε W II λ II- where e(h) —> 0 as | |Λ|U — 0 . By writing
β(V + f) ~ β(V) a s t h e integral of β', one can show | β(η + ί) — /3(>/) —
j8'0?)£| ^ ε ( | f | ) | f I, yeu(Ω), where e ( | ί | ) - > 0 as | ί | — 0 and e(|£|) is
independent of ηeu(Ω). Replacing η by u(x) and ξ by &(#) and
taking the supremum over Ω, one obtains the desired result.

Note that U is a bounded subset of D(T) = X^ Since A a D(β)
is compact, there exists ^ > 0 such that A1 = {z + ζ:ze A, \ ζ | ^ p}cD(/9).
Using an argument similar to the proof that D{F) is open in Xaf one
can find a δ > 0 such that if u e U and the Xa norm of v — u is less
than δ then t (α) e 4 » 6 β, and hence, v e D(F). One has \\Fv\\ <: K
since /9 is bounded on At.

PROPOSITION 4.2. IfkeRis sufficiently large, then
exists and is a contraction in the norm of LP(Ω) and the range of
I + X(AP + k) is LP(Ω; R) for 1 ^ p< oo, λ > 0. Furthermore



434 T. L. HAYDEN AND F. J. MASSEY, III

II β(u) ||, £ || (Ap + k)u\\p, || (Tp + k)u|| ^ 2 || (A, + k)u\\p, ue D(AP). If
Ύ: R—+R is increasing and continuous with 7(0) = 0, p~ι + q~ι = 1,
u e D(TP) Π LP(Ω; R) and Ύ(u) e Lq(Ω) then [ (Tpu + ku)Ύ(u)dx ̂  0.

Proof. Most of the assertions follow from the results of Brezis
and Strauss [4], so we are quite brief and only indicate how to apply
their results. Let k be such that a(x) + k ̂  0 and a(x) + Σ i d^x) +
k ^ 0, x 6 Ω. Then the operator L + k satisfies the hypotheses of
Theorem 8 of [4]. Thus 2\ + k (when restricted to D{TX) Π !/(£; #))
satisfies Proposition 7 of [4], and Lemma 3* of [4] can be applied
to (I + X(T, + k))-\ It follows that the range of I + λ(Λ + k) is
1/(42; /?), (/ + X(AL + &))"1 exists and it is a contraction with respect
to any norm || \\Pfl^p<°°. In particular, (I + X(A1 + A;))"1 maps
LP(Ω; R) into D(A^) Π LP(Ω). Since Ax is an extension of Ap, (I +
X(AP + A:))"1 exists and is a contraction in the norm || ||p, 1 ̂  p < oo.
We still need to show that the range of / + X(AP + k) is LP(Ω). Note
that the linear operator X(T1 + k) and the monotone function u—>
u + λ/9(u) satisfy the hypotheses of Theorem 1 of [4]. Let / e LP(Ω; R)
and u = (I + λ(Ax + k))~ιf. As noted above Lemma 3* of [4] implies
u 6 LP(Ω) Π -D(A0, and Proposition 4 of [4] implies w + Xβ(u) e LP(Ω),
and, hence, β(u) and T ^ belong to LP(Ω). Using regularity theorems
[1] for linear elliptic operators we conclude ^ e W2tP(Ω), and, hence,
ueD(Ap). Thus, the range of / + X(AP + k) is LP{Ω).

To prove the last part of the proposition, note that ϊ\ + k satisfies
the hypotheses of Theorem 1 of [4]. Let u e D(AP) and / = (Ap + k)u.
By Proposition 4 of [4] we have || β(u) \\p ̂  || (Ap + k)u \\p and, hence,
[[(Γp + k)u\\p ^ 2[[(Ap + k)u\\p. Using Lemma 2 of [4] we get

ί ( ϊ 7 ^ + ku)Ί{u)dx ^ 0 .
}Ω

PROPOSITION 4.3. Let k be such that Propositions 4.1 and 4.2 are
true.

( 1 ) If φ e L\Ω) R) then lim(%_oo)(J + (t/njA^φ = u(t) = S(t)φ
exists in U{Ω) for all t ^ 0. If φe LP(Ω; R) for some p,l^P < °°,
then this limit exists in LP(Ω), u: [0, oo)—*LP(Ω) is continuous and
S(t): LP(Ω) —• LP(Ω) is Lipschitz with constant ekt. In particular,
\\u(t)\\,£ek*\\φ\\p.

