SUBHARMONICITY AND HULLS

John Wermer

For X a compact set in $C^{2}, h(X)$ denotes the polynomially convex hull of X. We are concerned with the existence of analytic varieties in $h(X) \backslash X . \quad X$ is called "invariant" if (z, w) in X implies $\left(e^{1 \theta} z, e^{-1 \theta} w\right)$ is in X, for all real θ. $\quad X$ is called an "invariant disk" if there is a continuous complex-valued function a defined on $0 \leqq r \leqq 1$ with $a(0)=a(1)=0$, such that $X=$ $\{(z, w)||z| \leqq 1, w=a(|z|) / z\}$. Let X be an invariant set and put $f(z, w)=z w$. Let Ω be an open disk in $C \backslash f(X)$ and put $f^{-1}(\Omega)=\{(z, w)$ in $h(X) \mid z w \in \Omega\}$. In Theorem 2 we show that if $f^{-1}(\Omega)$ is not empty, then $f^{-1}(\Omega)$ contains an analytic variety. Let now X be an invariant disk, with certain hypotheses on the function a. Then we show in Theorem 3 that $f^{-1}(\Omega)$ is the union of a one-parameter family of analytic varieties. A key tool in the proofs is a general subharmonicity property of certain functions associated to a uniform algebra. This property is given in Theorem 1.

1. Let X be a compact Hausdorff space, let A be a uniform algebra on X and let M be the maximal ideal space of A.

Fix $f \in A$. For each $\zeta \in \mathbf{C}$ put $f^{-1}(\zeta)=\{p \in M \mid f(p)=\zeta\}$ and for each subset Ω of \mathbf{C}, put $f^{-1}(\Omega)=\{p \in M \mid f(p) \in \Omega\}$. Consider an open subset Ω of $\mathbf{C} \backslash f(X)$. Supposing $f^{-1}(\Omega)$ to be nonempty, what can be said about the structure of $f^{1}(\Omega)$? Work of Bishop [2] and Basener [1] yields that if $f^{-1}(\zeta)$ is at most countable for each $\zeta \in \Omega$, then $f^{-1}(\Omega)$ contains analytic disks. On the other hand, Cole [4] has given an example where no analytic disk is contained in $f^{-1}(\Omega)$. In $\S 2$ we prove.

Theorem 1. Let Ω be an open subset of $\mathbf{C} \backslash f(X)$. Choose $g \in A$. Define $Z(\zeta)=\sup _{f^{-1}(\zeta)}|g|, \zeta \in \Omega$. Then $\log Z$ is subharmonic in Ω.

This theorem is proved by a method of Oka in [5].
In §3 we apply Theorem 1 to the following situation: X is a compact set in \mathbf{C}^{2}, A is the uniform closure on X of polynomials in z and w. Here $M=h(X)$, the polynomially convex hull of X. We assume that X is invariant under the map T_{θ} :

$$
(z, w) \rightarrow\left(e^{i \theta} z, e^{-\iota \theta} w\right) \text { for } 0 \leqq \theta<2 \pi
$$

Put $f=z w$. Let Ω be an open disk contained in $\mathbf{C} \backslash f(X)$ with $0 \notin \Omega$. Here $f^{-1}(\Omega)=\{(z, w) \in h(X) \mid z w \in \Omega\}$.

Theorem 2. If $f^{-1}(\Omega)$ is not empty, then $f^{-1}(\Omega)$ contains an analytic disk.

