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VARIETIES OF ORTHODOX BANDS OF GROUPS

MARIO PETRICH

The principal aim of the present work is a determination of
the lattice of all varieties of semigroups in the title as a direct
product of the lattice of all varieties of bands and the lattice of all
varieties of groups. The paper also contains certain informa-
tion concerning lattice properties of these varieties and their
defining identities.

1. Introduction. A considerable amount of literature is de-
voted to varieties of groups, a systematic study of this subject is the
book [7] by H. Neumann. Varieties of semigroups have also attracted
wide attention, most of the known results are summarized in the survey
article [2] by T. Evans. The lattice of all varieties of bands was
determined by Birjukov [1], Gerhard [4] and Fennemore [3]; some
preliminary work in this direction was first performed by Kimura [6] and
the author [8].

A semigroup 5 is completely regular if for any a E 5 there exists
x E 5 such that a = axa, ax = xa. It follows at once that then there
exists a unique y E 5 such that a = aya, y = yayy ay = ya we write
a~x = y and observe that 5 is a union of its (pairwise disjoint) maximal
subgroups Ga and that for a GGa,a~] is the group inverse of a in
Ga. We consider S as a universal algebra with two operations, viz., the
binary operation of multiplication, and the unary operation of inversion,
a-*a~\ satisfying the identities

(1) a=aa~ιa, a~λ-a~λaa~\ aa~] = a'ιa.

The class 9? of all such universal algebras forms a variety. A semi-
group 5 in <3i is orthodox if the set Es of all its idempotents forms a
subsemigroup. The class % of all orthodox semigroups in £% is a
subvariety of έ% and as such can be characterized by the identity

(2) ab =abbxaλab,

as follows easily from ([9], IV.3.1). A semigroup S in 9? in which
Green's relation f is a congruence is a band of groups and
conversely. The class 9 of all bands of groups is a subvariety of 9?
and as such can be characterized by the identity
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(3) (a2bc2)(a2bc2yι = (abc)(abc)\

as follows easily from ([9], IV. 1.7).
Let <£ = % Π 2F so that <β is the variety of universal algebras with

an associative multiplication and an inversion satisfying the identities
(1), (2), (3). In fact, we can define <#, within 9$, by a single identity as
follows.

PROPOSITION 1. For any S E Sfc, we have that SE^ifand only if S
satisfies the identity

Proof. Necessity. Let α, b E S, S e « . Then a%aa~\ bXbb'1

and hence abffli a~]bb~x since Green's relation %C is a congruence.
Now abW{ab)(abyλ so that (aax)(bbλ)W{ab)(abY\ But Es is a

subsemigroup of S and aa~\ bb~\ {ab)(ab)~x E Es and thus aa~xbb~x =
(ab)(abTx.

Sufficiency. Let α, b, c G 5, 5 G 5$ and α^b. Then αα"1 = bb
and hence

= (aa')(ccι) = {bb~λ){cc-χ) =

i.e., ac^tbc. This shows that Sίf is a right congruence. The proof that
^ is a left congruence is similar. If e,fEEs, then ef = ee~xff'x =

s o that (ef)2= ef. Thus E s is a subsemigroup of 5.

The class 39 of all bands is evidently a subvariety of ^ and as such
can be characterized by the identity a - a2. The class <& of all groups
is another subvariety of ^ and as such can be characterized by the
identity aa~x = bb~x. If V is any variety of universal algebras, ££{Ύ)
denotes the lattice, under inclusion, of all subvarieties of V. One of the
principal results of this paper states that

We will also establish certain properties of some subvarieties of ζ€. In
addition to the notation established above, we will use the notation,
terminology and results from [9] The meet in all our lattices will be
the set theoretical intersection, the join will vary and will be denoted by
v. For any semigroup 5, we denote by Es the set of all idempotents of
S with the partial multiplication induced by 5. For e E Es, Ge denotes
the maximal subgroup of S having e as its identity.
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2. Main result. The following lemma is crucial for a large
portion of this paper.

