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ON THE SEMISIMPLICITY OF GROUP RINGS
OF SOME LOCALLY FINITE GROUPS

D. S. PassMAN

We consider the semisimplicity problem for group rings of
some locally finite groups. In particular we study locally
solvable groups and linear groups in the mixed characteristic
case. While the results here are by no means definitive, we hope
the techniques constitute a first step in the complete solution.

Our notation follows that of [2] and [4] and all groups considered
are assumed to be locally finite unless otherwise stated. If K is a field
of characteristic 0 then in this case K[G] is trivially seen to be
semisimple. Thus we assume throughout that p >0 is a fixed prime
and that K is a fixed field of characteristic p.

1. Group ring lemmas. The following few results are basic
for handling nil ideals in group rings.

LEmMMA 1.1. Let
a = 1+E ax; EJK[G]

with X, EG, x; #1 and let x €G. Then there exists n, i such that x* is
conjugate to (x;x)*"in G. In particular if o is a set of primes and if x is a
o-element then xx is a o U {p}-element.

Proof. We have ax € JK[G] so ax is nilpotent and hence
(ax)”" =0 for some n. Thus by Lemma 3.4 of [2]

0=(ax)”" =x""+ a? (xx)" +B

with B € [K[G], K[G]], the commutator subspace. Since the sum of
the coefficients in 8 over any conjugacy class is zero it then follows that
the x?" term must be partially cancelled by some conjugate of (xx)”" for
some i. Hence x?" is conjugate to (xx)”" and the result follows.

LEMMA 1.2. Let P be a normal p-subgroup of G, Ilet
mp: K[G]— K[P] denote the natural projection and suppose that

a =1+ ax; EJK[G]
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with x; € G, x, # 1 satisfies mp(a) € JK[P]. If x € G then there exists
n,i such that x;& P and x"" is conjugate modulo P to (xx)”". In
particular if o is a set of primes and if x is a o-element then xx is a
o U{p}-element.

Proof. Let —: K[G]— K[G/P] be the natural homomorphism
and observe that the kernel of this map is precisely JK[P]- K[G] since
P is a p-group. Then m(a) is by assumption a nonzero scalar, say b,
and

b'a=1+3 (b~'a)x € JK[G]

where the sum X' is over all x;& P. Thus Lemma 1.1 applied to the
group G implies that for some n,i we have x”" conjugate in G to
xx”".  Since P is a p-group this clearly yields the result.

- LemmA 1.3. Let G = NH be finite with N<IG and HNN =
(1). If JKIGINK[H]#0 then every p'-conjugacy class of N is
normalized by an element of H of order p.

Proof. By assumption we may choose

a =1+ ax, €JK[G]

with x; EH, x;#1. If x € N is a p’-element then by Lemma 1.1 there
exists n,i with x?" conjugate to (xx)*". If g €G with g7'(x"")g =
(x:x)"" then we see that x”" is centralized by g(xix)g™'. Hence since x
is a p’-element, (x)=(x"") so x is centralized by g(xx)g™".

Write g(xx)g™'= yh with y €N, h € H. Then since N IG we
have modulo N

he" = (yh)" =gxx) g ' =x"" =1

soh” EHNN=(1)and h is a p-element of H. Furthermore h # 1
since yh = g(xx)g ' N. Finally x”* = x shows that h normalizes the
N-conjugacy class of x and the lemma is proved.

LeEMMA 1.4. Let G have two finite subgroups N and H. Suppose
Ny <G N with N/N, an abelian p'-group and suppose that H normalizes
both N and N,. If HNN =(1) and JK[G]N K[H]#0 then
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N/No= L;lj CN/No(h)

where h runs through all elements of H of order p.

Proof. By Lemma 16.9 of [2] we may assume that G = NH. If
X € N/N, then since N/N, is a p’'-group there exists x EN, a p’-
element, with X = xN,/N,. Now by the preceding lemma there exists
h € H of order p which normalizes the N-conjugacy class of x and
hence the N/N,-conjugacy class of . Finally since N/N, is abelian, h
centralizes X.

The following is a partial converse.

LemMMA 1.5. Let G = NH be finite with N <G. Suppose that
N = U, Cyx(h) where h runs through all elements of H of order
p. Then JK[G]INK[H]#0.

Proof. Seta = H=3,.,h. Weshow thata € JK{[G]andin fact
we show that K[G]e is a left ideal of square zero. Since ha = a for
h € H, this ideal has as a spanning set elements of the form xa with
x € N and it suffices to show that for all such x, axa = 0.

Given x € N by assumption there exists y € H of order p which
centralizes it. If Y =(y)then a = H = YB where B is a sum of right
coset representatives for Y in H. Since x and y commute and |Y|=p
we then have

axa = axYB =aY - xB
=|Y|a-x8 =0

and the result follows.

In locally finite groups the concept of locally finite index is trivial
but the following does seem to be of interest. Let N be a subgroup of
G. Wesay that N is almost normal in G if for every finite subgroup H
of G we have [(N, H): N]<x. Clearly every normal subgroup of G is
almost normal and indeed we have

LEmMMA 1.6. Let N be a subgroup of G. Then N is almost normal
in G if and only if every finite subgroup H of G normalizes some normal
subgroup of N of finite index.

