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ON LEVI FACTORS OF DERIVATION ALGEBRAS
AND THE RADICAL EMBEDDING PROBLEM

FRANCIS J. FLANIGAN

Problem: given a finite-dimensional nilpotent associative
fc-algebra N, find all unital associative A>algebras A such
that rad A — N. An approach: which subalgebras of Der* N
are images of Lie homomorphisms A/N-^ΏerkNΊ Here the
author constructs N over very general fields k such that the
"Levi factor" of ΌerkN is a direct sum of orthogonal Lie
algebras o(V, b) of arbitrarily prescribed symmetric and al-
ternate bilinear spaces. In particular, if k is algebraically
closed of characteristic zero, then every direct sum of classical
simple Lie algebras An, Bn, Cn, Dn is Levi factor of some
Derfc JNΓ.

l S o m e questions* We ask initially: What are the possible

Levi factors (or semisimple semidirect summands or, more generally,
semisimple subalgebras) of the Lie algebras Der* N of all A -derivations
N—>N, where N is required to be a nilpotent associative algebra
finite dimensional over a field k (not necessarily of characteristic zero,
and possibly finite)?

This rather general question, to be sharpened below, was prompted
by a certain approach to the following radical embedding problem
posed in Marshall Hall's [4] and in our [2], [3]:

1.1. Given a nilpotent N as above, describe the set of unital
associative fc-algebras A satisfying rad A = N (together with a certain
nondegeneracy condition [2]).

The approach referred to above is this: If the scalar field k is
perfect, then each solution A to 1.1 admits a semidirect Wedderburn
decomposition A — S + N9 with S a separable semisimple subalgebra.
Since N is a Lie ideal in ALie, the usual bracketing induces a Lie
homomorphism SLie —* Derfc N witn "small" kernel (thanks to the non-
degeneracy condition). Moreover, for reasonable fields k the algebra
SLie is a direct sum of Lie ideals each of the form sl(ru k)(§)k for
various ranks r<. We conclude that a solution A to rad A = N in
(1.1) tends to force Derfc N to contain various copies of the familiar
special linear Lie algebra [3].

It was this last observation that led us ask the easily stated
but far too general "survey" question of the first paragraph above.
(Thus in characteristic p > 0, there need not be a Levi-Malcev de-
composition, and moreover the theory of semisimple Lie algebras is
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far from complete, even over algebraically closed fields.) In the
present paper, we offer answers, adequate for our purposes, to these
sharpened versions of the original question:

1.2. Is every special linear Lie subalgebra of Der*. N induced
in the above manner by embedding N in an associative A = S + JV?

1.3. Are there nilpotent N which admit orthogonal or symplectic
or other "classical" Lie algebras of derivations, apparently unrelated
to the radical embeddings of Nl

2* Results and consequences* The point of the theorems below
is the existence of nilpotent N whose derivation algebras have semi-
direct sum decompositions with certain prescribed "wild" summands.
In perticular, the answers to the questions above are: to (1.2), no
(in Theorem 2.1, obtain sl(2, k) as the orthogonal Lie algebra of the
alternate form b((Xu X2), (Yu Y2)) = X^ — X2Y1) and, to question
1.3, yes.

THEOREM 2.1. Given any field k of characteristic not 2 and
any array (Vu 60, , (Vm9 bm) of finite-dimensional nondegenerate
symmetric or alternate bilinear k-spaces, there exists a finite-
dimensional nilpotent associative k-algebra N such that

( i ) N is directly indecomposable,
(ii) the derivation algebra Derfc N is the semidirect sum A + Ω

of a Lie subalgebra A and a nilpotent ideal Ω,
(iii) Λ^o(V1,b1)® ' θo(Vm,bm),
(iv) the ideal Ω consists of nilpotent derivations.

In the above statement o( V, b) is the orthogonal Lie algebra of
the bilinear space (V9 b), that is,

o( V, 6) = {/ 6 E n d , V\ b(f(x), y ) + b(x, f{y)) = 0 , a l l x,yeV}.

Note that we do not assert that o( V, b) is always simple.

THEOREM 2.2. Let k and (Vifbt) be as in (2.1), and suppose
given integers ru •••, rn ^ 2, none divisible by the characteristic of
k. Then there exists a finite-dimensional nilpotent associative k-
algebra N such that

( i ) the derivation algebra Derfc N is the semidirect sum A + Ω
of a Lie subalgebra A and a solvable ideal Ω,

(ii) A s (0ί=Γ o( Vt, bj) 0 (0J=? sl(rh k)),
(iii) a maximal toroidal subalgebra of Ω has dimension n + 1.

