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ON THE SEMISIMPLICITY OF GROUP RINGS
OF SOME LOCALLY FINITE GROUPS

D. S. PASSMAN

We consider the semisimplicity problem for group rings of
some locally finite groups. In particular we study locally
solvable groups and linear groups in the mixed characteristic
case. While the results here are by no means definitive, we hope
the techniques constitute a first step in the complete solution.

Our notation follows that of [2] and [4] and all groups considered
are assumed to be locally finite unless otherwise stated. If K is a field
of characteristic 0 then in this case K[G] is trivially seen to be
semisimple. Thus we assume throughout that p > 0 is a fixed prime
and that K is a fixed field of characteristic p.

1. Group ring l e m m a s . The following few results are basic
for handling nil ideals in group rings.

LEMMA 1.1. Let

with Xi G G, Xj / 1 and let x G G. Then there exists n, i such that xpn is
conjugate to (XiX)pn in G. In particular if σ is a set of primfes and if x is a
σ-element then XiX is a σ U {p}-element.

Proof. We have axGJK[G] so ax is nilpotent and hence
(αjc)pn = 0 for some n. Thus by Lemma 3.4 of [2]

0 = (ax)pn = xpn + Σ β?" (*#)"" + β

with β E [K[G], K[G]], the commutator subspace. Since the sum of
the coefficients in β over any conjugacy class is zero it then follows that
the xpn term must be partially cancelled by some conjugate of (xtoc)pn for
some ί. Hence xpn is conjugate to (XiX)pn and the result follows.

LEMMA 1.2. Let P be a normal p-subgroup of G, let
πP: K[G]—>K[P] denote the natural projection and suppose that

a = 1 + Σαιoci
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with Xι EG, x,/ 1 satisfies πP(a)£ JK[P], If x EG then there exists
nj such that x&P and xpn is conjugate modulo P to (XiX)p\ In
particular if σ is a set of primes and if x is a σ-element then x,x is a
σ U{p}-element.

Proof Let - : K[G]-+K[G/P] be the natural homomorphism
and observe that the kernel of this map is precisely JK[P] K[G] since
P is ap-group. Then πP(a) is by assumption a nonzero scalar, say b,
and

b~ιά = ϊ + Σ ' (b-ιai)Xi E JK[G]

where the sum Σ' is over all x 4 ^P. Thus Lemma 1.1 applied to the
group G implies that for some n, ί we have xpn conjugate in G to
XiXp\ Since P is a p -group this clearly yields the result.

LEMMA 1.3. Let G = NH be finite with N<\G and HΠN =
(1). // JK[G]ΠK[H]^0 then every p'-conjugacy class of N is
normalized by an element of H of order p.

Proof By assumption we may choose

a = 1 + Σ βΛ EJK[G]

with Xi E H, Xi/ 1. If x E N is a p '-element then by Lemma 1.1 there
exists n, ί with xpn conjugate to Cxtjc)p\ If g EG with g'\xpn)g =
(x tx)pn then we see that xpn is centralized by g(XiX)g~\ Hence since x
is a p'-element, {x) = (xpn) so JC is centralized by g(XiX)g~ι.

Write g(XiX)g~ι = yh with y EN, h EH. Then since N < G we
have modulo N

hpn ^

so hpn E H Π N = (1) and Λ is a p-element of H. Furthermore Λ^ 1
since yh = ̂ (jCije)̂ "1 g: N. Finally jcy/1 = x shows that h normalizes the
N-conjugacy class of x and the lemma is proved.

LEMMA 1.4. Let G have two finite subgroups N and H. Suppose
N0<N with N/No an abelian p'-group and suppose that H normalizes
both N and No. If H Π N = (1) and JK[G]Π K[H]/0 then
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NINO= U
h

where h runs through all elements of H of order p.

Proof. By Lemma 16.9 of [2] we may assume that G = NH. If
x EN I No then since N/No is a p '-group there exists xEN, a p1-
element, with x = xNolNQ. Now by the preceding lemma there exists
h EH of order p which normalizes the N-conjugacy class of JC and
hence the N/N0-conjugacy class of x. Finally since N/NQ is abelian, h
centralizes JC.

The following is a partial converse.

LEMMA 1.5. Let G = NH be finite with N<G. Suppose that
N= UhCN(h) where h runs through all elements of H of order
p. ThenJK[G]ΠK[H]^O.

Proof. Set a = H = ΣheHh. We show that aEJK[G] and in fact
we show that K[G]a is a left ideal of square zero. Since ha = a for
h EH, this ideal has as a spanning set elements of the form xa with
x EN and it suffices to show that for all such x,axa = 0.

Given x EN by assumption there exists y EH of order p which
centralizes it. If Y = (y) then a = H = Ϋβ where β is a sum of right
coset representatives for Y in H. Since x and y commute and | Y | = p
we then have

axa = axΫβ = aΫ - xβ

= \Y\a -xβ = 0

and the result follows.

In locally finite groups the concept of locally finite index is trivial
but the following does seem to be of interest. Let N be a subgroup of
G. We say that N is almost normal in G if for every finite subgroup H
of G we have [(N9 H): N] < ». Clearly every normal subgroup of G is
almost normal and indeed we have

LEMMA 1.6. Let Nbe a subgroup of G. Then N is almost normal
in G if and only if every finite subgroup H of G normalizes some normal
subgroup of N of finite index.

Proof. Let H be a finite subgroup of G. If N is almost normal in
G then [<N, H): N] < oo and both H and N normalize the core of N in
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Conversely suppose H normalizes JV0 with N0<N and of finite
index. Then N0<(N,H) and (N,H)INO is a locally finite group
generated by the finite groups N/No and NOHINO. Thus [<N, H): N] g

Recall that if H is a subgroup of G then

= {xGG\[H:CH(x)]<™}

is the almost centralizer of H in G. Thus in particular DG(G) = Δ(G) in
the f.c. subgroup of G.

LEMMA 1.7. Let N be an almost normal subgroup of G. Then
D = ΌG(N) is normal in G. Furthermore if JK[N] is nilpotent then D
carries the radical of G, that is

= JK[D] K[G].

Proof. Let H be an finite subgroup of G. Then by assumption N
has finite index in M = (N, H). Thus clearly

D Π M = DM(N) = Δ(M) <\M

and it follows easily that D < G.
Now suppose further that JK[N] is nilpotent. Since D <G and G

is locally finite we have

ττD(JK[G]) K[G] D JK[G] D JK[D] K[G]

where πD: K[G]-*K[D] is the natural projection. Thus it suffices to
show that the ideal πD(JK[G]) of K[D] is nil. Let a EJK[G] and
take ff = <Suppα> in the above. Then a eJK[G]Γ)K[M]CJK[M]
by Lemma 16.9 of [2]. Also [M: N] <°° and /K[N] is nilpotent so
JK[M] is nilpotent by Lemma 16.8 of [2]. Hence Theorem 20.2 of [2]
yields JK[M] = JK[Δ(M)] K[M] so πΔ(M)(α) is nilpotent. Finally
Δ(M) = D Π M so πD(a) = 7rΔ(M)(α:) is nilpotent and the result follows.