In $\S 4$, we consider the case when X is a disk in \mathbf{C}^{2}, defined:

$$
X=\left\{(z, w)| | z \mid \leqq 1, w=\frac{a(|z|)}{z}\right\}
$$

where a is a continuous complex valued function defined on $0 \leqq r \leqq 1$, with $a(r)=o(r)$.
X is evidently invariant under T_{θ} for all θ. In Theorem 3 we give an explicit description of $h(x)$ for a certain class of such disks X.
2. Proof of Theorem 1. (Cf. [5], §2.) Fix $\zeta_{0} \in \Omega$ and let $\zeta_{n} \rightarrow \zeta_{0}$. Assume $Z\left(\zeta_{n}\right) \rightarrow t$. We claim $Z\left(\zeta_{0}\right) \geqq t$. For choose p_{n} in $f^{-1}\left(\zeta_{n}\right)$ with $\left|g\left(p_{n}\right)\right|=Z\left(\zeta_{n}\right)$. Let p be an accumulation point of $\left\{p_{n}\right\}$. Then $|g(p)| \geqq t$, whence $Z\left(\zeta_{0}\right) \geqq t$, as claimed. Thus Z is uppersemicontinuous at ζ_{0}, and so Z is upper-semicontinuous in Ω.

Theorem 1.6.3 of [6] gives that an upper-semicontinuous function u in Ω is subharmonic provided for each closed disk $D \subset \Omega$ and each polynomial P we have

$$
\begin{equation*}
u \leqq \operatorname{Re} P \quad \text { on } \partial D \quad \text { implies } \quad u \leqq \operatorname{Re} P \quad \text { on } D . \tag{1}
\end{equation*}
$$

Fix a closed disk D contained in Ω and let \check{D} be its interior. Choose a polynomial P such that $\log Z \leqq \operatorname{Re} P$ on ∂D. Then

$$
Z(\zeta)|\exp (-P(\zeta))| \leqq 1 \quad \text { on } \partial D
$$

Hence for each ζ in ∂D, if x is in $f^{-1}(\zeta)$, then

$$
\begin{align*}
& |g(x)| \cdot|\exp (-P(f))(x)| \leqq 1, \quad \text { or } \tag{2}\\
& |g \cdot \exp (-P(f))| \leqq 1 \quad \text { at } \quad x .
\end{align*}
$$

Now $g \cdot \exp (-P(f))$ is in A. Put $N=f^{-1}(D)$. The boundary of N is contained in $f^{-1}(\partial D)$. Hence by the Local Maximum Modulus Principle for uniform algebras, for each y in N we can find x in $f^{-1}(\partial D)$ with

$$
|g \exp (-P(f))(y)| \leqq|g \cdot \exp (-P(f))(x)|
$$

whence by (2) we have

$$
\begin{equation*}
|g \cdot \exp (-P(f))(y)| \leqq 1 . \tag{3}
\end{equation*}
$$

Fix ζ_{0} in D. Choose y in $f^{-1}\left(\zeta_{0}\right)$ with $|g(y)|=Z\left(\zeta_{0}\right) . \quad$ Applying (3) to this y, we get

$$
\begin{equation*}
Z\left(\zeta_{0}\right)\left|\exp \left(-P\left(\zeta_{0}\right)\right)\right| \leqq 1 \tag{4}
\end{equation*}
$$

Hence $\log Z\left(\zeta_{0}\right) \leqq \operatorname{Re} P\left(\zeta_{0}\right)$. So (1) is satisfied, and so $\log Z$ is subharmonic in Ω, as desired.
3. Proof of Theorem 2. Since X is invariant under the maps $T_{\theta}, h(X)$ is invariant under each T_{θ}. Fix $\zeta \in \Omega$. There are two possibilities:
(a) $|z|$ is constant on $f^{-1}(\zeta)$.
(b) $\exists r_{1}, r_{2}$ with $0<r_{1}<r_{2}$ and \exists

$$
\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right) \in f^{-1}(\zeta) \quad \text { with } \quad\left|z_{1}\right|=r_{1},\left|z_{2}\right|=r_{2} .
$$

