SUBHARMONICITY AND HULLS

JOHN WERMER

For X a compact set in C^2 , h(X) denotes the polynomially convex hull of X. We are concerned with the existence of analytic varieties in $h(X) \setminus X$. X is called "invariant" if (z, w)in X implies $(e^{i\theta}z, e^{-i\theta}w)$ is in X, for all real θ . X is called an "invariant disk" if there is a continuous complex-valued function a defined on $0 \le r \le 1$ with a(0) = a(1) = 0, such that X = $\{(z, w) \mid |z| \leq 1, w = a(|z|)/z\}$. Let X be an invariant set and put f(z, w) = zw. Let Ω be an open disk in $C \setminus f(X)$ and put $f^{-1}(\Omega) = \{(z, w) \text{ in } h(X) \mid zw \in \Omega\}$. In Theorem 2 we show that if $f^{-1}(\Omega)$ is not empty, then $f^{-1}(\Omega)$ contains an analytic variety. Let now X be an invariant disk, with certain hypotheses on the function a. Then we show in Theorem 3 that $f^{-1}(\Omega)$ is the union of a one-parameter family of analytic varieties. A key tool in the proofs is a general subharmonicity property of certain functions associated to a uniform algebra. This property is given in Theorem 1.

1. Let X be a compact Hausdorff space, let A be a uniform algebra on X and let M be the maximal ideal space of A.

Fix $f \in A$. For each $\zeta \in \mathbb{C}$ put $f^{-1}(\zeta) = \{p \in M \mid f(p) = \zeta\}$ and for each subset Ω of \mathbb{C} , put $f^{-1}(\Omega) = \{p \in M \mid f(p) \in \Omega\}$. Consider an open subset Ω of $\mathbb{C} \setminus f(X)$. Supposing $f^{-1}(\Omega)$ to be nonempty, what can be said about the structure of $f^{-1}(\Omega)$? Work of Bishop [2] and Basener [1] yields that if $f^{-1}(\zeta)$ is at most countable for each $\zeta \in \Omega$, then $f^{-1}(\Omega)$ contains analytic disks. On the other hand, Cole [4] has given an example where no analytic disk is contained in $f^{-1}(\Omega)$. In §2 we prove.

THEOREM 1. Let Ω be an open subset of $\mathbb{C} \setminus f(X)$. Choose $g \in A$. Define $Z(\zeta) = \sup_{f^{-1}(\zeta)} |g|, \zeta \in \Omega$. Then $\log Z$ is subharmonic in Ω .

This theorem is proved by a method of Oka in [5].

In §3 we apply Theorem 1 to the following situation: X is a compact set in \mathbb{C}^2 , A is the uniform closure on X of polynomials in z and w. Here M = h(X), the polynomially convex hull of X. We assume that X is invariant under the map T_{θ} :

$$(z, w) \rightarrow (e^{i\theta} z, e^{-i\theta} w)$$
 for $0 \le \theta < 2\pi$.

Put f = zw. Let Ω be an open disk contained in $\mathbb{C} \setminus f(X)$ with $0 \notin \Omega$. Here $f^{-1}(\Omega) = \{(z, w) \in h(X) \mid zw \in \Omega\}$.

THEOREM 2. If $f^{-1}(\Omega)$ is not empty, then $f^{-1}(\Omega)$ contains an analytic disk.

In §4, we consider the case when X is a disk in \mathbb{C}^2 , defined:

$$X = \left\{ (z, w) \mid |z| \le 1, \ w = \frac{a(|z|)}{z} \right\},\$$

where a is a continuous complex valued function defined on $0 \le r \le 1$, with a(r) = o(r).

X is evidently invariant under T_{θ} for all θ . In Theorem 3 we give an explicit description of h(x) for a certain class of such disks X.

2. Proof of Theorem 1. (Cf. [5], §2.) Fix $\zeta_0 \in \Omega$ and let $\zeta_n \to \zeta_0$. Assume $Z(\zeta_n) \to t$. We claim $Z(\zeta_0) \ge t$. For choose p_n in $f^{-1}(\zeta_n)$ with $|g(p_n)| = Z(\zeta_n)$. Let p be an accumulation point of $\{p_n\}$. Then $|g(p)| \ge t$, whence $Z(\zeta_0) \ge t$, as claimed. Thus Z is uppersemicontinuous at ζ_0 , and so Z is upper-semicontinuous in Ω .