We remark that not every subgroup of a locally finite group is
almost normal. For example let N be a infinite locally finite group and
let Hέ (l) be finite. Then G = H\N is locally finite but [(if, N): N] =
[G:ΛΓ] = oo.
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2. Locally solvable groups. The next result is a key lemma
in the study of Sylow intersections in solvable groups (see [1], for
example).

LEMMA 2.1. Let P be a finite p-group which acts faithfully on a
finite abelian p'-group Q. If either P is abelian or both \ P | and \ Q | are
odd, then there exists x e Q with CP(x) = (1).

Proof We proceed by induction on \Q\. Suppose Q = Q\ x Q2

and each factor is nontrivial and P-invariant. Then there exist x, G ζ),
with Cp(Xi) = Cp(Qi) so if JC=JC,JC2 then CP(JC) = CP(ζ),) ΠCP(Q2) =
(1). Thus we may assume that Q is indecomposable as a P-module and
hence Q is a q-group for some q^P- Also P acts faithfully on Ω{(Q)
so we may take Q to be elementary abelian and then P acts irreducibly
on Q. If P is abelian then by Schur's lemma P acts semiregularly on
Q. Hence for all x G Q -{1}, CP(JC) = <1>.

We now assume that both \P\ and \Q\ are odd and prove that Q
contains at least two orbits under the action of P of elements x with
CP(x) = (l). First if P is cyclic then P acts semiregularly on Q* =
Q -{1}. The number of such orbits is then ( | Q | — 1)/|P|, a nonzero
even number since both \P\ and \Q \ ^ 1 are odd.

Now suppose P is not cyclic so, since p > 2, P has a normal abelian
(p,p)-subgroup U. If H = CP(U) then f ί < P , [ P : H ] = p and P =
(/f, y) for some element y G P. If L is a noncentral (in P) subgroup of
U of order p and if V = CQ(L) then

Q = V x V y x V y 2 x x VyP~ι

is a direct product of H-submodules of Q. This all follows from
Schur's lemma since U cannot act semiregularly. If N is the kernel of
the action of H on V then by induction there exist two //-orbits
A,BQV* with the property that x G A, B implies that CH(x) = N.

Consider the two subsets of Q given by

S =ΛxBy x β y 2 x x JS*""1

T = A x Ay x B y 2 x x β y P " .

If JC G 5, Γ then clearly CH(JC) = Γ) Nyi = <1>. Then also CP(JC) = <1>
since hy G CP(x) for some /ι G // would imply using p > 3 that A and B
are the same //-orbit. Finally it is clear from P = (H,y) that no
element of S can be P-conjugate to an element of Γ. Thus Q does
indeed have at least two such orbits of elements x with CP(JC) = <1) and
the result follows.
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We remark that the above lemma is false in many instances if the
prime 2 is present. Indeed the following three examples are typical of
what occurs.

First let p = 2 and suppose q = 2n - 1 is a Mersenne prime. Then
the dihedral group P of order 2n+1 acts faithfully on Q, an abelian group
of type (q, q). If x, y are distinct noncentral involutions of P then
clearly \CQ(x)\ = q and CQ(x)Γ)CQ(y) = (1) since the cyclic subgroup
of P of index 2 acts semiregularly. Thus since P has 2" noncentral
involutions JC we have

U CQ(xY , — I n*\

and every element of Q # is fixed by some involution of P.
Now let p = 2 and suppose q = 2n + 1 is a Fermat prime. If Po is

cyclic of order 2n = q - 1 then Po acts faithfully and transitively on V*
where V = Zq is cyclic of order q. Thus P = P0\Z2 acts faithfully on
Q = V, x V2, a direct product of two copies of V. Write P = (Pu P2, *">
where Pf is cyclic of order q - 1 and acts transitively on V* and where x
interchanges Vλ and V2. If v = (vu υ2) G Q and say vt = 1 then CP(v) D
P} for jV ί. On the other hand if ϋ ^ 1 for / = 1,2 then by transitivity
there exists y, E Pt with ϋ? = uy (jV /), viewed as elements of V, so that
y,y2^ centralizes v.

Finally let q = 2 and let p = 2n - 1 be a Mersenne prime. Then Zp

acts faithfully and transitively on V* where V is elementary abelian of
order 2n and hence P = ZP\ZP acts faithfully on Q = V, x V2 x x Vp

a direct product of p copies of V, As in the preceding example the
transitivity of Zp on V* implies easily that every element of Q has a
nontrivial centralizer in P.

As an indication of the basically different behavior with respect to
semisimplicity of odd and even order finite solvable groups we prove
the following.

PROPOSITION 2.2. Let G be a finite solvable group and let P be a
p-subgroup of G. Suppose that either P is abelian or \G-\ is odd. Then
JK[G] Γ)K[P]έO if and only if P Π OP(G) ̂  <1>.

Proof. Suppose first that L = P ΠOp(G)^(ί). Then for the
augmentation ideal ω(K[L])CK[P] we have
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0ϊω(K[L])Cω(K[Op(G)])CJK[G]

so JK[G]ΠK[P]έO.
Conversely suppose that PΠO P (G) = (1) and define N < G by

NDO P (G) and N/OP(G) = Fit(G/Op(G)). By Fitting's theorem P
acts faithfully on N/OP(G) and hence on N/Nθ9 the Frattini quotient of
the nilpotent p '-group N/OP(G). Now according to Lemma 1.4 we
must have

N/No= U CNINo(h)

for all h E.P* but since either P is abelian or | G | is odd this violates
Lemma 2.1. The result follows.

On the other hand if G = QP for any of the three examples given
above then G is solvable, P Π OP(G) = (1) since P acts faithfully on Q
and JK[G] Π K[P] ̂  0 by Lemma 1.5.

LEMMA 2.3. Let Gbe a finite group with subgroups H, H} and H2.
(i) Suppose that for all g ELG, Hg Π H2 contains an element of

order p. Then there exists an element x E H] of order p with

(ii) Suppose G acts transitively as permutations on Ω and that for
each a EΩ, H contains an element of order p fixing a. Then there
exists an element x E H of order p with [G: C(x)] ^ | H | | Ga .

Proof. We consider (i). Let X be the set of elements of H{ of
order p and let Y be those of H2. Then by assumption for each g GG
there exist x E X, y E Y with x8 = y. Thus g belongs to a certain right
coset of C(JC) depending on x and y. We therefore have

G = U C(x)gxy

and hence for some x E X , [G: C(JC)] ̂  |X | | Y |. Since XC/ί,, YC
/ί2 this part follows.

Finally for (ii) we merely apply (i) with Hλ = Hy H2 = Ga. For each
g E G we have by assumption an element of order p in

so there is an element of order p in H8 Π G« = f/f Π
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LEMMA 2.4. Let Gbea locally finite group with Oq(G) = (ί) for all
primes q. If His a finite subgroup ofG then there exists a subgroup G*
of G with G*DH and such that G* is the ascending union of the finite
groups H C G , C G 2 C . Furthermore for i >/, G, ΠFit(Gf) = <1).