LEMMA 1. For any T E i ? ^ ) , we have

Proof. Let S 6 7. According to [10], S is a subdirect product of
a band B and a semilattice of groups T = U α e y G α . Since B is then a
homomorphic image of S, we have JB E T ΓΊ 39. The conjunction of
([9], IV.4.3) and ([9], III.7.2) yields that T is a subdirect product of
semigroups {Γα}αGy, where either Ta = Gα or Γα=G«, the group Ga with
a zero adjoined. Since T is a homomorphic image of 5, we have T GY
and thus also Ga<ΞΎ for all a G Y.

Assume that 5 is completely simple. Then 5 = L x G xR where
L is a left zero semigroup, G is a group and R is a right zero semigroup,
according to ([9], IV.3.3). Clearly L x R G Y Π 35 and G G r Π » and
thus 5G(rns3)v(rn^).

Suppose next that S is not completely simple. It is easy to see that
in S we can find two comparable idempotents, say e >f But then
y2 = {0, 1}, the two-element chain, must be contained in Y. Now let
G G T Γ\% and let p be the Rees congruence on Y2 x G associated with
the kernel {0} x G of Y2 x G. It follows that

G° = (Y2 x G)/p G(rn^)v(rn«).

We have seen above that T is a subdirect product of semigroups Ta

where either Ta=Ga or Γα=G^. Consequently ΓG
( T Π 3 8 ) v ( r n S ) . Finally 5 is a subdirect product of B and Γ and
thus SG(vn^)y(rn^).

Therefore Y C (T Π » ) v ( r Π «), the opposite inclusion is trivial.

LEMMA 2. Lei T be a completely regular semigroup which is a
subdirect product of a band B and a group G, and let S be a band and a
homomorphic image of T. Then S is a homomorphic image of B.

Proof. Let φ be a homomorphism of T onto S. We may suppose
that TCBxG. Let (fe,g), (fe,Λ)G Γ and let g=(fc,g)φ, Λ =
(fr, Λ )φ. Since Γ is completely regular, we have (b, ft ~ι) G T, and thus

g =(b,g)φ =[(b,

= (b,h)φ(b9g)φ =hg.
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A similar argument shows that h = hg and thus g = h It follows that
the mapping ψ defined by

ψ:b-+(b,g)φ if (b,g)ET (bEB)

is single-valued, and thus evidently a homomorphism of B onto S.

LEMMA 3. Let T be a semigroup which is a subdirect product of a
band B and a semigroup C, and let Sbe a left caneellative semigroup and
a homomorphic image of T. Then S is a homomorphic image of C.

Proof. Let φ be a homomorphism of T onto S, and suppose that
TQBxC. Let (a, c), (b, c) E T. Then

(a, c2)(b,c) = (ab, c3) = ((ab )b,c3) = (ab, c2) (b, c)

where (α, c2), (ab,c2) E Γ and thus

[(α, c)φ]2 = (a, C2)φ = (ab,c2)φ = (a,c)φ(b, c)φ.

Left cancellation in S now implies that (a,c)φ =(b,c)φ. It follows
that the mapping ψ defined by

ψ:c-+(a,c) if ( β , c ) G Γ (cEC)

is single-valued, and thus evidently a homomorphism of C onto S.

THEOREM. The mapping χ defined by

is an isomorphism of £(<€) onto

Proof. It is obvious that χ is inclusion preserving. Let V
and y G i?(»), and let r = r ' v r " . Then

In order to establish the opposite inclusion, we let 5 E V Π 38. In view
of ([5], §23, Theorem 3), there exist B<=V, G 6 Γ , a completely
regular semigroup Γ which is a subdirect product of B and £/, and a
homomorphism φ of T onto 5. Hence by Lemma 2, 5 is a homomor-
phic image of B and thus SET'. Consequently VΠffl = Y'. A
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similar argument, using Lemma 3, shows that Y Π ̂  = Y". It follows
that Y G <€ and that Yχ = (Y\ Y") proving that χ maps # ( « ) onto
#(58) x J£(ίί). Now Lemma 1 easily implies that χ is one-to-one and
that χ~ι is inclusion preserving. Therefore χ is a lattice isomorphism.