Theorem 1.6.3 of [6] gives that an upper-semicontinuous function u in Ω is subharmonic provided for each closed disk $D \subset \Omega$ and each polynomial P we have

(1)
$$u \leq \operatorname{Re} P$$
 on ∂D implies $u \leq \operatorname{Re} P$ on D .

Fix a closed disk D contained in Ω and let \mathring{D} be its interior. Choose a polynomial P such that $\log Z \leq \operatorname{Re} P$ on ∂D . Then

$$Z(\zeta) |\exp(-P(\zeta))| \leq 1$$
 on ∂D .

Hence for each ζ in ∂D , if x is in $f^{-1}(\zeta)$, then

(2)
$$|g(x)| \cdot |\exp(-P(f))(x)| \leq 1$$
, or
 $|g \cdot \exp(-P(f))| \leq 1$ at x .

Now $g \cdot \exp(-P(f))$ is in A. Put $N = f^{-1}(\mathring{D})$. The boundary of N is contained in $f^{-1}(\partial D)$. Hence by the Local Maximum Modulus Principle for uniform algebras, for each y in N we can find x in $f^{-1}(\partial D)$ with

$$\left|g \exp(-P(f))(y)\right| \leq \left|g \cdot \exp(-P(f))(x)\right|,$$

284

whence by (2) we have

$$|g \cdot \exp(-P(f))(y)| \leq 1.$$

Fix ζ_0 in D. Choose y in $f^{-1}(\zeta_0)$ with $|g(y)| = Z(\zeta_0)$. Applying (3) to this y, we get

(4)
$$Z(\zeta_0) |\exp(-P(\zeta_0))| \leq 1.$$

Hence $\log Z(\zeta_0) \leq \operatorname{Re} P(\zeta_0)$. So (1) is satisfied, and so $\log Z$ is subharmonic in Ω , as desired.

3. Proof of Theorem 2. Since X is invariant under the maps T_{θ} , h(X) is invariant under each T_{θ} . Fix $\zeta \in \Omega$. There are two possibilities:

(a) |z| is constant on $f^{-1}(\zeta)$.

(b)
$$\exists r_1, r_2 \text{ with } 0 < r_1 < r_2 \text{ and } \exists$$

$$(z_1, w_1), (z_2, w_2) \in f^{-1}(\zeta)$$
 with $|z_1| = r_1, |z_2| = r_2.$

Suppose (b) occurs. Then the circles: $z = r_1 e^{i\theta}$, $w = \zeta/r_1 e^{i\theta}$, $0 \le \theta \le 2\pi$ and $z = r_2 e^{i\theta}$, $w = \zeta/r_2 e^{i\theta}$, $0 \le \theta \le 2\pi$ both lie in h(X). Hence the analytic annulus: $r_1 < |z| < r_2$, $w = \zeta/z$ lies in $f^{-1}(\zeta)$. Thus if (b) occurs at any point ζ in Ω , $f^{-1}(\Omega)$ does contain an analytic disk. Hence to prove the Theorem, we may assume that (a) holds for each $\zeta \in \Omega$. Define, for $\zeta \in \Omega$, $Z(\zeta) = \sup_{f^{-1}(\zeta)} |z|$, $W(\zeta) = \sup_{f^{-1}(\zeta)} |w|$. Fix $(z_0, w_0) \in f^{-1}(\zeta)$. Since we have case (a), $Z(\zeta) = |z_0|$. Hence $W(\zeta) = |w_0|$ and so $Z(\zeta)W(\zeta) = |\zeta|$, whence

$$\log Z(\zeta) + \log W(\zeta) = \log |\zeta|.$$

Since log Z and log W are subharmonic in Ω while log $|\zeta|$ is harmonic, log Z, log W are in fact harmonic in Ω . Put $U = \log Z$ and let V be the harmonic conjugate of U in Ω . Put $\phi(\zeta) = e^{U+iV}(\zeta)$. Then ϕ is analytic in Ω and $|\phi| = Z$ in Ω .