Proof. We first find such a sequence of groups G, with G, Π
Fit(Gi+1) = <l>. Set GX = H and suppose we have found
Gu G2, , Gn. Now Oq(G) = <1> for all primes so for each x G Gn,
x ^ 1 the normal closure (x)G is not locally nilpotent. Thus there exists
a finite group L with (x)L not nilpotent. We merely let Gn+i be the
group generated by Gn and those finitely many L's, one for each x e Gn

j t^ 1. Clearly Gn Π Fit(Gn+1) = <1>.
Finally let i > j so i g j + 1 . Then

G, n Fit(α ) = Gj n (Gy+I n Fit(G,))

cσ / nFit(G i + I ) = <i>

and the lemma is proved with G* = U G, .

We now come to our main result on locally solvable groups. The
oddness hypothesis is obviously too restrictive here and the conclusion
is not strong enough. Never-the-less we do show that JK[G]^0
implies the existence of some nontrivial global structure on G, certainly
a first step towards the complete solution.

THEOREM 2.5. Let K be a field of characteristic p > 0 and let G be
a locally finite, locally solvable group. Suppose that either all p-
subgroups of G are abelian or that G is a 2'-group. Then JK[G] / 0
implies Oq(G) ^ (1) for some prime q.

Proof We assume that Oq (G) = (1) for all primes q and show that
JK[G] = 0. Suppose by way of contradiction that JK[G] ^ 0 and let
a£JK[G] with lGSuppα. Set Jf = (Suρpα) and apply Lemma
2.4. By Lemma 16.9 of [2] aEJK[G*] so we may assume that
G = G* = U Gt since clearly O«(G*) = <1> for all q. Set Ft = Fit(G,)
and write Fι=PiX Q< where P, = OP(F,) and Qt = <V(F,).

Let Q =(QuQ2,' - •). Since Q, normalizes Q for j^i,Q is
clearly a p '-group. This group can best be visualized as the acending
union of the n-fold semidirect products QnQn-i * Qi Now G, nor-
malizes (Qh Q/+i, •) a normal subgroup of Q of finite index so since
G = U d we conclude from Lemma 1.6 that Q is almost normal in
G. Furthermore Q is a p'-group so JK[Q] = 0 and hence by Lemma
1.7 D = D G ( Q ) carries the radical, that is JK[G] =
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JK[D]K[G]. Thus πD(JK[G])CJK[G] so replacing a by
πD(a) ^ 0 if necessary we may assume that H CD. Now H C G\ so H
normalizes all Q, and since G, Π Q} = (I) for j > i it follows easily that
for any h EίH

CQ(h) = (CQι(h)9C(h(h)9"')

and

= Uι[Qi:CQi(h)].

Thus since H CD we have [Q: CQ(h)] <oo and it follows that /ι
centralizes all Q t after awhile and hence since H is finite, H centralizes
all Qi for ί sufficiently large.

Now set Rn = {P,, P 2, , Pπ) so that !?„ is a p -subgroup of Gn. We
also define Sn+JPn+ι = Fit(Gπ +,/PΛ + 1). Then Sn+1/Pn+1 is a nilpotent p ' -
group and we let Sn+] = (SnjPn+])IΦ(SnjPn+]) be its Frattini
quotient. Observe that H CG] implies that H normalizes Rn and that
RnH acts on Sn+I. We will use this action to show that for some
element h CHΦ we have [i?n: C R f l ( Λ ) ] ^ | H | 2 .

Now Rn is a p-subgroup of Gn so l?n n P n + , = (l) and hence by
Fitting's theorem, since Gn + 1/Pπ +, is solvable, we see that Rn acts
faithfully on Sn+,/Pn+1. Hence Rn also acts faithfully on 5Π+1. If H
does not act faithfully on Sn+ι and if hGH* acts trivially then
(Rn,h)CRn act trivially so h centralizes Rn and [Rn: CRn(h)] = 1 ^
IH |2. Thus we may assume that H acts faithfully on Sn+] and therefore
that H Π Sn+] = (I) since 5n + 1 acts trivially on Sn+].

By assumption either JRn is abelian or both Rn and 5n + J have odd
order. Hence we conclude from Lemma 2.1 that there exists x E 5Π+1

with CRn(x) = 0 ) . We consider the action of L = #„// on the L-orbit
Ω of x. By the above C L (JC) Π JRn = <1> so | C L ( J C ) | ^ | H | for this
particular x E Sn+1. Furthermore since i ϊ Π Ŝ +i = (1) Lemma 1.4 im-
plies that every element of Sn+1 is centralized by some element of H of
order p. Thus by Lemma 2.3 (ii) there exists h E.H* with

Since [JRΠ: CRn(h)]^[L: CL(h)] this fact follows.
Let P = (Pi,P 2, * •"). Then since P is the ascending union of the

groups JRn and since H is finite, it follows from the above that there
exists hGH* with [P: CP(h)]^\H|2. Again we have
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and

so h centralizes all Pj with / sufficiently large. Since h also centralizes
all Qj with j sufficiently large, it follows that h centralizes Fy for some
j > 1. But Gj is solvable and h G Gh h £ JF) so we have a contradiction
by Fitting's theorem. This completes the proof.

We remark finally on locally solvable groups which are not neces-
sarily locally finite. If G is such a group and if H is a finitely generated
subgroup of G, then H is of course a finitely generated solvable
group. Thus by a theorem of Zalesskii [7] (or see [4] Theorem 4.2)
JK[H] = NK[H] and hence by Lemma 4.1 of [4] we have JK[G] =
N*K[G]. Now by Theorem 1.6 of [4]

N*K[G] = JK[A+(G)] - K[G]

where Λ+(G) is a certain locally finite characteristic subgroup of
G. Clearly Λ+(G) is locally finite and locally solvable so Theorem 2.5
applied to Λ+(G) yields results on JK[G],

3. Linear group reductions. We now begin our work on
locally finite linear groups over fields of finite characteristic q ^ p The
cases q = 0 and q = p have already been considered in [3] and [4]. In
the following, unless otherwise indicated, q will be a fixed prime
different from p and all groups will be locally finite linear groups in
characteristic q. The first lemma is well known. We let GLn(qx)
denote the general linear group over GF(qx), the algebraic closure of
GF{q).

LEMMA 3.1. Let G be an irreducible subgroup of GLn(F) with F
algebraically closed. Then G is conjugate in GLn (F) to a subgroup of

Proof. Since F is algebraically closed we have FD GF{q") and
since G acts irreducibly the linear span FG is the whole matrix ring Fn.

Since FG = Fn choose xu x2, , jcm E G which form a basis for the
matrix ring Fn. Then H = (JC,,JC2, ,jcm") is a finite subgroup of G and
the embedding of H in Fn is clearly an absolutely irreducible represen-
tation for H in characteristic q. Now H is finite so all such representa-
tions are realizeable over GF(q°°) and hence there exists a nonsingular
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matrix s E GLn(F) with s'Ήs C GLn(q°°). Replacing G by s 'Gs we
may clearly assume that H C GLn(q™).

We now proceed as in the proof of Burnside's lemma. Let tr
denote the usual matrix trace so that tr defines a nondegenerate bilinear
form on Fn. Hence the matrix [tr a,*/] is nonsingular. Now let x E
G. Since the x,'s span Fn we have

X = X CliXi

for suitable ax E F. Hence multiplying by x} and taking traces yields

tr xx} = 2 tfi tr x^ j = 1,2, , m.