COROLLARY 2.3. Let k be an algebraically closed field of charac-
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teristic zero. Given any finite direct sum Σ of classical simple special
linear, orthogonal, and symplectic Lie algebras (types An, Bn, Cnf Dn)
over k, there is a finite-dimensional nilpotent associative k-algebra
N such that the Levi factor of Derfc N is isomorphic to Σ.

We will construct these N in §§3-5. Here are some further
comments.

2.4. In the language of [3], Theorem 2.1 produces nilpotent N
of genus zero, that is, nilpotents to which one can adjoin a unity
element in the familiar way (cf. A = kΊ + N), but cannot adjoin
any more complicated semisimple S. The direct indecomposability is
essential here. These JV of genus zero are noteworthy in that their
derivation algebras are far from nilpotent. Compare Theorem 4.1
and the examples of §5 of [3].

2.5. Analogous constructions may be carried out for nilpotent
Lie algebras N. In this case one may begin with the characteris-
tically nilpotent Lie algebra of Dixmier-Lister [1] in place of the
algebra W (§3) all of whose derivations are nilpotent. A special
case of such a construction, involving one split simple three-dimen-
sional Lie algebra, was effected by Leger and Luks in [6, Proposition
6.5].

We are pleased to acknowledge a helpful correspondence with
George Leger on these questions, as well as our indebtedness to
certain ideas in §6 of [6].

3* Lemmas on nilpotent derivation algebras* Let the arbitrary
not necessarily associative fc-algebra B = Iλ φ 0 In be a direct
sum of (two-sided) ideals. We will now relate the derivation algebra
of B to those of the It. Define the subspaces

Δu = {D 6 Der* B\D{Iί) c Iif D(Ih) = 0 for h Φ i) ,

and, for i Φ j ,

Λ; = {De Όerk B\D{Ih) = D(If) = (0), hΦj; D(Iό) c Ann /J ,

where Ann/* is the two-sided annihilator of I* in It.
The following is standard. Statement (ii) is Exercise 19, page

30 of Jacobson [5].

LEMMA 3.1. Let 5 = / 1 © 0 / 1 l as above. Then
( i ) Derfc B = ®i>3 Aio as a k-space;
(ii) if each 1\ = /,-, then ΏerkB — φ* Δw an ideal direct sum;
(iii) if each I!z)AnnIif then Δd is an abelian ideal of ΌerkB



374 FRANCIS J. FLANIGAN

when ί Φ j ;
(iv) if each I2 r> Ann It and if each Δu is a nilpotent Lie algebra,

then Όerk B is a nilpotent Lie algebra;
(v) in particular, if all derivations of It are nilpotent, then

/•DAnn/f, and all derivations of B are nilpotent.

We now go on to construct nilpotent associative algebras which
admit only nilpotent derivations. Choose integers a, β Ξ> 3 with a +
β — aβ not divisible by char k. Let W be the A-algebra (without
unity) on two generators u, v satisfying the relations

uv — 0 , ua — vu = vβ .

LEMMA 3.2. The k-algebra W is finite-dimensional nilpotent
associative with Ann W e "FT2 and with all derivations nilpotent.

Proof. Only the nilpotence of D e Ώerk W needs to be checked.
Since W is nilpotent, it suffices to prove DWczW2. We have, for
a, b, c, de k,

Du = an + bv(mod W2), Dv = cu + ^(mod W2) .

Now one checks that 0 = D(uv) forces b = c = 0. Having this, one
checks that Dua = D(vu) — Dvβ forces aa — a + d — βd, whence
(cc + β — aβ)a — 0 in k. It follows that a = d = 0, so that D is
nilpotent as asserted. Done.

In one part of his thesis, James Malley pushes these matters
further by examining the structural consequences of the hypothesis
Derfc N nilpotent [7, Chapter 5].

4* Proof of Theorem 2.1. First we construct N. Define Vo =
Wι 0 © Wt, where each Wt is a copy of the algebra W of Lemma
3.2 and t = s if s = 1, 2 and ί = s — 1 if s ^ 3. (These choices will
be justified below.) The underlying &-space of N is now defined to
be Fo 0 Vί 0 0 V8, and from now on we identify Vt with the
corresponding subspace of N.