Suppose (b) occurs. Then the circles: $z=r_{1} e^{i \theta}, w=\zeta / r_{1} e^{i \theta}, 0 \leqq$ $\theta \leqq 2 \pi$ and $z=r_{2} e^{i \theta}, w=\zeta / r_{2} e^{i \theta}, 0 \leqq \theta \leqq 2 \pi$ both lie in $h(X)$. Hence the analytic annulus: $r_{1}<|z|<r_{2}, w=\zeta / z$ lies in $f^{-1}(\zeta)$. Thus if (b) occurs at any point ζ in $\Omega, f^{-1}(\Omega)$ does contẫin an analytic disk. Hence to prove the Theorem, we may assume that (a) holds for each $\zeta \in$ Ω. Define, for $\zeta \in \Omega, \quad Z(\zeta)=\sup _{f^{-1}(\zeta)}|z|, W(\zeta)=\sup _{f^{-1}(\zeta)}|w|$. Fix $\left(z_{0}, w_{0}\right) \in f^{-1}(\zeta)$. Since we have case $(\mathrm{a}), Z(\zeta)=\left|z_{0}\right|$. Hence $W(\zeta)=$ $\left|w_{0}\right|$ and so $Z(\zeta) W(\zeta)=|\zeta|$, whence

$$
\log Z(\zeta)+\log W(\zeta)=\log |\zeta|
$$

Since $\log Z$ and $\log W$ are subharmonic in Ω while $\log |\zeta|$ is harmonic, $\log Z, \log W$ are in fact harmonic in Ω. Put $U=\log Z$ and let V be the harmonic conjugate of U in Ω. Put $\phi(\zeta)=e^{U+i V}(\zeta)$. Then ϕ is analytic in Ω and $|\phi|=Z$ in Ω.

Assertion. The variety $z=\phi(\zeta), w=\zeta / \phi(\zeta), \zeta \in \Omega$, is contained in $h(X)$.

Fix $\zeta \in \Omega$. Choose $\left(z_{1}, w_{1}\right) \in f^{-1}(\zeta)$. Then $Z(\zeta)=\left|z_{1}\right|$, so $|\phi(\zeta)|=\left|z_{1}\right|$, i.e., \exists real α with $z_{1}=\phi(\zeta) e^{i \alpha}$. Then $w_{1}=$ $\zeta / \phi(\zeta) e^{i \alpha}$. But $\left(e^{-i \alpha} z_{1}, e^{i \alpha} w_{1}\right) \in h(X)$. Hence $(\phi(\zeta), \zeta / \phi(\zeta) \in h(X)$. The Assertion is proved, and Theorem 2 follows.

Note. Questions related to the result just proved are studied by J. E. Björk in [3].
4. Invariant disks in C^{2}. Let P be a polynomial with complex coefficients, $P(t)=\sum_{n=1}^{N} c_{n} t^{n}$, which is one-one on the unit interval with endpoints identified, i.e., we assume that $P(1)=P(0)=0$ and $P\left(t_{1}\right) \neq P\left(t_{2}\right)$ if $0 \leqq t_{1}<t_{2}<1$. Also assume $P^{\prime}(t) \neq 0$ for $0 \leqq t \leqq$ 1. Then the curve β given parametrically: $\zeta=P(t), 0 \leqq t \leqq 1$, is a simple closed analytic curve in the ζ-plane whose only singularity is a double-point at the origin. Denote by θ the angle between the two arcs of β meeting at 0 . Assume $\theta<\pi$. Define $a(r)=P\left(r^{2}\right)$, i.e.,

$$
\begin{equation*}
a(r)=\sum_{n=1}^{N} c_{n} r^{2 n} \tag{5}
\end{equation*}
$$

Let X be the disk in \mathbf{C}^{2} defined

$$
\begin{equation*}
X=\left\{\left.\left(z, \frac{a(|z|)}{z}\right)| | z \right\rvert\, \leqq 1\right\} \tag{6}
\end{equation*}
$$

The function $f=z w$ maps X on β. Denote by Ω the interior of β.
Theorem 3. \exists function ϕ analytic in Ω such that $h(X)$ is the union of X and $\{(z, 0)||z| \leqq 1\}$ and

$$
\{(z, w) \mid z w \in \Omega \quad \text { and } \quad|z|=|\phi(z w)|\}
$$

Corollary. Every point of $h(X) \backslash X$ lies on some analytic disk contained in $h(X)$.