Observe that xx, and x^ are elements of G. Thus they are periodic
matrices and have traces contained in GF(qx). Therefore the above is
a set of m equations over GFiq") in the m unknowns au a2, , αm with
nonzero determinant. The solution is therefore in GF{q™) so α, E
GF(qx) for all i and hence x E GLn(qx).

In view of earlier work on linear groups it is reasonable to expect
that Op(G) = <l'> implies JK[G] nilpotent. Thus the following few
lemmas are relevant.

LEMMA 3.2. Let GCGLn(F) with OP(G) = <1>. Suppose that
Go= G Π SLn(F) and JK[GQ] is nilpotent. Then JK[G] is nilpotent

Proof. Now GoOG and JK[G0] is nilpotent so by Lemma 1.7,
JK[G] = JK[D]K[G] where D = DG(G0). It therefore suffices to
show that JK[D] is nilpotent.

Now Do = D Π Go = Δ(G0) and since D is a linear group, Lemma 1.2
(i) of [3] implies that Do has a subgroup Z of finite index which is central
in D. Since DlD0CGLn(F)ISLn(F) we have D/Do abelian. This
implies that H = CD(D0/Z) is a nilpotent normal subgroup of D of finite
index. Now D <l G so OP(D) = <1> and hence Op(/ί) = <1>. But H is
nilpotent so H is a p '-group and JK [H] = 0. Finally [D: if ] < oo so we
conclude from Lemma 16.8 of [2] that JK[D] is nilpotent.

LEMMA 3.3. Let G C GLn(F) and suppose we know that for all
H<Gif dimFH <dimFG then JK[H] is nilpotent. Let M<G with
dimFM< dimFG. Then either JK[G] is nilpotent or [M:MΠ
Z(G)]<oo.
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Proof. Since dimFM < dimFG we know that JK[M] is
nilpotent. Hence by Lemma 1.7, D = DG(M) carries the radical. Now
D<G and if dim FD < dim FG then JK[D] would be nilpotent and
hence so would JK[G]. On the other hand if dim FD = dim FG then
G QFD so by Lemma 1.2 (i) of [3] M has a subgroup of finite index
central in D and hence in G. Thus [ M : M Π Z(G)] < ».

Let r be a prime. By a Sylow r-subgroup of G we mean a
maximal r-subgroup. Thus by definition, every r-subgroup is certainly
contained in a Sylow r-subgroup of G. Now suppose G is a locally
finite linear group. Then by a theorem of Platonov (see [6] Theorem
9.10), for each prime r, the Sylow r-subgroups of G are conjugate in
G. We will use this result implicitly in the remainder of this
paper. Furthermore we have

LEMMA 3.4. Let G C GLn(F) and let P be a Sylow p-subgroup of
G. Then P contains a normal abelian divisible subgroup A of finite
index, Moreover ifFis algebraically closed then A can be diagonalized.

Since the existence of subgroups of finite index is frequently
annoying the following is useful. We use the subgroup 5^(G) as
defined in [5] §5.

LEMMA 3.5. Let G C GLn(F). Then G has a characteristic sub-
group Go such that G/Go is ap' by finite group and such that Go has no
proper subgroups of finite index. Moreover if JK[G0] is nilpotent then
so is JK[G] and if 9>(G0) carries JK[G0] then Sf(G) carries JK[G].

Proof. For any group G let R(G) be the intersection of all its
normal subgroups of finite index and let S(G) be given by S(G)/R(G) =
OP(GIR(G)). Then clearly R(G) and S(G) are characteristic sub-
groups of G. We show first that G C GLn (F) implies [G: S(G)]< «>.

Let P and A be given as in Lemma 3.4. If H is a normal subgroup
of G of finite index then H DA since A has no subgroup of finite
index. Since G has Sylow theorems it follows that P maps onto a
Sylow p-subgroup of G/H so |GIH |p g [P: A]. Now choose H < G
of finite index so that \G/H\P is as large as possible. Then GDHD
R(G) and HIR(G) is residually finite so it follows that H/R(G) is a
p'-group. Hence S(G)DH and [G: S(G)]< oo.

Define Go = S(G)P, the group generated by all p -elements of S(G),
or equivalently Go = Op (S(G)). Clearly Go is characteristic in G and
G/Go is p' by finite. We show now that Go has no proper subgroups of
finite index. Let S = S(G0) Then 5 is a characteristic subgroup of
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Go of finite index and hence S <G. We consider the group G =
GIS. If C is the centralizer of Go in S(G) then certainly S(G)IC is
finite. Also C/(CnG 0 )CS(G)/G 0 is a p'-group so C has a finite
central Sylow p -subgroup and we conclude that [C:OP(C)]<
oo. Therefore OP(C) is a normal subgroup of G of finite index
contained in S(G) so clearly S(G)DOp.(C)2 #(G) since £(G)D GoD
S. Hence by definition of S(G) we have that 5(G)/0p(C) is a
p'-group so S(G) is a p'-group and by definition of S = 5(G0) we have
G0 = (l) and G0 = S(G0). Thus GOIR(GO) is a p'-group. Since Go =
S(G)P is generated by p-elements this yields Go = R(G0) and Go has no
proper subgroups of finite index.

Suppose now that JK[G0] is nilpotent. Since S(G)IG0 is a p'-
group Go carries the radical of S(G) and hence JK[S(G)] is
nilpotent. Thus by Lemma 16.8 of [2], JK[G] is nilpotent. Finally
suppose 5^(G0) carries the radical of Go. Again Go carries JK[S(G)] so
y(G0) carries the radical of S(G). Since Sf(H) is generated by
p-elements for any group H it follows easily that

Corollary 5.5 of [5] now yields the result.

4. Finite Sylow p -subgroups. Our linear group techni-
ques differ sharply accordingly as the Sylow p -subgroup of G is finite or
infinite. In this section we consider the finite case. The following
lemma is proved in [3] in a slightly different form. It also follows easily
from topological considerations.

LEMMA 4.1. Let GCGLn(F) and let Tl9T29-',Tr be a finite
number of affine subspaces of Fn with G C U Th Then G has a
subgroup H of finite index with H C T, for some i.

Proof. We proceed as in Lemma 2.1 of [3] with S deleted and with
the Γ/'s affine subspaces. The latter causes no difficulty. At the end
of that proof we deduce that G permutes transitively by right multipli-
cation certain affine subspaces M,,M2, ,Mm. Since MxΓ\G^φ
some Mi contains the identity. If H is the stabilizer of this M, then
[G: H] < oo and MtH C M, yields H C M, C Tr.

LEMMA 4.2. Let GCGL n (F) , let y,,y2, ,yr GF n be a finite
number of matrices and let {Ti}} for ί = 1,2, , r; j = 1,2, ,s be a
finite number of affine subspaces of Fn. Suppose that for each x E G
there exists /,/ with x~ιytx E Tή. Then G has a subgroup H of finite
index such that for some fixed i,j and all h E fί, ft^y. Λ E 7 .̂
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Proof. Observe that G acts on Fn by conjugation and that this
yields a homomorphism of G into E = EndF(Fπ) = Fn*. Let the image
of G be denoted by G so that G is contained in the appropriate general
linear group. Furthermore for y E Fn and e E E we let ye denote the
image of y under e. Thus clearly for x EG, y EFn we have yx~ =
x~]yx = yx.