( 2 ) ί / l < ί ) < o o andφeD(AP) then u(t)e D(Ap),t^0,u: [0, oo) —
LP(Ω) is absolutely continuous, the right derivative, Dru(t) exists and
is equal to —Apu(t) for all t^0, and \\ Apu(t) \\p <; ekt || Apφ \\p.

( 3 ) // n/2p < a < 1 α^ώ w(ί0) e ̂ ((Γp + Λ)α) n ivp(β; Λ) /or some
ί0 ^ 0, ίfee^ 6̂: (ί0, oo)~> TF2'^^) Π TΓ0

1>p(ί2) is analytic.

Proof. The first part of Proposition 4.2 says that Ap + kl is
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m-accretive as defined by Kato [14, p. 138]. The assertions in part
(1) are a direct application of the results of Crandall and Liggett
[5, Theorem 1]. The fact that /9(0) = 0 implies A^r = 0 for ψ = 0.
Thus S(t)ψ = 0 if ψ = 0. This fact combined with the fact that
S(t) has Lipschitz constant ekt proves ||u(ί)llj> ^ ekt ll^iU

If 1 < p < oo then LP(Ω) and its dual are uniformly convex and,
if <peD(Ap), the results of Kato [14, Theorems 7.1, 7.5 and first line
of last paragraph of p. 147] imply u has the properties in (2). (Note
that the solution constructed by Kato in [14, Theorem 7.1, 7.5] coincides
with u(t) by virtue of [5, Theorem 2].)

To prove (3), let n/2p < a < 1 and u(tQ) e D((TP + k)a) Π LP(Ω; R).
By Proposition 4.1 and Theorem 3.1 there exists r > 0 and a con-
tinuous function v: [tQ, t0 + r)->Lp(Ω) such that v: (t0, t0 + r ) - * W2p(Ω)
is analytic, vt + (Tp + k)v = kv — β{v), ί0 <t <t0 + r, and ^(ί0) = w(£0).
Since i; satisfies Definition 2.2 of [5] for being a strong solution of
vt + Apv = 0, v(t0) = ^(ί0), it follows from Theorem 2 of [5] that
v = u on [t0, t0 + r). In particular, u(t) e D(AP) for t0 < t < t0 + r.
By part (2), u(t)eD(Ap), tQ < t < oo, and \\Apu(t)\\p is bounded for £
in any interval of the form tx^t <. t2 where ί0 < ίi < ί2 < °° By
Propositions 4.1 and 4.2, || Tpu(t) | |p, || u(t) \\2tP and ||w(ί)||oβ are also
bounded for tt ^ t ^ t2. Therefore Δ — {u(t)(x): xe Ω, tt ^t ^t2} is a
bounded subset of R. Again using Proposition 4.1 and Theorem 3.1,
one sees that there exists r > 0 such that for any t3 e [tlf t2] there is
a continuous function v: [ί3, ί8 + r)-+Lp(Ω) such that v: (ί3, ίs + r) —>
T^2'p(i2) is analytic vt + A^(έ) = 0, ί8 < ί < ί8 + r, and v(ί8) = u(ts).
As above, it follows from Theorem 2 of [5] that w = v on [tZj ί8 + r) .
Since r is independent of £3e [ίx, ί2], it follows that u: {tly t2)-^W2>p(Ω)
is analytic. Since tl9 t2 are arbitrary, it follows that u: (t0, oo)—>W2>p(Ω)
is analytic.

THEOREM 4.4. Let φe W2p(Ω; R) n Wo

ι'p(Ω) and β(φ)eLp(Ω), i.e.
φe D(AP), for some p, 1 < p < oo. T%eτ£ ίAβrβ βa iβίs α differentiate
function u: [0, oo)->L^(β; iJ) such that u: (0, oo)-> W2'g(Ω; R)n Wi>q(Ω)
is analytic for all q,l<^q< oo 9 ut + Lu + /3(^) = 0, 0 <: ί < oo, and
u(0) = φ. In fact u(t) — S(t)φ is constructed from φ by Proposition
4.3.

The proof of this theorem uses the a priori inequality in the
following lemma. The authors wish to thank Professor H. Brezis
for many helpful suggestions regarding this inequality.

LEMMA 4.5. Let k be such that Propositions 4.1 and 4.2 are true.
Let 1 < p <; q < o o , 0 ^ α < l — q~\ 0 < ε < r. Then there is an
increasing function I: (0, oo)—*(0, oo) such that if φe W2>r(Ω: R) Π
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W\>r{Ω) = D(Tr) = D{Ar) for some r^q,r>n/2 then || (Tg + k)«u{t) \\g ^
i(|| A9φ \\p + \\φ ||p), ε <* t ^ r, where u(t) = £(£)<£> is obtained from φ
by Proposition 4.3.