We multiply in N as follows: products in Vo are as before,
Vi Vj — (0) for i, j distinct and, for x, y in Vt with i >̂ 1, define xy ~
ΐ>i(x, y)Zi where zif •••, z8 will now be chosen. Let w3- be a nonzero
element of the (one-dimensional) Ann Wj. If s — t — 1, define z1 =
wlβ If s = t = 2, define ^ = w1 + w2 and z2 = ^ — w2. If s ^ 3,
define ^ = ^ : , , ^s_! = ws_19 and z8 = wλ + + ^ s_!. We observe
that N is nilpotent, that iV2 = (F0)

2, and that Ann N has fc-basis
Wi, • • ' , Wt.
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4.1. Now we check that N is indecomposable (assertion (i)). If
s = l, this is immediate because every nonzero ideal contains s1#

Assume in general that N is an ideal direct sum P 0 Q . On the
one hand, we have Ann N = Po Θ Qo> where Po = P Π Ann N and
likewise for Qo. On the other hand, the nondegeneracy of the bilinear
form bi implies that zt is in either Po or QQ. (In the anomalous case
8 = t = 2, one also readily verifies that each wt is in either Po or
Qo.) Having this, and noting that any t or fewer of the zt are
linearly independent, one sees that the equation t = dim Ann N =
dim Po + dim Qo forces Qo (say) to be zero, whence Q = (0). Thus
JV is indecomposable, as asserted.

Comment. Our choice of t was complicated by the possibility
that the scalar field k is finite and "small". For k infinite and s >̂
2, taking ί = 2 suffices.

Now we analyze Όeτk N. For i = 0, 1, , 8, let π^. N~+ N be
the usual projection on the subspace Vt corresponding to the decompo-
sition N= F O 0 Θ Va. In wτhat follows, we take D in Derfc N and
define Όiά = πtoDoπίf a fc-linear map (not a priori a derivation) N~>
iSΓ, so that D = Σ o ^ ,i. s A i

4.2. For 1 £ i ^ s, we prove Ao(ΛΓ2) = (0). Since iNP = (F0)
2, it

suffices to consider x, y e Vo. Then DίQ(xy) = D(xy) — Σ/*i D3o(%y).
But the left hand side here is in Vt and D(α?2/) is in Vo. Thus the
right hand side has zero projection into Vt. Thus both sides are zero.

4.3. We prove that the restriction of DQQ to VQ is a derivation
(and therefore nilpotent by (3.1) and (3.2)). For let x, y e VQ. Then
D00(xy) = D(xy) — Σ<*i Di0(xy), and the result follows from (4.2) and
the fact that V.V, = V.V, = (0) for iΦQ.

4.4. We prove that if 1 S i < j ^ s, then Dtί = D3i = 0. For
let xeVifye V5. Then

0 =

Since the ^ are pair wise linearly independent (consider our definition
for s = 2), we have b3 (D3 tx9 y) = &<(&, Ail/) = 0 B u t if DHx Φ 0, then
the nondegeneracy of bs implies there exists y in V3 such that b3(D3ix,
y) Φ 0. Thus D3i = 0, and likewise for J5<y by symmetry.

4.5. We prove that if 1 ^ i £ s, then 6 * ( A A 1/) + &<(&, Ail/) = 0
for all x, y in 7,. For consider Z?(#2/) = δ^x, y)Dzt = bt(x9 y)Dwzi9 by
(4.2). On the other hand,
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D(xy) = x(Duy) + (Dux)y = {bt(x, Duy) + bt(Dtix,

If this last coefficient is nonzero, then zi is an eigenvector for Doo

whose corresponding eigenvalue is nonzero, an impossibility by (4.3).

4.6. We prove that, for 1 ^ i ^ s, Du is a derivation of N.
For if x,yeN, then on the one hand xye(V0)

2, so that Du{xy) = 0.
On the other hand, x(Dity) + (Ditx)y = Ti^D^π.y) + (A^(^)K(?/) =
0 by (4.5). This settles (4.6).

4.7. For DeDerfc JV, we define Ώ% = D — Σisis Du, a derivation
of N by (4.6). Thus we have a vector space decomposition Der^ N =
Λ Θ Θ ^ Θ S , where Λt = {De Derfc 2V] D = Du} and fl={ΰe
Όerk N\D = D*}. It is immediate that Λt is a Lie subalgebra of

JNΓ.

4.8. Now we prove that At ~ o(Vif b%) for 1 ^ i ^ s (statement
(iii)). By (4.5) we have an embedding of Λi into o( V,, bt). To see that
this embedding is surjective, let / e o ( Vu bx) and extend / to /: N~>
N by defining f(Vj) = 0 for j Φ i. One readily checks that / is a
derivation of N, whence Λi ~ o{Vu bτ).