F o r e a c h i9j let

Since 7̂  is an affine subspace of Fn it follows easily that M^ is an affine
subspace of_F. Moreover by_ assumption G c U Λ̂fy . Hence by
Lemma 4.1 G has a subgroup H of finite index with H C MfJ for some
/,/. If H is the complete inverse image of H in G then /f has the
required properties.

If G C GLn(F) we let Po = P0(G) be the Sylow p-subgroup of the
set of scalar matrices contained in G. Thus Po is isomorphic to a
subgroup of the multiplicative group F - {0} = F°. Observe that Po is
independent of the choice of basis which gives rise to GLn(F). In
other words if sEGLn(F) and if G is replaced by s~ιGs then
P0(sιGs) = P0(G). As usual we let TΓ̂ : K[G]-+K[PO] denote the
natural projection and tr: Fn^>F the ordinary matrix trace. The main
result of this section is as follows.

PROPOSITION 4.3. Let G C GLn(F) and let

with XiT^l and with πPo(a)£JK[P0]. Suppose that the Sylow p-
subgroups of G are finite and that Q is a Sylow q-subgroup of G. Then
there exist JC, E Supp a, a nonsc alar group element, H CGa subgroup of
finite index and Q CQ a subgroup of finite index such that

for all h EH, y E Q.

Proof Since G has only finitely many conjugacy classes of
p -elements it follows that there are only finitely many possibilities for
trjc if x is a p-element. Say these values are μl9μ29 ,μt G
F. Furthermore if x is a {p, q}-element of G then writing x = xpxq as a
product of its p and q parts with (xq)

qm = 1 we have since char F = q
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(tvx)qm = t r x ^ =trxf = (tτxp)
qm.

Thus tr x = trxp = μ, for some i.
Let x EG. Then

and πPo(ax) = πPo(a)£JK[P0]. If y G Q then y is of course a q-
element so by Lemma 1.2 we deduce that for some /, x*fέ Po and x]y is a
{p, q}-element. Observe that this implies that xt is not a scalar matrix
since the scalars contain no elements of order q. Hence we have
shown that given x EG, y G Q there exist ί, j with Xj G Supp a a
nonscalar matrix and with tr x ϊy = μju

For fixed x and for those nonscalar x,'s let

Ma ={γ EFn \tτx*γ = μ,}.

Then Mi, is clearly an affine subspace of Fn and we have Q C
U Aίij. Thus by Lemma 4.1 Q has a subgroup Qx of finite index such

that for some subscript i = /(JC) we have Qx C M7 for some /. That is,
trxίy = μ; for all y G Qx. Note that 1 G Qx so μ, = trx * and the above
becomes

for all y G Qx. Note also that by choice JC, is not a scalar matrix.
Now for each nonscalar JC, define St to be the subspace of Fn given

by

Observe then that for each x EG there exists ί, namely i = /(x), with
xx E Si. Thus by Lemma 4.2 G has a subgroup H of finite index such
that for some ί, JCΛ G S, for all h EH. Say this occurs for the nonscalar
matrix JCJ.

Let {x?} be a finite spanning set for Si with wkEG and with
f(wk) = 1 . If (2 = Π k ( ^ then [Q: (?] < °° and for all y G Q

t r x T k d - y ) = 0

for all k. Thus for all sλESx we have t r s , ( l -y) = 0 and since Si
contains all H-conjugates of JCI the result follows.
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Observe that in the above if Q is finite then the conclusion is
decidedly uninteresting. Namely we could then have Q = (1) so cer-
tainly trxhi(ί - y) = 0 for y G Q. Fortunately in this case we can apply
the following well known theorem of Brauer and Feit (see [6] Corollary
9.7).

PROPOSITION 4.4. (Brauer-Feit). Let G be a locally finite sub-
group of GLn(F) with F a field of characteristic q>0. If the Sylow
q-subgroups of G are finite then G has a normal abelian subgroup of
finite index.

This is of course a modular analog of Jordan's theorem for complex
linear groups. Furthermore there is a bound for the index depending
upon n and the size of the Sylow q -subgroups.

5. Infinite Sylow p -subgroups. We now consider the
case of infinite Sylow p -subgroups. This will require a close look at
p"th roots of unity.

LEMMA 5.1. Let / > 1 be an integer and assume that p \ f - 1 and
that 41 / - 1 if p =2. Then for all integers a S 1

| / β - l | P = | α | p | / - l | p

Proof This is standard. We first consider some special
cases. Suppose p Jί a. Since / = 1 (p) we have

s o | / - l | p = | / - l | p = | α | p | / - l | p .
Now let a = p. If p = 2 then 41 / - 1 so / = 1 + 4k and

J ~ ι

T h u s | f - 1 | 2 = 2 | / - 1 | 2 . On the other hand for p > 2 we have p | / - 1
so / s 1+ pk(p2). Thus /' = 1 + ipk(p2) and

£ _
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Therefore we have \fa - 1 \p = p | / - 1 |p = | a \p \f - 1 |p.
The result follows easily by induction on a. Namely if a = be is a

proper factorization then

LEMMA 5.2. Let GF(f) be a finite field and suppose that p\f-l
and that 41 / - 1 if p = 2. Let η generate the Sylow p-subgroup of the
multiplicative group GF(f)°. Then for all n the polynomial xpn - η E
GF(f)[x] is irreducible.

Proof Note that o(η) = pm = | / - l | p . Thus if δ is a root of
xpΛ-η then o ( δ ) = p m + n . If δ<ΞGF(fa) t h e n p m + n ^\fa - l | p =
\a \P - \f~ l\p b y L e m m a 5.1 s o p n ^ \ a \ p a n d p n ^ a . Thus xpn -η
must be irreducible.

We now assume that G C GLn(q™) and that G has an infinite Sylow
p -subgroup P as described in Lemma 3.4. Furthermore by considering
a conjugate of G in GLn(qx) if necessary we may assume that the
maximal abelian divisible subgroup A is diagonalized. If [P: A] = pa

then we define the field F0 = F0(G) by F0=GF(q)[%] where o(g) =
pa+2. Observe that if F is any finite field containing Fo then clearly
\F°\p^p2 and hence Lemma 5.2 with F = GF(f) will always
apply. We fix the choice of Fo.

Let k = k(A) denote the maximal number of distinct eigenvalues of
any element of A. Clearly 1 ̂  k{A) g n. If k(A) = 1 then A consists
of scalar matrices and is essentially trivial for our purposes. Thus our
interest is in k(A)^2.

Let F be a finite subfield of GF((j°°). By an F-functional
/: GF(q™)n -+GF{q~) we mean a linear functional of the form

with f E F, some f = 0 so that not all diagonal entries occur and some
/t 7̂  0 so that this is not the zero form. The following lemma is the crux
of our argument.
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LEMMA 5.3. Let G C GLn{q") and let Pbe a Sylow p-subgroup of
G as described above and with A diagonal. Let

with xt ̂  1 and πPo(a) f£ JK [Po]. Define

F = F(a) = F0[trjcf | JC, E Supp a].