Notation. $A(\Omega)$ denotes the class of functions F defined and continuous in $\bar{\Omega}$ and analytic in Ω.
\mathfrak{N} denotes the algebra of functions on $|z| \leqq 1$ which are uniformly approximable by polynomials in z and $a(|z|) / z$.

Lemma 1. Let $G \in C[0,1]$. If $G(|z|) \in \mathfrak{N}$, then $\exists F \in A(\Omega)$ such that $G(r)=F(a(r))$ for $0 \leqq r \leqq 1$.

Proof. Let g be a polynomial in z and $a(|z|) / z$. Calculation gives that there is a polynomial \tilde{g} in one variable with

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(r e^{i \theta}\right) d \theta=\tilde{g}(a(r)), \quad 0 \leqq r \leqq 1
$$

Choose a sequence $\left\{g_{n}\right\}$ of polynomials in z and $a(|z|) / z$ approaching
$G(|z|)$ uniformly on $|z| \leqq 1$. Then $\tilde{g}_{n}(a(r)) \rightarrow G(r)$ uniformly on $0 \leqq r \leqq 1$. Hence $\exists F \in A(\Omega)$ with $\tilde{g}_{n} \rightarrow F$ uniformly on β, so $G(r)=$ $F(a(r))$.

Lemma 2. If $f=z w$, then $f^{-1}(\Omega)$ is not empty.
Proof. Fix $\zeta_{0} \in \Omega$. If $f^{-1}(\Omega)$ is empty, then $f-\zeta_{0} \neq 0$ on $h(X)$ and so $\left(z w-\zeta_{0}\right)^{-1}$ lies in the closure of the polynomials in z and w on X. Then $\left(a(|z|)-\zeta_{0}\right)^{-1} \in \mathfrak{A}$. By Lemma 1, $\exists F \in A(\Omega)$ with $F(a(r))=\left(a(r)-\zeta_{0}\right)^{-1}$. Then $\left(\zeta-\zeta_{0}\right)^{-1} \in A(\Omega)$, which is false. So $f^{-1}(\Omega)$ is not empty.

Lemma 3. Fix $\zeta \in \beta \backslash\{0\}$. Let $\left(z_{0}, w_{0}\right)$ be a point in $h(X)$ with $z_{0} w_{0}=\zeta$. Then $\left(z_{0}, w_{0}\right) \in X$.

Proof. Assume $\left(z_{0}, w_{0}\right) \notin X$. Let r be the point in $(0,1)$ with $a(r)=\zeta$. Put, for each $r, \gamma_{r}=\left\{\left(r e^{i \theta},\left(a(r) / r e^{i \theta}\right)\right) \mid 0 \leqq \theta<2 \pi\right\}$. Then γ_{r} is a polynomially convex circle contained in X. Hence \exists polynomial P with $\left|P\left(z_{0}, w_{0}\right)\right|>2,|P|<1$ on γ_{r}. Choose a neighborhood N of γ_{r} on X where $|P|<1$. The image of $X \backslash N$ under the map $(z, w) \rightarrow z w$ is a closed subarc β_{1} of β which excludes ζ. Choose $F \in A(\Omega)$ with $F(\zeta)=1,|F|<1$ on $\beta \backslash\{\zeta\}$. Then $\exists \delta>0$ such that $|F|<1-\delta$ on β_{1}. Hence $|F(z w)|<1-\delta$ on $X \backslash N$. Also $|F(z w)| \leqq 1$ on X. Fix n and put

$$
Q=F(z w)^{n} \cdot P(z, w)
$$

$\left|Q\left(z_{0}, w_{0}\right)\right|>2$. On $\quad N,|Q| \leqq|P|<1$. On $\quad X \backslash N, \quad|Q|<$ $(1-\delta)^{n} \cdot \max _{X}|P|$, and so $|Q|<1$ on $X \backslash N$ for large n. Then $|Q|<1$ on X. Since F is a uniform limit on β of polynomials in ζ, Q is a uniform limit on $X \cup\left\{\left(z_{0}, w_{0}\right)\right\}$ of polynomials in z and w. This contradicts that $\left(z_{0}, w_{0}\right) \in h(X)$. Thus $\left(z_{0}, w_{0}\right) \in X$. We are done.