4.9. We give a direct proof that Ω is a Lie ideal in Derfc iV.
Let BeΩ, EeΏerkN. We will show (DE)U = (ED)U = 0 for each
i ^ 1. Now (DE)U = Σo^i^, AyJSii = Ao-EΌ* and, likewise, (-£?!))„ =
EiODOi. Since Di0(N2) = Ei0(N2) = (0) by (4.2), we are done if we can
prove that for any derivation i£ (say), EOi(N) a N2. Now note that
jV2 = (VoY z> (Ann ΛΓ: JSΓ) = {̂  e ΛΓ| uN, Nu c Ann ΛΓ}. Thus, one takes
xt e Vi9 x0 G Vo and readily checks that xoEOi(Xt) and EH(xx)x0 are in
Ann JV.

4.10. To prove statement (iv) that DeΩ is nilpotent (whence
the ideal Ω is nilpotent by EngeΓs theorem), write D = Σ έ Z>ί0 + Ao +
Σ i At with 1 ^ i ^ 8 and simplify the iterates D2, D\ by applying
these facts: Doo is nilpotent, D00 stablizes N2, Di0(N2) = (0), in par-
ticular Di0DQί = 0, and DQi(N) c i\P, as in (4.9). One readily sees
that some power of D vanishes. This completes the proof of Theorem
2.1.

5. Proof of Theorem 2.2. Define N to be P 0 Q as follows.
Use Theorem 2.1 to form a nilpotent P such that Der* P = Λp + Ωp

and Λp is a direct sum of the given algebras o{Vίy b%). The algebra
Q will be a "block strictly upper triangular" matrix algebra TQ(p, k)
which we will now discuss.
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Let p = (ru - , rm) be a vector whose entries are positive integers,
and let r = r1 + + rm. Form the usual full r by r matrix algebra
M(r, k) and imagine each matrix partitioned into rectangular blocks
of size Ti by r3- as usual, so that reading down the "block main
diagonal" one sees blocks of size r1 by rlf r2 by r2, •• , r w by rm.
The "block upper triangular" subalgebra T(p, k) of M(r, k) consists
of all matrices with only zero blocks below the block main diagonal,
while the "block strictly upper triangular" algebra T0(p, k) is the
nilpotent subalgebra of T{ρ, k) consisting of all matrices with only
zero blocks both below and on the block main diagonal. One checks
that TQ(p, k) = rad T(p, k) and that permuting the entries of the vector
p may yield nonisomorphic algebras.

The content of the following routine exercise is that all derivations
of T0(p, k) are induced by bracketing with elements from T(ρ, k).

LEMMA 5.1. There is a short exact sequence of Lie algebra
homomorphisms

0 > k-l + Ann T0(p, k) — U T(py k)hie - ^ Όeτk TQ(p, k) > 0 ,

where c — inclusion and (dc)c0 = [c, c0].

We note some consequences for the derivations of TQ(p, k). It is
immediate that T(ρ, &)Lie = (φ* M(ri9 k)hie) + T0(ρ, k)hiQ, a semidirect
sum. Moreover, if the characteristic of k does not divide rif then
each M(rif k)Lie = sl(rif k) 0 ket where β, is the identity of M(rif k),
sl{ru k) consists of those matrices of trace zero, and this sum is Lie
direct. Applying Lemma 5.1 we conclude, under the hypothesis on
the characteristic of k, that the solvable radical of Όerk TQ(p, k) is
itself a semidirect sum of the toroidal subalgebra Σ* ^^ with the
nilpotent ideal δT0(ρ, k)hlβ. Note too that Σ * Ή = SW = 0.

Having this general analysis of TQ(p, k), we may complete the
proof of Theorem 2.2. Given rl9 " , r Λ , in the statement, we define
p = (rl9 •• ,[rw, 1, 1) and Q = T0(ρ, k). Note that Q 2=)AnnQ. It
follows from the first paragraph of this section and from Lemma
3.1 that Ώerk N = Όerk (P®Q) = Όerk P 0 Der* Q φ ^ e θ ΔQP as a
vector space, with Δpq and AQP abelian ideals consisting of nilpotent
derivations as in (3.1). Note [APQ, AQP\ — (0).

From Theorem 2.1, Derfc P = ΛP + ΩP with ΛP a direct sum of
specified oiVfii) and ΩP an ideal of nilpotent derivations. Likewise,
from Lemma 5.1, Ώerk Q = ΛQ + ΩQ where ΛQ is a direct sum of
specified sl(ru k) and ΩQ = (ΣJZl+2 kδe,) + δT0(p, k). Note that the
toroidal algebra spanned by the δet has dimension n + 1 (cf. statement
(iii)). Theorem 2.2 follows by putting A = ΛP 0 ΛQ (cf. statement
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(ii)) and Ω = ΩP + ΩQ + ΔPQ + Λρ p.
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