Proof of Lemma 4.5. It follows from Proposition 4.3 that
w:(0, oo)~>I72'r(β)n ^ ( i ? ) is analytic, u: [0, oo) —2/(β) is differ-
entiable, | |il rw(ί)|| r is bounded for t lying in any bounded interval
and ut + (Tr + &)w = ku — β(u) holds for all ί ^ 0. From Propo-
sition 4.1 and 4.2 it follows that || β(u(t))\\r, || Γrw(ί)||r and | |u(ί)| |2, r,
are bounded for £ lying in any bounded interval. According to
Proposition 4.1, the map u~+β(u) is analytic from (an open subset
of) W2r(Ω; C) to Lr(Ω). Thus t-+β(u(t)) is an analytic function from
(0, oo) to Lr(Ω) and bounded for t lying in any bounded interval.

For 1 < p <; r we may apply inequality (3.5) with X = LP(Ω) and
T = T, + k to obtain

|| (Γ , + k N t ) | | , ^ C [ | | u(σ) \\p + ( j | || ku - /3(u) ||f

a + £/2 ^ ί ^ r, 0 ^ j« < 1 ~ jO"1. Using Minkowski's inequality on
the integral and estimating |[w(ί)IU ίn terms of 11 (̂̂ )11^ (by Propo-
sition 4.3) one obtains

(4.1) || ( Γ , + kYu{t) \\P £ c [ | | u(σ) \\p

σ + ε/2^t^τ9θ^μ<l — ρ~ι. Applying Proposition 4.1 to the left
side, one obtains

(4.2) || u{t) II. ^ c [ | | u(σ) \\p + ( ^ || β(u)

σ + ε/2 ^ ί ^ τ, p~ι ^ s"1 > ρ~ι - 2μn~ι > p'1 - 2^~1(1 - p"1). This is
equivalent to p^s <ρ[l- 2n~\ρ - I)]" 1 if 1 - 2n~\ρ - 1) ^ 0, and
to p <>s<.oo if 1 — 2?2Γ1(lo - 1) < 0.

We now show that there is an increasing function I: (0, oo)—•((), oo)

such that

(4.3) || u(t) \\q + Γ || β(u) ||? dt £ l(\\ u(σ) \\p + [ || β(u) | | ; rfί),

σ + ε ^ ί ^ τ. Let 7(f) = | β(ξ) Γ"2/3(f), f e Λ. Multiplying the equa-

tion β(u) = —ut — (Tq + k)u + ku by 7(u), integrating over β, and

using Proposition 4.2 kuΊ{u) ^ C\u\q + 2~1\β(u) \q, one obtains

Ili8(w)||ί ^ -2(^t7(^)c?α; + C||w||J, 0 ^ ί <oo. Let ζ:R~+R be smooth,

0 ^ ζ ^ 1, ζ = 0 on ( - oo, a + ε/2], and ζ = 1 on [σ + ε, oo). Multiply-

ing the above inequality by ζ and integrating from a to r, one obtains
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σ+e/2
(4.4) Γ \\β(u)\\<dt^-2[ζ(t)[utΎ(u)dxdt +

Jσ+ε Jσ J

Let Γ(η) = \ηΎ(ξ)dξ, ηeR. Then Γ = 7, Γ(0) = 0, Γ ^ 0. Since Γ
is convex, we° have Γ(0) - Γ{rj) ^ 7(y?)(0 - rj) i.e. Γirj) <: T(τ?)̂ . Using
the same argument that was used in the proof of Proposition 4.1,
one can show that the map G:u—+ Γ(u) is Frechet diίferentiable from
W2'r(Ω; R) to Lr(Ω), and its differential is given by DG(u)v = Ύ(u)v.
Therefore the map t-+Γ(u(t)) is differentiable from (0, oo) to Lr(Ω)

and its derivative is Ύ(u(t))ut(t). Thus I Ύ(u)utdx = (d/dt) I Γ(u)dx.