Note. Since f maps X on β and $C \backslash f(X)$ is the union of the interior and exterior of β, we conclude from the last Lemma that $h(X)$ is the union of X and $f^{-1}(\{0\})$ and $f^{-1}(\Omega)$.

We need some notation now. For each $\zeta \in \beta \backslash\{0\}$, denote by $r(\zeta)$ the unique r in $(0,1)$ with $a(r)=\zeta$.

Since a is a polynomial in r vanishing at 0 , there is a constant $d>0$ such that

$$
\begin{equation*}
r(\zeta)>d|\zeta|, \quad \text { all } \quad \zeta \in \beta \tag{7}
\end{equation*}
$$

For $\zeta_{0} \in \Omega$, denote by μ_{50} harmonic measure at ζ_{0} relative to Ω. Since β consists of analytic arcs, with one jump-discontinuity for the tangent at $\zeta=0, \mu_{\zeta 0}=K_{\zeta 0} d s$, where $K_{\zeta 0}$ is a bounded functions on β and $d s$ is arc-length. Define

$$
U\left(\zeta_{0}\right)=\int_{\beta} \log r(\zeta) d \mu_{\zeta 0}(\zeta)
$$

Since (7) holds, this integral converges absolutely. U is a harmonic function in Ω, bounded above, and continuous at each boundary point $\zeta \in \beta \backslash\{0\}$ with boundary value $\log r(\zeta)$ at ζ.

For $\zeta \in \Omega$, define

$$
Z(\zeta)=\sup _{f^{-1}(\zeta)}|z|, \quad W(\zeta)=\sup _{f^{-1}(\zeta)}|w| .
$$

Lemma 4. For all $\zeta \in \Omega, \quad \log Z(\zeta) \leqq U(\zeta)$ and $\log W(\zeta) \leqq$ $\log |\zeta|-U(\zeta)$.

Proof. Fix $\zeta \in \beta \backslash\{0\}$, choose $\zeta_{n} \in \Omega$ with $\zeta_{n} \rightarrow \zeta$ and suppose $Z\left(\zeta_{n}\right) \rightarrow \lambda$. Choose $p_{n} \in f^{-1}\left(\zeta_{n}\right)$ with $Z\left(\zeta_{n}\right)=\left|z\left(p_{n}\right)\right|$. Without loss of generality, $p_{n} \rightarrow p$ for some point $p \in h(X)$. Then $f(p)=\zeta$. By Lemma 3, $p \in X$, i.e., $p=\left(\mathrm{re}^{i \theta},\left(a(r) / \mathrm{re}^{i \theta}\right)\right)$ for some r, θ. Also $a(r)=\zeta$ and so $r=r(\zeta)$, whence $\left|z\left(p_{n}\right)\right| \rightarrow r(\zeta)$ and so $\lambda=r(\zeta)$. Thus $Z\left(\zeta^{\prime}\right) \rightarrow r(\zeta)$ as $\zeta^{\prime} \rightarrow \zeta$ from within Ω, and so $\log Z$ assumes the same boundary values as U, continuously on $\beta \backslash\{0\}$.

For each positive integer k, let $\Omega_{k}=\{\zeta \in \Omega| | \zeta \mid>1 / k\} . \quad \partial \Omega_{k}$ is the union of a closed subarc β_{k} of $\beta \backslash\{0\}$ and an arc α_{k} on the circle $|\zeta|=1 / k$.