Assertion. The variety $z = \phi(\zeta)$, $w = \zeta/\phi(\zeta)$, $\zeta \in \Omega$, is contained in h(X).

Fix $\zeta \in \Omega$. Choose $(z_1, w_1) \in f^{-1}(\zeta)$. Then $Z(\zeta) = |z_1|$, so $|\phi(\zeta)| = |z_1|$, i.e., \exists real α with $z_1 = \phi(\zeta)e^{i\alpha}$. Then $w_1 = \zeta/\phi(\zeta)e^{i\alpha}$. But $(e^{-i\alpha}z_1, e^{i\alpha}w_1) \in h(X)$. Hence $(\phi(\zeta), \zeta/\phi(\zeta) \in h(X)$. The Assertion is proved, and Theorem 2 follows.

Note. Questions related to the result just proved are studied by J. E. Björk in [3].

JOHN WERMER

4. Invariant disks in C^2 . Let P be a polynomial with complex coefficients, $P(t) = \sum_{n=1}^{N} c_n t^n$, which is one-one on the unit interval with endpoints identified, i.e., we assume that P(1) = P(0) = 0 and $P(t_1) \neq P(t_2)$ if $0 \leq t_1 < t_2 < 1$. Also assume $P'(t) \neq 0$ for $0 \leq t \leq 1$. Then the curve β given parametrically: $\zeta = P(t), 0 \leq t \leq 1$, is a simple closed analytic curve in the ζ -plane whose only singularity is a double-point at the origin. Denote by θ the angle between the two arcs of β meeting at 0. Assume $\theta < \pi$. Define $a(r) = P(r^2)$, i.e.,

(5)
$$a(r) = \sum_{n=1}^{N} c_n r^{2n}.$$

Let X be the disk in C^2 defined

(6)
$$X = \left\{ \left(z, \frac{a(|z|)}{z} \right) \mid |z| \leq 1 \right\}.$$

The function f = zw maps X on β . Denote by Ω the interior of β .

THEOREM 3. \exists function ϕ analytic in Ω such that h(X) is the union of X and $\{(z,0) \mid |z| \leq 1\}$ and

$$\{(z,w) \mid zw \in \Omega \quad and \quad |z| = |\phi(zw)|\}.$$

COROLLARY. Every point of $h(X) \setminus X$ lies on some analytic disk contained in h(X).

NOTATION. $A(\Omega)$ denotes the class of functions F defined and continuous in $\overline{\Omega}$ and analytic in Ω .

 \mathfrak{A} denotes the algebra of functions on $|z| \leq 1$ which are uniformly approximable by polynomials in z and a(|z|)/z.

LEMMA 1. Let $G \in C[0, 1]$. If $G(|z|) \in \mathfrak{A}$, then $\exists F \in A(\Omega)$ such that G(r) = F(a(r)) for $0 \leq r \leq 1$.

Proof. Let g be a polynomial in z and a(|z|)/z. Calculation gives that there is a polynomial \tilde{g} in one variable with

$$\frac{1}{2\pi}\int_0^{2\pi}g(re^{i\theta})d\theta=\tilde{g}(a(r)), \quad 0\leq r\leq 1.$$

Choose a sequence $\{g_n\}$ of polynomials in z and a(|z|)/z approaching

G(|z|) uniformly on $|z| \leq 1$. Then $\tilde{g}_n(a(r)) \rightarrow G(r)$ uniformly on $0 \leq r \leq 1$. Hence $\exists F \in A(\Omega)$ with $\tilde{g}_n \rightarrow F$ uniformly on β , so G(r) = F(a(r)).

LEMMA 2. If f = zw, then $f^{-1}(\Omega)$ is not empty.