(i) // k(A) ^ 3 then there exists an F-functional I and a nonscalar

x-t with l(Xi)e.F.
(ii) Ifk(A) = 2 and G C SLn(q°°) then there exists an F-functional I

and a nonscalar jt, such that l(Xi)n E F.

Proof. Since k(A) ^ 2 we have A ^ (1) and we can choose y E A,
y ^ 1 to have the maximal number /c=/c(A) of distinct
eigenvalues. Since any root of y in A has at least as many distinct
eigenvalues* as y does, by taking a suitable root if necessary, we may
assume that o(y)> n2. This will only be needed for (ii).

Let L be the finite subfield of GF(q~) generated by F o and all the
entries of all the matrices jcf. Clearly L D F. Let |L°|P = ph and
choose J C E A with xph = y. Since A is diagonal we have x =
diag(λ,,λ2, ,λΛ).

Now JC is a p -element so by Lemma 1.2 there exists Xif£P0 such
that XiX is a p-element, say ί = 1. This clearly implies that xλ is not
scalar. Write

w2

* H > Π

so all Wi GL and since x,x is a p-element it is conjugate to some

element z EP. Note that z may not be diagonal but let its eigenvalues

be μι,μ29- 9μ>n. Thus we have

/i\ z*i ι r ' A ί ~~ u Λ * Λ ~~ t r z — 2iι μt %

Choose p-element λ E^GF(q°°) of sufficiently large order so that
λf, μt E <λ) and o (A) § p \ Say o (A) = p Λ + m and write

λ, = λ b ; = λpmb+c O^c, < p m

μ i = λ

d ; = λ p m ^ OSe^p".
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Then (1) yields

(2) Σ Σ

Note that o (Apm) = p h so λpm GL and thus A is a root of the polynomial
in L[t] given by

Furthermore since λpm in fact generates the p-part of L° Lemma 5.2
implies that the minimal equation for A over L has degree pm. Since
all d and ex satisfy 0 ^ ch ex<pm we deduce therefore that this
polynomial must vanish identically. Hence

(3)

We first consider the left hand side (lhs) of (3). If ct = q then
λ, Iλj = Apm{b^ so (λ, Iλj )ph = 1 and A f = A f. Note that by definition of
x

y=χp
h =diag(λ?h,λ?h, ,λSfc)

so we see that x has at least as many distinct c.'s as y has distinct
eigenvalues. Now certainly x has at least as many distinct eigenvalues
as it has distinct c.-'s. Finally y E.A was chosen to have the maximal
number k of distinct eigenvalues. All this implies that x has precisely
k distinct eigenvalues and that these have distinct Q'S. For conveni-
ence let us assume that the rows and columns are so labeled that
λi,λ2, ,λk are distinct. Then the lhs of (3) looks like

where each σ, is the appropriate sum of those w/s such that Ay = λ, .
Now if some σ, = 0 then

/(*,)= Σ ^ =
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is an appropriate F-functional with value 0 E F since k g 2. Thus we
may assume that σ{ ^ 0 for all /. This implies that the Ihs of (3) contains
precisely k terms.

We now consider the right hand side (rhs) of (3). By (3) and the
above there must be at least k distinct et 's. Since o (λ) = pm+h we have
(μilμj)ph = \(e>-ei)ph and hence μ f = μ f if and only if e{ = eh Now
L D F 0 so ft^α by definition of Fo. Hence zpa EA implies zph E
A. Observe that zph has eigenvalues μp\μp\ ,μίΓ so by definition
of k(A) there are at most k distinct μ f 's and hence at most k distinct
ft's. This therefore implies that there are precisely k distinct ft's say
eι,e2,-- ,ek.

Now observe that since h g a, μ f = μ f implies μ?" = μΓ and
hence et = e}. Thus there are at least k distinct μ f 's. But zpa E Λ so
by definition of k there are at most k distinct μ f ' s . Therefore we
deduce that e, = e] implies that μ f = μ f so (μilμjY* = 1 and μ./μy E F o

by definition of Fo. Finally by grouping together all the terms of the rhs
with the same e{ we have

with Ti E F o since τf is the sum of all those terms μ//μt with eϊ = eh

We now have the equal polynomials in t

with the C/'s distinct, the e,'s distinct and all σx^ 0. Thus the terms on
the right and left sides must match one for one and by renumbering the
right side if necessary we deduce that for i = 1,2, ,fc

(4) c, =

Let μ = λ p m so that o(μ) = ph and μ generates the p-part of
L°. Then σ, = T.μ^ . Now clearly L D FD Fo so if \F°\P = pr we
have Λ ^ r and say Λ = r + s. Write

σt = τ,μ d~di = r.μpi"1+lJί 0 g i?f < p *.

Then T/EFoCF, μ p I e F , t r x , E F so
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trx, = σ, + σ 2 + + σk = Σ (riμ
p'u')μt"

and μ is a root of the polynomial in F[t] given by

But o(μpS) = pr = \F°\P so Lemma 5.2 implies that the minimal polyno-
mial of μ over F has degree ps. Since 0 ^ v{ < ps we deduce that

(5) Σ ( ^ " ' * ) * " =trjc,.

Suppose two distinct ϋ/'s occur. Then let v be one such nonzero
tv It follows that

so

is an appropriate F-functional for x, with value OEF.
Thus we may suppose that all vt = v. If trx, / 0 then by (5) we

must have υ = 0 and hence since k S 2

is an appropriate functional. Also if k > 2 then

/(*,) = σjτ.μ^ - σ2lτ2μ
p'u> = 0

is an appropriate F-functional with value 0 G F.
There remains the case k(Λ) = 2, trJCI = 0 and here we can assume

G C SLniq00). Note that σ, + σ2 = tr^! = 0 and by (4) σ, = rλμxlλλ and
o-2 = T2μ2/λ2. Suppose that λ, occurs in x with multiplicity b so that A2

occurs with multiplicity n - b. Then



200 D. S. PASSMAN

Now suppose that e} - e{ for c values of j so eι = e2 for n - c values of
j . Since ex - e, implies that μt Iμ, is a pa th root of unity we then have

\=detz=μc

ιμΓcρ

where ppa = 1 and hence p E F0CF.
By renumbering if necessary we may suppose that o(λ\) ^ o(λ2) so

that O(AI) = O(JC). Since σ2- -cr, we have using μc

xμ
n

2~
c £ίF

so

(6) σ 7 = η λ T c λ Γ "

for some η E F. Thus using λ"~b = A7b we have

n(n-ί>) __ n~ bλ -c(n-fc) \ (c-n)(π-fe)

*~n-b\ -c(n-b)\ -b(c-n)

— η Λ j Λ i

Note that σ, ̂ 0 so η ^ 0 and σ,, η E L Thus λ?(b~c) is ap-element of
L so by definition of Λ,o(λ? ( 6 " c ) )^p* and Af n ( 6 " c ) = 1. Now o(x) =
o(λ,) and JCP" = y so ynib~c) = χp

h^b~^ = l. On the other hand y was
chosen to have order larger than n2. Since 1 S b, c g n - 1 this implies
easily that b - c. Therefore (6) yields

σn

{ =ηλ7*λ2~n =η EF

and l(X]) = σλ is an appropriate F-functional with value an nth root of
an element of F. This completes the proof.