Fix $\zeta_{0} \in \Omega$. For large $k, \zeta_{0} \in \Omega_{k}$. Denote by $\mu_{\zeta_{0}}^{(k)}$ the harmonic measure at ζ_{0} relative to Ω_{k}. An elementary estimate gives that there is a constant $C_{\xi_{0}}$ independent of k such that

$$
\begin{equation*}
\mu_{\zeta_{0}}^{(k)}\left(\alpha_{k}\right) \leqq C_{\zeta_{0}} \cdot \frac{1}{\sqrt{k}} \text { for all } k \tag{8}
\end{equation*}
$$

Let S be any function subharmonic in Ω and assuming continuous boundary values, again denoted S, on $\beta \backslash\{0\}$. Assume \exists constant M with $S \leqq M$ in Ω. Then for all k,

$$
\begin{gather*}
S\left(\zeta_{0}\right) \leqq \int_{\beta_{k}} S d \mu_{\zeta_{0}}^{(k)}+\int_{\alpha_{k}} M d \mu_{\zeta_{0}}^{(k)}, \quad \text { whence } \tag{9}\\
S\left(\zeta_{0}\right) \leqq \int_{\beta_{k}} S d \mu_{\zeta_{0}}^{(\hat{k})}+M \cdot C_{\zeta_{0}} \cdot \frac{1}{\sqrt{k}}
\end{gather*}
$$

Applying (9) with $S=\log Z$, we get

$$
\begin{equation*}
\log Z\left(\zeta_{0}\right) \leqq \int_{\beta_{k}} U d \mu_{\zeta_{0}}^{(k)}+M C_{\zeta_{0}} \cdot \frac{1}{\sqrt{k}}, \tag{10}
\end{equation*}
$$

since as we saw earlier, $\log Z=U$ on $\beta \backslash\{0\}$.
By (7), if $\zeta^{\prime} \in \alpha_{k}$,

$$
U\left(\zeta^{\prime}\right)=\int_{\beta} \log r(\zeta) d \mu_{\zeta^{\prime}}(\zeta)>C+\int_{\beta} \log |\zeta| d \mu_{\zeta^{\prime}}(\zeta)
$$

where C is a constant, so

$$
\begin{aligned}
U\left(\zeta^{\prime}\right)>C+\log \left|\zeta^{\prime}\right| & =C+\log \frac{1}{k} \text {. Hence } \\
U\left(\zeta_{0}\right) & =\int_{\beta_{k}} U d \mu_{\zeta_{0}}^{(k)}+\int_{\alpha_{k}} U d \mu_{\zeta_{0}}^{(k)} \\
& \geqq \int_{\beta_{k}} U d \mu_{\zeta_{0}}^{(k)}+\left(C+\log \frac{1}{k}\right) \frac{C_{\zeta 0}}{\sqrt{k}} .
\end{aligned}
$$

Combining this with (10) and letting $k \rightarrow \infty$, we get that $\log Z\left(\zeta_{0}\right) \leqq$ $U\left(\zeta_{0}\right)$, as desired. A parallel argument gives the assertion regarding W. We are done.

Lemma 5. With Z defined as above, $\log Z(\zeta)=U(\zeta)$ for all $\zeta \in \Omega$, and $\log W(\zeta)=\log |\zeta|-U(\zeta)$.

Proof. Suppose either equality fails at some point ζ_{0}. By the last Lemma, this implies that

$$
\log Z\left(\zeta_{0}\right)+\log W\left(\zeta_{0}\right)<\log \left|\zeta_{0}\right|
$$

Fix $p \in f^{-1}\left(\zeta_{0}\right)$. Then $|z(p)| \leqq Z\left(\zeta_{0}\right),|w(p)| \leqq W\left(\zeta_{0}\right)$, so

$$
\log |z(p) w(p)|<\log \left|\zeta_{0}\right|
$$

But $z(p) w(p)=\zeta_{0}$, so we have a contradiction, proving the Lemma.
Proof of Theorem 3. Let V denote the harmonic conjugate of U in Ω and put $\phi=e^{U+i V}$. Fix $\left(z_{0}, w_{0}\right) \in f^{-1}(\Omega)$ and put $\zeta_{0}=$ $z_{0} \cdot w_{0}$. Unless $\left|z_{0}\right|=Z\left(\zeta_{0}\right)$ and $\left|w_{0}\right|=W\left(\zeta_{0}\right)$, we have

$$
\left|\zeta_{0}\right|=\left|z_{0}\right|\left|w_{0}\right|<Z\left(\zeta_{0}\right) W\left(\zeta_{0}\right)=\left|\zeta_{0}\right|
$$

by the last Lemma. So we must have $\left|z_{0}\right|=Z\left(\zeta_{0}\right)=\left|\phi\left(\zeta_{0}\right)\right|$.