If we integrate the first term on the right of (4.4) by parts, we get

Γ ζ'(t) [ Γ(u)dxdt - [ Γ(u(τ))dx (since ζ(τ) = 1, ζ(σ) = 0). Using the

fact that Γ ^ 0 and Γ(rj) ^ | β(η) \g~2β(y)y, one sees that the preceding

integrals are dominated by C \ \ \ β (u) I9"11 u \ dxdt. Applying

Holders inequality, one sees that this integral is dominated by

C Γ II β(w) HΓ-υα I w ||6 dt, where a'1 + b'1 = 1. Using xy ^ α"V +
Jσ+ε/2 ΓT

b~ιyh, one sees that this is dominated by C\ || β(u) \\[g

qz{]a

a dt +

S r Jσ+e/2

\\u\\\dt. Let p be fixed and choose b so that (4.2) holds with
σ+ε/2

p replaced by p, i.e. 0 <^ p"1 — b'1 < minfin'Xl — p"1), p'1}. Then
choose q so that (q — l)α — p, i.e. g = ί>(l + p'1 — 6"1)- This implies
p <: g < min {p + 1, p + 2n~ι{p — 1)}. Then the integrals above are
dominated by l(\\u(σ)\\p + Γ || β(u)\\*dt) where ί: (0, oo)^(0, oo) is
increasing. Putting this together with (4.4) gives
(4.5) Γ \ \ β ( u ) \ \ l d t £ l ( \ \ φ ) \ \ p + [ \ \ β ( u ) \ \ ' d t ) + c[ \\u\\<dt.

Jσ+ε jσ Jσ+e/2

We restrict q so that (4.2) holds with s replaced by q and p replaced
by p. Then the second term on the right of (4.5) can be estimated
by the first term and we obtain the desired inequality (4.3) for
p <; q < min {p + 1, p + 2n~\p — 1), p[l + 2n~\p — I)]'1}. However,
we may now proceed to argue inductively on p and q to obtain
(4.3) for all p, q, 1 < p ^ q < ©o.

To finish the proof of the lemma, note that Proposition 4.3 implies
| | (Ap + k)u(t) \\p ^ C ( | | Apφ \\p + || φ \\p), O ^ t ^ τ . Combining this with
P r o p o s i t i o n 4.2, one o b t a i n s | | φ \\p + Γ (( β(u) \\ζdt ^ l(\\ Apφ \\p + (| φ | | p ) .

JO /Γτ \1/Q

Combining this with (4.3), one obtains \\u(t)\\q + M \\β(u)\\q

qdt) ^
Z(|| Apφ \\p + II φ \\p), ε/2 ̂  t <̂  τ. Using (4.1) with p replaced by q and
μ replaced by a, one obtains the inequality in the lemma.

Proof of Theorem 4.4 Since Ω is bounded it suffices to prove
the theorem for all q sufficiently large. We choose q so large than
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n/2q < a < 1 — q~\ and then pick a so that n/2q < a < 1 - q~\ For
such q and α: we can apply Proposition 4.3 (part (3)) and Lemma 4.5.

There exists a sequence {φn} c W2\Ω] R) Π WQ

uq(Ω) such that
Φn—*Φ and Ap^—><p in LP(Ω). (For example, we can take φn —
(Ap + k + l ) " 1 ^ = (Λ + k + l)" 1 ^ n where {ψJ is a sequence in L\Ω)
with ψv —* (Ap + k + l)φ in LP(Ω) and A; is chosen so that Proposition
4.2 holds.) Let u(t) = S(ί)̂ > and %n = S{t)φn be constructed from 9?
and <£>„ by Proposition 4.3. Since the S(t) are Lipschitz maps, ujt)
converges to u(t) in LP(Ω). By Lemma 4.5, {(Γg + Jfc)X,(£)} is a
bounded sequence in L9(Ω), for fixed £ > 0. Since Lq(Ω) is reflexive,
there is a subsequence {^Wi(0} such that {unj(t)} and {(Γg + k)"uφ)}
converge weakly in Lq(Ω), say uφ)-*v and (Γg + k)aun.{t) -^ w
weakly in U{Ω). It follows that {(uφ), (Tq + kfuφ))} converges
weakly to (v, w) in Lq(Ω) x Lq(Ω). Since the graph of (Tq + k)a

is closed (and, hence weakly closed), veD((Tq + k)a). However, we
must have u(t) = v, since (u%3.(i)» Ψ*) —••W*)̂  Ψ) a n d (^%i(ί)> ^) —>(^> ψ

4)
for every test function ψ. It follows that u(t)e D((Tq + fe)α). From
part (3) of Proposition 4.3 it follows that u: (t, 00)—> W2'q(Ω) is analytic.
Since t > 0 is arbitrary, this proves the theorem.
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