The main result of this section is now an easy consequence.

PROPOSITION 5.4. Given the assumptions of Lemma 5.3, there
exists a subgroup H of finite index in G, an F-functional I and a
nonscalar jcf E Supp a with

for all hEH.
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Proof. We use the notation of Lemma 5.3. For each F-
functional / and constant c with cn EF let

Then M(l,c) is an affine subspace of the matrix ring
GF(q°°)n. Furthermore since F is finite there are only finitely many of
these.

Let JC E G. Then

ax = \^^kix
x

i

with x\¥L\ and since Po is central, πPo(ax) =
πPo(a)£JK[P0]. Moreover since trjC/=trx, we have F(α*) =
F(a). Thus by Lemma 5.3 applied to a\ there exists an F-functional /
and nonscalar JC* (and hence jcf is nonscalar) so that /(JC*) = c for some c
with cn E F. In other words we have shown that for each JC E G there
exists a nonscalar JC, E Supp α with JC* E M{l,c) for some /, c. Thus by
Lemma 4.2 G has a subgroup fί of finite index such that for some fixed
UUc we have JC* EM(l,c) for all hEH. Finally since 1EH, the
definition of M(/, c) yields

/(*?) = c =/(*!)

and the result follows.

6. Some linear groups. The results of the preceding two
sections lead us fairly naturally to the following definition. Let G C
GLn(F). We say that G is a large subgroup of GLn(F) if for all
nonscalar matrices JC E G and all subgroups H of finite index in G, the
F-linear span of the matrices xhχ — xh2 for all huh2EH consists
precisely of all the matrices in Fn of trace 0. Let us write 5(JC, H) for
the above linear span of xhι-xh2 and T(Fn) for the set of all matrices of
trace 0. We have clearly

LEMMA 6.1. Let G C GLn(F).
(i) // L is a field extension of F then G is large in GLn(L) if and

only if it is large in GLn(F).
(ii) // s E GLn (F) then G is large in GLn (F) if and only if s ιGs is

large.
(iii) Suppose G is large in GLn (F), N <G and [G: H]< °°. Then

H is large in GLn (F). Moreover either N consists of scalar matrices or
N acts irreducibly.

Our main result is as follows.
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THEOREM 6.2. Let Kbea field of characteristic p > 0 and let G be
a locally finite group. Suppose that G C SLn (F) is a large subgroup of
GLn(F) where F is a field of finite characteristic q?^p. If Po denotes
the Sylow p-subgroup of the group of scalar matrices in G, then

= JK[P0] K[Gl

Proof. By Lemma 6.1 (i) we may assume that F is algebraically
closed. If G consists of scalar matrices then, since G C SLn(F), G is
in fact a finite abelian group so the result is clearly true here. Thus we
may assume by Lemma 6.1 (iii) that G acts irreducibly. Now accord-
ing to Lemma 3.1 G is conjugate to a subgroup of GLn(g°°). Therefore
finally by Lemma 6.1 (i) (iί) we may assume that F = GF{q") and clearly
also that n g 2.

Now we have

πPo(JK[G]) K[G] D JK[G] D JK[P0] K[G].

Thus we need only show that πPo(JK[G])CJK[P0]. Suppose by way
of contradiction that there exists βEJK[G] with
πPo(β)£JK[P0]. Then certainly τrP o(β)^0 so we can choose w e
Supp β, w<ΞP0. If β = aw + then clearly a = a'ιw'ιβ GJK[G],

and

a = 1 + Σ *Λ

with Xi^l. There are now three cases to consider.
Suppose first that the Sylow p -subgroups of G are infinite and use

the notation of Proposition 5.4. By replacing G by a conjugate if
necessary we may assume that the divisible subgroup A of P is
diagonal. Since P is infinite and [P: A]<°° we have that A is
infinite. Furthermore GCSLn(q°°) so k(A)^2 since otherwise A
would consist of scalars and have order at most n. Thus Proposition
5.4 applies and there exists a subgroup H of G of finite index, a
functional / for some subfield of GF(q°°) and a nonscalar JC. ESuppα
with /(xΐ) = /(jct) for all hEH. Then for huh2eH we have
/(xί'-jC/O^O so / annihilates S(xhH). Since G is large, / therefore
annihilates T(GF{q™)n) certainly a contradiction since n ^ 2 .

Now suppose that the Sylow p -subgroups of G are finite but the
Sylow q -subgroups of G are infinite and use the notation of Proposition
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4.3. Then there exists a nonscalar xt G Supp α, H C G a subgroup of
finite index and Q C Q a subgroup of finite index such that

for all h G H, y G Q. Thus for a fixed y G Q we have tr S(xh h) x
(1 - y) = 0 so since G is large tr Γ(GF(<ΠΠ)(1 - y) = 0 and hence 1 - y
is a scalar matrix. But then y is a scalar q -element so y = 1 and
Q = (1), a contradiction since we assumed Q is infinite.

Finally suppose that the Sylow q -subgroups of G are finite. Then
by the Brauer-Feit result, Proposition 4.4, G has a normal abelian
subgroup B of finite index. Since n > 1 B cannot be irreducible and
hence by Lemma 6.1 (iii) B consists of scalar matrices and is central in
G. Now for any x G G we have S(x, B) = 0 φ T(GF(q°°)n) so G must
consist of scalar matrices, a contradiction since n > 1 and G is
irreducible. Thus πPo(JK[G])CJK[P0] and the theorem is proved.

We remark that the assumption of largeness is not as restrictive as
it might seem. For example if one wished to study linear groups
inductively on the dimension of FG as in Lemma 3.3 then the limiting
groups in which induction does not work might be expected to be
large. We will see this below at least when n = 2.

In addition the assumption G CSLn(F) in the above is not very
restrictive in view of Lemma 3.2. Finally we could of course neaten
the definition of large by assuming that G has no proper subgroups of
finite index. We could safely do this in view of Lemma 3.5. We now
consider subgroups of GL2{F).

LEMMA 6.3. Let G C GL2(F) with F algebraically closed and let
Mbea subspace ofF2. Suppose T(F2) > M > 0 andg~xMg = Mfor all
g EG. Then either M consists of scalar matrices (which can only
occur for q = 2) or G has a subgroup of finite index which is reducible.

Proof Let w, = ί~ A and u2- f ~ Λ. Then it is easy to see

that g~xU\g EFU] implies that g is upper triangular and g'xu2g EFu2

implies that g is diagonal. Hence if G normalizes either Fux or Fu2

then G is reducible. We observe in general that if s G GL2(F) then G
normalizes M if and only if s~xGs normalizes s~ιMs. Thus we can
freely modify M by conjugation. Since dim T(F2) = 3 we have
dimM = 1 or 2.

Suppose first that dim M = 2. Then it follows immediately that for
some nonscalar matrix r
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M = { α G Γ ( F 2 ) | t r α τ = 0 } .