Conversely fix $\zeta_{0} \in \Omega$ and let $\left(z_{0}, w_{0}\right)$ be a point in \mathbf{C}^{2} such that $z_{0} \cdot w_{0}=\zeta_{0}$ and $\left|z_{0}\right|=\left|\phi\left(\zeta_{0}\right)\right|$. Choose $\left(z_{1}, w_{1}\right) \in f^{-1}\left(\zeta_{0}\right)$. By the preceding $\left|z_{1}\right|=\left|\phi\left(\zeta_{0}\right)\right|$, so \exists real α with $z_{0}=e^{i \alpha} z_{1}, w_{0}=e^{-i \alpha} w_{1}$. Hence $\left(z_{0}, w_{0}\right) \in h(X)$, so $\left(z_{0}, w_{0}\right) \in f^{-1}(\Omega)$. Thus $f^{-1}(\Omega)$ consists precisely of those points (z, w) with $z w \in \Omega$ and $|z|=|\phi(z w)|$.

To finish the proof we need only identify $f^{-1}(0)$. The circle $\{(z, 0)||z|=1\}$ lies in X, so the disk $D:\{(z, 0)| | z \mid \leqq 1\}$ is contained in $f^{-1}(0)$. If $\left(z_{0}, w_{0}\right) \in f^{-1}(0)$ and does not lie in D, then $z_{0}=0, w_{0} \neq 0$. The same argument as was used in proving Lemma 3 shows that then $\left(z_{0}, w_{0}\right) \notin h(X)$, contrary to assumption. So $f^{-1}(0)=D$, and the proof of Theorem 3 is finished.

Remark. As we have just seen, $f^{-1}(\Omega)$ is the union of varieties V_{α}, $0 \leqq \alpha<2 \pi$, where V_{α} is defined:

$$
z=e^{i \alpha} \phi(\zeta), \quad w=e^{-i \alpha} \frac{\zeta}{\phi(\zeta)}, \quad \zeta \in \Omega
$$

What does the boundary of such a variety V_{α} in $h(X)$ look like? It splits into two sets:

$$
\begin{aligned}
& S=\left\{(z, w) \in \partial V_{\alpha} \mid z w \in \beta \backslash\{0\}\right\} \quad \text { and } \\
& T=\left\{(z, w) \in \partial V_{\alpha} \mid z w=0\right\}
\end{aligned}
$$

It is easy to see that S is an arc on X cutting each circle: $\{(z, w) \in$ $X||z|=r\}, 0<r<1$, exactly once while T is a closed subset of the disk $D=\{(z, 0)| | z \mid \leqq 1\}$.

It is remarkable that even though X is itself very regular, the rest of the hull of X is attached to X in a very complicated way.

Acknowledgements. I am grateful to Andrew Browder and Bruce Palka for their helpful suggestions.

References

1. R. Basener, A condition for analytic structure, Proc. Amer. Math. Soc., 36, No. 1 (1972), 156-160.
2. E. Bishop, Holomorphic completions, analytic continuation and the interpolation of seminorms, Ann. of Math., (2), 78 (1963), 468-500.
3. J. E. Björk, Compact groups operating on Banach algebras, (to appear).
4. B. Cole, One-point parts and the peak point conjecture, Dissertation, Yale University (1968).
5. K. Oka. Domaines d'holomorphie, J. Sci. Hiroshima Univ., 7 (1937), 115-130.
6. L. Hörmander, An Introduction to complex analysis in several variables, D. Van Nostrand Co. (1966).

Received April 23, 1974.