Proof. Fix $\zeta_0 \in \Omega$. If $f^{-1}(\Omega)$ is empty, then $f - \zeta_0 \neq 0$ on h(X) and so $(zw - \zeta_0)^{-1}$ lies in the closure of the polynomials in z and w on X. Then $(a(|z|) - \zeta_0)^{-1} \in \mathfrak{A}$. By Lemma 1, $\exists F \in A(\Omega)$ with $F(a(r)) = (a(r) - \zeta_0)^{-1}$. Then $(\zeta - \zeta_0)^{-1} \in A(\Omega)$, which is false. So $f^{-1}(\Omega)$ is not empty.

LEMMA 3. Fix $\zeta \in \beta \setminus \{0\}$. Let (z_0, w_0) be a point in h(X) with $z_0w_0 = \zeta$. Then $(z_0, w_0) \in X$.

Proof. Assume $(z_0, w_0) \notin X$. Let r be the point in (0, 1) with $a(r) = \zeta$. Put, for each $r, \gamma_r = \{(re^{i\theta}, (a(r)/re^{i\theta})) | 0 \leq \theta < 2\pi\}$. Then γ_r is a polynomially convex circle contained in X. Hence \exists polynomial P with $|P(z_0, w_0)| > 2$, |P| < 1 on γ_r . Choose a neighborhood N of γ_r on X where |P| < 1. The image of $X \setminus N$ under the map $(z, w) \rightarrow zw$ is a closed subarc β_1 of β which excludes ζ . Choose $F \in A(\Omega)$ with $F(\zeta) = 1$, |F| < 1 on $\beta \setminus \{\zeta\}$. Then $\exists \delta > 0$ such that $|F| < 1 - \delta$ on β_1 . Hence $|F(zw)| < 1 - \delta$ on $X \setminus N$. Also $|F(zw)| \leq 1$ on X. Fix n and put

$$Q=F(zw)^n\cdot P(z,w).$$

 $|Q(z_0, w_0)| > 2$. On $N, |Q| \le |P| < 1$. On $X \setminus N, |Q| < (1-\delta)^n \cdot \max_X |P|$, and so |Q| < 1 on $X \setminus N$ for large *n*. Then |Q| < 1 on *X*. Since *F* is a uniform limit on β of polynomials in ζ, Q is a uniform limit on $X \cup \{(z_0, w_0)\}$ of polynomials in *z* and *w*. This contradicts that $(z_0, w_0) \in h(X)$. Thus $(z_0, w_0) \in X$. We are done.

Note. Since f maps X on β and $\mathbb{C} \setminus f(X)$ is the union of the interior and exterior of β , we conclude from the last Lemma that h(X) is the union of X and $f^{-1}(\{0\})$ and $f^{-1}(\Omega)$.

We need some notation now. For each $\zeta \in \beta \setminus \{0\}$, denote by $r(\zeta)$ the unique r in (0, 1) with $a(r) = \zeta$.

Since a is a polynomial in r vanishing at 0, there is a constant d > 0 such that

(7)
$$r(\zeta) > d |\zeta|, \text{ all } \zeta \in \beta.$$

For $\zeta_0 \in \Omega$, denote by μ_{ζ_0} harmonic measure at ζ_0 relative to Ω . Since β consists of analytic arcs, with one jump-discontinuity for the tangent at $\zeta = 0$, $\mu_{\zeta_0} = K_{\zeta_0} ds$, where K_{ζ_0} is a bounded functions on β and ds is arc-length. Define

$$U(\zeta_0) = \int_{\beta} \log r(\zeta) d\mu_{\zeta_0}(\zeta).$$

Since (7) holds, this integral converges absolutely. U is a harmonic function in Ω , bounded above, and continuous at each boundary point $\zeta \in \beta \setminus \{0\}$ with boundary value log $r(\zeta)$ at ζ .

For $\zeta \in \Omega$, define

$$Z(\zeta) = \sup_{f^{-1}(\zeta)} |z|, \quad W(\zeta) = \sup_{f^{-1}(\zeta)} |w|.$$

LEMMA 4. For all $\zeta \in \Omega$, $\log Z(\zeta) \leq U(\zeta)$ and $\log W(\zeta) \leq \log |\zeta| - U(\zeta)$.