COROLLARY. For any S G <£, r ' e i ? ( 9 9 ) , r*ε,S?(#), w Λαi e
S e f v r " i/ and on/y // Es G T' and G, G ̂ " /or a// * G E s

Proof. This follows without difficulty from the proof of the
theorem and the proof of Lemma 1.

3. F u r t h e r results . We consider first the following problem:
if Y' G £(β) and Γ 6 l ( « ) are given by their defining identities, can
we set up a system of defining identities for Yf v Y"Ί We now proceed
to describe such a system.

Let u = v be an identity on 35. Substitute every variable x that
occurs in u = υ by xx'\ We then obtain an identity on %!, to be
denoted by ΰ = v.

Let w = z be an identity on $. We may suppose that both w and z
contain the same set {xux29 , xn} of variables. Consider w = z as an
identity on %, and let e = (x,, JC2 * * * xn)(X\Xi' ' x>n)~x- Substitute each
occurrence of JC, in w = z by exxe. We then obtain an identity on ̂ , to
be denoted by w = f. Note that e depends on the choice of writing the
variables, but any single choice will do.

PROPOSITION 2. Let Y' (resp. Y") be the variety of bands (resp.
groups) defined by a system of identities {ua = va} (resp.
{wβ - zβ}). Then Y' v Y" can be defined by the system {ΰa = ϋa, wβ =
ϊβ}

Proof. By the above corollary, Y = Y' v Y" consists of all S G %
for which Es G Y' and Ge G Y" for all e G E s. Let S<ΞY. Then JBS

satisfies ua = ι;α and hence 5 satisfies ΰa = tJβ. Next consider wβ =
Zβ. Let {JCI, JC2, , JC«} be the set of variables occurring in wβ - zβ. For
any a G 5, we denote by Nfl the class of the least semilattice congruence
on 5 containing α. Let ax,a2,- -,an E S and e =
(axa2- - - an)(a]a2- - an)~\ Then for any 1 g ί S n, eate G Ge since

eα( e G Neαί, = Ne No, Ne = Ne

and Ne is completely simple. Observing that each Ge satisfies the
identity wβ = ẑ , we deduce that 5 satisfies the identity wβ =
zβ. Consequently each S EY satisfies all the identities ΰa = ΰa9 wβ =
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Conversely, let S E ^ satisfy all the identities ΰa = ϋa9 wβ =
zβ. Then Es satisfies each ua = va so that £ s e ^ . Further, for every
e E Es, Ge satisfies each wβ = fβ, and hence also wβ = z/3 since Ge has
only one idempotent. Thus Ge E T". By the above corollary we
conclude that S G Γ v Γ = Ύ.

For example, if V is the variety of all rectangular bands and Y" the
variety of all groups, then V = Ύ' v T" can be defined by the identity
JCJC1 = xx~ιyy~ιxx~\ which is evidently equivalent to x2 = Jc y y1*. This
identity defines the subvariety of rectangular groups.

As another example, we may take V to be the variety of all bands
and V" the variety of all abelian groups. Then Ύ = T v V can be
defined by the identity jcjc'jcyjcx1 = jcjc^yjcjcx"1, which is evidently
equivalent to x2yx = xyx2. This identity defines the subvariety of
orthodox bands of abelian groups.

We consider next the following question: which subvarieties of ^
are simultaneously subvarieties of the variety £f of all semigroups? For
an identity u = υ on ίf, we denote by [u = v] the variety of semigroups
defined by u = v. If JC is an element of a semigroup 5, (JC) denotes the
cyclic subsemigroup of S generated by JC.