If r has distinct eigenvalues then by conjugating we may assume r is
diagonal and then M is the set of all matrices of the form

ί Λ. Observe now that M contains precisely two 1-dimensional

subspaces of singular matrices namely Fux and Fu3 where u3 =

( 0 J. Since conjugation preserves rank G must permute these two

and G has a subgroup of index ^ 2 which normalizes Fwj and is
therefore reducible. If τ has distinct eigenvalues then by conjugating

we may assume that r = ί 0 j and then M is the set of all matrices of

the form ί~ J. Since Fuι is then the unique subspace of M of

singular matrices we see that G normalizes Fuλ and is reducible.

Now let dim M = 1 so that M = Fτ with τ nonscalar. By con-

jugating we may assume that τ is diagonal or ί π j . Observe that G
normalizes M + S where S is the set of scalar matrices. If r is
diagonal then M + S consists of all the diagonal matrices. Thus M + S
contains precisely two subspaces of singular matrices one of which is
Fu2. It follows that a subgroup of G of index ^ 2 normalizes Fu2 and

is therefore reducible. Finally if T = ( ft ] then M + S consists of all

matrices of the form ί |? J so Fuλ is its unique subspace of singular

matrices and the lemma is proved.

LEMMA 6.4. Let G C GL2(F) with F algebraically closed. Then
either G is large or G has a subgroup of finite index which is reducible.

Proof. Suppose G is not large and choose x E G a nonscalar
matrix and H C G a subgroup of finite index with
S(x, H) ^ T(F2). Then T(F2) > 5(JC, H) D 0 and S(JC, H) is clearly nor-
malized by H. Thus if 5(JC, H) is not contained in the scalar matrices
then by Lemma 6.3 applied to H we see that H has a reducible subgroup
of finite index. Finally if 5(JC, H) consists of scalar matrices then for
all h E H, xh = x + λl for some λ Eί F. Since detxΛ = detx there are
at most two possible values for λ. Therefore [H: CH(x)] = 2 and CH(x)
is reducible since its centralizer contains the nonscalar matrix x.

As an application we have for example
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PROPOSITION 6.5. Let Gbe a locally finite subgroup ofGL2(F) with
charF = q >0. Let K be a field of characteristic p^ q and suppose
OP(G) = (1). Then JK[G] is nilpotent.

Proof. We may clearly assume that F is algebraically closed and
by Lemma 3.2 we may assume that G C SL2(F). Hence if G is large in
GL2(F) then Theorem 6.2 yields the result. On the other hand if G is
not large then by Lemma 6.4 G has a normal subgroup H of finite index
which is reducible. Then H has a normal Sylow q -subgroup Q with
abelian quotient. If Q is finite then CH(Q) is a normal nilpotent
subgroup of G of finite index. Since OP(G) = (1), CH(Q) is a p'-group
so its group ring is semisimple. On the other hand if Q is infinite then
we have easily here D=ΌH(Q) centralizes Q. Thus again D is a
p'-group and by Lemma 1.7 JK[H] = JK[D]K[H] = 0. Therefore in
either case G has a subgroup of finite index with a semisimple group
ring and Lemma 16.8 of [2] yields the result.

We remark that there is no real difficulty in dropping the OP(G) =
(I) assumption in the above. The following is certainly not surprising.

LEMMA 6.6. Let F be an infinite field. Then SLn(F) is large in
GLn(F).

Proof. First PSLn(F) is simple and infinite so SLn(F) has no
proper subgroups of finite index. Let G = SLn(F) and let x E G be
any nonscalar matrix. Now all vectors cannot be eigenvectors for x so
choose V] so that v2 = xv] £ Fυx. If we then extend υu v2 to a basis of
the space V being acted on, then by a conjugation in G we may assume
JC has the form

j

with r^O. Since F is infinite choose o e F , α / 0 with a2" ̂  1 and set

d, = diag(α"<"Λα,α, ,α)

d2 = diag(a,a'<π~'\a, •• , α ) .

Then dud2eG and α~("-l)έ α since α " / l .
Now it is easy to see that y = d'^xdt-x looks like

5 0 ••• 0\
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with s^O and then z = d~2yd2-y looks like

z~\ o o,

with a7^0. Moreover since a2n/ 1

and\λzdx - z = a(a2n - \)en

so the matrix unit e]2 is contained in 5(x, G).

Finally by an appropriate permutation of the basis effected by
conjugation in G, en is conjugate to any ceis for some c^O and any
«V /. So all βij with iV J are in 5(JC, G). Since eH is conjugate via 1 + en

to (e/7 - en) + (βu - e/7) we conclude that eu - en ES(x,G). Thus
S(JC, G) D T(Fn) and the lemma is proved.

In our last result we drop our assumption that groups are locally
finite or that char F = q. However the only new results here concern
those particular cases.

PROPOSITION 6.7. Let K be a field of characteristic p > 0 and let F
be an infinite field of any characteristic.

(i) IfG = SLn(F) or GLn (F) and if Po = P<*(G) denotes the Sylow
p-subgroup of the scalar matrices in G then

= JK[P0] K[G].

(ii) If G= PSLn(F) then JK[G] = 0.

Proof Suppose first that Fj£GF(qx) for some prime q possibly
equal to p. Then the groups G = SLn (F), GLn (F) and PSLn (F) are not
locally finite. By Theorems 4.4, 4.8 and 1.6 of [4], JK[G] =
JK[A+(G)] K[G] where Λ+(G) is a certain locally finite characteristic
subgroup of G. The result now follows easily in this case.

Now let F C GF(p*) and apply Theorem 4.4 of [4] and Theorem
20.3 of [2] It then follows immediately that for G = PSLn(F) we have
JK[G] = 0. On the other hand if G = SLn(F) or GLn(F) then clearly
f ^ O p ί G ) and G/Po has no finite normal subgroup whose order is
divisible by p. Thus in this case we have easily JK[G] =
JK[P0] K[G].

Finally let F C GF(q ") with q^p. By Lemma 6.6, G = SLn (F) is
large in GLn(F) and hence by Theorem 6.2, JK[G] =
JK[PQ]-K[G]. In particular JK[G] is nilpotent. Now let G =
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GLn{G) and set D = ΌG(SLn(F)). Then by the above and Lemma 1.7,
D carries the radical of G. Since SLn(F) has no proper subgroups of
finite index we have clearly D = CG(SLn(F)) is the set of scalar matrices
in G so the result follows here. In addition since the center of SLn(F)
is finite we see that K[PSLn(F)] is a direct summand of the semisimple
algebra K[SLn (F)IPQ]. Thus K[PSLn(F)] is semisimple and the prop-
osition is proved.

On the other hand, as was pointed out by A. E. Zalesskii, other
types of classical groups are not large in general. For example let G be
the orthogonal group with respect to transpose t so that

G ={x E GLn(F) I JC'ΛΓ = 1}.

If n ^ 2 then G contains the nonscalar symmetric matrix

x = 0

where / is the (n - 2) x (n - 2) identity matrix. Since G normalizes the
set of symmetric matrices we have clearly S(x, G)/ T(Fn) here and
thus G is not large.

Added in proof. A. E. Zalesskii has suggested the following nice
paraphrase of Lemma 1.5. The proof is essentially the same.

LEMMA 1.5'. Let H be a finite subgroup of G and suppose that for
all x EG, H Π Hx contains an element of order p. Then JK[G] Π
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