Proof. Fix $\zeta \in \beta \setminus \{0\}$, choose $\zeta_n \in \Omega$ with $\zeta_n \to \zeta$ and suppose $Z(\zeta_n) \to \lambda$. Choose $p_n \in f^{-1}(\zeta_n)$ with $Z(\zeta_n) = |z(p_n)|$. Without loss of generality, $p_n \to p$ for some point $p \in h(X)$. Then $f(p) = \zeta$. By Lemma 3, $p \in X$, i.e., $p = (\operatorname{re}^{i\theta}, (a(r)/\operatorname{re}^{i\theta}))$ for some r, θ . Also $a(r) = \zeta$ and so $r = r(\zeta)$, whence $|z(p_n)| \to r(\zeta)$ and so $\lambda = r(\zeta)$. Thus $Z(\zeta') \to r(\zeta)$ as $\zeta' \to \zeta$ from within Ω , and so $\log Z$ assumes the same boundary values as U, continuously on $\beta \setminus \{0\}$.

For each positive integer k, let $\Omega_k = \{\zeta \in \Omega \mid |\zeta| > 1/k\}$. $\partial \Omega_k$ is the union of a closed subarc β_k of $\beta \setminus \{0\}$ and an arc α_k on the circle $|\zeta| = 1/k$.

Fix $\zeta_0 \in \Omega$. For large $k, \zeta_0 \in \Omega_k$. Denote by $\mu_{\zeta_0}^{(k)}$ the harmonic measure at ζ_0 relative to Ω_k . An elementary estimate gives that there is a constant C_{ζ_0} independent of k such that

(8)
$$\mu_{\zeta_0}^{(k)}(\alpha_k) \leq C_{\zeta_0} \cdot \frac{1}{\sqrt{k}} \text{ for all } k.$$

Let S be any function subharmonic in Ω and assuming continuous boundary values, again denoted S, on $\beta \setminus \{0\}$. Assume \exists constant M with $S \leq M$ in Ω . Then for all k,

(9)
$$S(\zeta_0) \leq \int_{\beta_k} Sd\mu_{\zeta_0}^{(k)} + \int_{\alpha_k} Md\mu_{\zeta_0}^{(k)}, \text{ whence}$$
$$S(\zeta_0) \leq \int_{\beta_k} Sd\mu_{\zeta_0}^{(k)} + M \cdot C_{\zeta_0} \cdot \frac{1}{\sqrt{k}}.$$

Applying (9) with $S = \log Z$, we get

(10)
$$\log Z(\zeta_0) \leq \int_{\beta_k} U d\mu_{\zeta_0}^{(k)} + M C_{\zeta_0} \cdot \frac{1}{\sqrt{k}},$$

since as we saw earlier, $\log Z = U$ on $\beta \setminus \{0\}$. By (7), if $\zeta' \in \alpha_k$,

$$U(\zeta') = \int_{\beta} \log r(\zeta) d\mu_{\zeta'}(\zeta) > C + \int_{\beta} \log |\zeta| d\mu_{\zeta'}(\zeta),$$

where C is a constant, so

$$U(\zeta') > C + \log |\zeta'| = C + \log \frac{1}{k} . \text{ Hence}$$
$$U(\zeta_0) = \int_{\beta_k} U d\mu_{\zeta_0}^{(k)} + \int_{\alpha_k} U d\mu_{\zeta_0}^{(k)}$$
$$\geq \int_{\beta_k} U d\mu_{\zeta_0}^{(k)} + \left(C + \log \frac{1}{k}\right) \frac{C_{\zeta_0}}{\sqrt{k}}$$

Combining this with (10) and letting $k \to \infty$, we get that $\log Z(\zeta_0) \le U(\zeta_0)$, as desired. A parallel argument gives the assertion regarding W. We are done.

LEMMA 5. With Z defined as above, $\log Z(\zeta) = U(\zeta)$ for all $\zeta \in \Omega$, and $\log W(\zeta) = \log |\zeta| - U(\zeta)$.

Proof. Suppose either equality fails at some point ζ_0 . By the last Lemma, this implies that

$$\log Z(\zeta_0) + \log W(\zeta_0) < \log |\zeta_0|.$$

Fix $p \in f^{-1}(\zeta_0)$. Then $|z(p)| \leq Z(\zeta_0)$, $|w(p)| \leq W(\zeta_0)$, so

$$\log |z(p)w(p)| < \log |\zeta_0|.$$

But $z(p)w(p) = \zeta_0$, so we have a contradiction, proving the Lemma.