PROPOSITION 3. The following conditions on a subvariety T of ^
are equivalent.

(i) re«s?(sα
(ii) V C [x = xn] for some integer n > 1.

(iii) V Π <S C [JC = xn] for some integer n > 1.

(iv) Ύ Π <S E <£(&).

Proof, (i) implies (ii). Let JC E 5 and SET. Then ( J C ) E T

since T E i ? ^ . But then 7 6 i ? ( « ) implies that (jc)E(ίί which is
possible only if (JC) is a finite group. Hence x = xn for some n >
1. Assume that the set

n U ) = jc, J C E 5 , SET}

is unbounded. H e n c e there exists an infinite sequence (JC,), ( X 2 ) , - o f

cyclic semigroups such that H(JC,) < Π(JC2) < . The element (JC,) of

the direct product S = ΠΓ=, (JC. ) is clearly of infinite order. Since S 6 T ,

this contradicts to. what we have proved above. Thus there exists

n > 1 such that T Q[x = j c n ] .

Items (ii) and (iii) are obviously equivalent. Item (ii) implies item

(i) since with JC = JC71 in any semigroup S, x n l is the identity of the cyclic
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group generated by x. The equivalence of (iii) and (iv) follows simi-
larly as the equivalence of (i) and (ii).

We now elucidate another relationship between ϊ£{%) and

PROPOSITION 4. Let Ύ G # ( « ) and <U G jp(S* . Then <U Π <g =

Proo/. If % Π « = r , then

and analogously % Π S3 = T (Ί 39.
Conversely, suppose that <UC\<S = Ύn<S and %nSδ =

T Π S8. The join in ^ will be now denoted by v and the join in if by

v. Using Lemma 1, we obtain

so that

(4)

In order to establish the opposite inclusion, we first let G G

( ( r π l ) v l ) Π « . In view of ([5], §23, Theorem 3), there exist

Bern®, Ce% a subdirect product T of B and C and a
homomorphism of Γ onto G. By Lemma 3, G is a homomorphic image
of C and thus G e t Consequently GEaUn(g = Tn<g. Next let

βG((fni)vΐ)ί1i Then

It follows that
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and thus by Lemma 1, we have

The conjunction of (4) and (5) yields

where (Y Π 38) v % G %{¥ . But T Π 38 = % Π 38 implies that

(Y Π 38) v °U = % which by (6) gives % Π <g = T, as required.

Note that Proposition 4 implies the following statement: if Y E
«5?(<g) and r = % Π « for some °U G ̂ ( ^ , then ί n » = * n « . A
converse of this statement can be phrased thus: If Γ G ^ ( S ) and
% G #(£?• , does there exist Ύ G «S?(SP such that

An answer to this question is open. However, we have the following
simple result. For any class 2 of semigroups, let 2^ denote the
variety of semigroups generated by 2).

PROPOSITION5. Let T 6 ί ( « ) . Then there exists
such that Ύ = <% Π « // and only if Ύ* Π <€ = r .

Proo/. Necessity. Let 5 G °F̂  Π ̂ . According to ([5], §23,
Theorem 3) S is a homomorphic image of a subsemigroup Γ of some
semigroup H in Y. It follows that H £°U n<€ and thus Γ G % and
hence also S G %. Consequently S E % Π « = ί. This proves that
ί y Π ? C 7, the opposite inclusion is trivial.

Sufficiency. Take °U = Yy.

For example, for Y = ^ or the varieties of all left, right or
rectangular groups, we have the inequality Y^Π.^^ Y. This shows, in
particular, that these subvarieties of ^ cannot be defined, within ^, by
semigroup identities alone. To see this, let G be the additive group of
all integers, T the subsemigroup of G consisting of all nonnegative
integers, S the multiplicative semigroup {0, 1}, and φ be the mapping
defined by: 0φ = 1, nφ=0 for all n G Γ, n^O. Then S£Y and
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