Proof of Theorem 3. Let V denote the harmonic conjugate of U in Ω and put $\phi = e^{U+iV}$. Fix $(z_0, w_0) \in f^{-1}(\Omega)$ and put $\zeta_0 = z_0 \cdot w_0$. Unless $|z_0| = Z(\zeta_0)$ and $|w_0| = W(\zeta_0)$, we have

$$|\zeta_0| = |z_0| |w_0| < Z(\zeta_0) W(\zeta_0) = |\zeta_0|$$

by the last Lemma. So we must have $|z_0| = Z(\zeta_0) = |\phi(\zeta_0)|$.

.

Conversely fix $\zeta_0 \in \Omega$ and let (z_0, w_0) be a point in \mathbb{C}^2 such that $z_0 \cdot w_0 = \zeta_0$ and $|z_0| = |\phi(\zeta_0)|$. Choose $(z_1, w_1) \in f^{-1}(\zeta_0)$. By the preceding $|z_1| = |\phi(\zeta_0)|$, so \exists real α with $z_0 = e^{i\alpha}z_1$, $w_0 = e^{-i\alpha}w_1$. Hence $(z_0, w_0) \in h(X)$, so $(z_0, w_0) \in f^{-1}(\Omega)$. Thus $f^{-1}(\Omega)$ consists precisely of those points (z, w) with $zw \in \Omega$ and $|z| = |\phi(zw)|$.

To finish the proof we need only identify $f^{-1}(0)$. The circle $\{(z,0) \mid |z|=1\}$ lies in X, so the disk D: $\{(z,0) \mid |z| \leq 1\}$ is contained in $f^{-1}(0)$. If $(z_0, w_0) \in f^{-1}(0)$ and does not lie in D, then $z_0 = 0, w_0 \neq 0$. The same argument as was used in proving Lemma 3 shows that then $(z_0, w_0) \notin h(X)$, contrary to assumption. So $f^{-1}(0) = D$, and the proof of Theorem 3 is finished.

REMARK. As we have just seen, $f^{-1}(\Omega)$ is the union of varieties V_{α} , $0 \leq \alpha < 2\pi$, where V_{α} is defined:

$$z = e^{i\alpha}\phi(\zeta), \quad w = e^{-i\alpha}\frac{\zeta}{\phi(\zeta)}, \quad \zeta \in \Omega.$$

What does the boundary of such a variety V_{α} in h(X) look like? It splits into two sets:

$$S = \{(z, w) \in \partial V_{\alpha} \mid zw \in \beta \setminus \{0\}\} \text{ and}$$
$$T = \{(z, w) \in \partial V_{\alpha} \mid zw = 0\}.$$

It is easy to see that S is an arc on X cutting each circle: $\{(z, w) \in X \mid |z| = r\}, 0 < r < 1$, exactly once while T is a closed subset of the disk $D = \{(z, 0) \mid |z| \le 1\}$.

It is remarkable that even though X is itself very regular, the rest of the hull of X is attached to X in a very complicated way.

Acknowledgements. I am grateful to Andrew Browder and Bruce Palka for their helpful suggestions.

REFERENCES

1. R. Basener, A condition for analytic structure, Proc. Amer. Math. Soc., 36, No. 1 (1972), 156-160.

2. E. Bishop, Holomorphic completions, analytic continuation and the interpolation of seminorms, Ann. of Math., (2), 78 (1963), 468-500.

3. J. E. Björk, Compact groups operating on Banach algebras, (to appear).

4. B. Cole, One-point parts and the peak point conjecture, Dissertation, Yale University (1968).

5. K. Oka. Domaines d'holomorphie, J. Sci. Hiroshima Univ., 7 (1937), 115-130.

6. L. Hörmander, An Introduction to complex analysis in several variables, D. Van Nostrand Co. (1966).

Received April 23, 1974.

BROWN UNIVERSITY