Proof. Let H be a finite subgroup of G. If N is almost normal in
G then [(N, H): N] < and both H and N normalize the core of N in
(N, H).
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Conversely suppose H normalizes N, with N,<I{N and of finite
index. Then N,< (N, H) and (N, H)/N, is a locally finite group
generated by the finite groups N/N,and N,H/N,. Thus [(N, H): N]1=
[N, H): Ny] <o,

Recall that if H is a subgroup of G then
Do(H)={x €G |[H: Cy(x)] <}

is the almost centralizer of H in G. Thus in particular D¢(G) = A(G) in
the f.c. subgroup of G.

LemMMA 1.7. Let N be an almost normal subgroup of G. Then
D =Dg(N) is normal in G. Furthermore if JK[N] is nilpotent then D
carries the radical of G, that is

JK[G]=JKI[D]-KI[G].

Proof. Let H be an finite subgroup of G. Then by assumption N
has finite index in M =(N, H). Thus clearly

DNM=Dy(N)=AM)<M

and it follows easily that D <G.
Now suppose further that JK[N1 is nilpotent. Since D <G and G
is locally finite we have

mp(JK[G)) - K[G]12JK[G] 2 JK[D]- K[G]

where m,: K[G]1— K[D] is the natural projection. Thus it suffices to
show that the ideal wp(JK[G]) of K[D] is nil. Let a« €JK[G] and
take H = (Supp «) in the above. Then a« € JK[G]N K[M]CJK[M]
by Lemma 16.9 of [2]. Also [M: N]<® and JK[N] is nilpotent so
JK[M] is nilpotent by Lemma 16.8 of [2]. Hence Theorem 20.2 of [2]
yields JK[M]=JK[A(M)]- K[M] so msm(a) is nilpotent. Finally
A(M)= D N M so mp(a) = msum(a) is nilpotent and the result follows.

We remark that not every subgroup of a locally finite group is
almost normal. For example let N be a infinite locally finite group and
let H# (1) be finite. Then G = H | N is locally finite but [(H, N): N1=
[G: N]= oo,
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2. Locally solvable groups. The next resultis a key lemma
in the study of Sylow intersections in solvable groups (see [1], for
example).

LemMA 2.1. Let P be a finite p-group which acts faithfully on a
finite abelian p'-group Q. If either P is abelian or both |P| and | Q| are
odd, then there exists x € Q with Cp(x)=(1).

Proof. We proceed by induction on |Q|. Suppose Q = Q,X Q,
and each factor is nontrivial and P-invariant. Then there exist x; € Q;
with Cp(x;) =Cp(Q;) so if x =x,x, then Cp(x)=Cp(Q))N Cr(Q) =
(1). Thus we may assume that Q is indecomposable as a P-module and
hence Q is a g-group for some q# p. Also P acts faithfully on Q,(Q)
so we may take Q to be elementary abelian and then P acts irreducibly
on Q. If P is abelian then by Schur’s lemma P acts semiregularly on
Q. Hence for all x € Q — {1}, Cp(x) =(1).

We now assume that both |P| and |Q| are odd and prove that Q
contains at least two orbits under the action of P of elements x with
Cy(x)=(1). First if P is cyclic then P acts semiregularly on Q* =
Q —{1}. The number of such orbits is then (|Q|—1)/|P|, a nonzero
even number since both [P| and (Q|# 1 are odd.

Now suppose P is not cyclic so, since p > 2, P has a normal abelian
(p,p)-subgroup U. If H=Cp(U) then H<P, [P: Hl=p and P =
(H, y) for some element y € P. If L is a noncentral (in P) subgroup of
U of order p and if V =Cy,(L) then

Q=VXV’XV’2><---><V"’_'

is a direct product of H-submodules of Q. This all follows from

Schur’s lemma since U cannot act semiregularly. If N is the kernel of

the action of H on V then by induction there exist two H-orbits

A, B C V* with the property that x € A, B implies that C4(x) = N.
Consider the two subsets of Q given by

S=AXB’XB”x---xB”"
T=AXA’XBYX---XB”"".

If x €S, T then clearly Cy(x)= N N* =(1). Then also Cp(x)=(1)
since hy € Cp(x) for some h € H would imply using p >3 that A and B
are the same H-orbit. Finally it is clear from P =(H,y) that no
element of S can be P-conjugate to an element of T. Thus Q does
indeed have at least two such orhits of elements x with Cp(x)=(1) and
the result follows.
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We remark that the above lemma is false in many instances if the
prime 2 is present. Indeed the following three examples are typical of
what occurs.

First let p =2 and suppose q =2" — 1 is a Mersenne prime. Then
the dihedral group P of order 2"*' acts faithfully on Q, an abelian group
of type (q,q). If x,y are distinct noncentral involutions of P then
clearly |Co(x)| =g and Cqy(x) N Cy(y) = (1) since the cyclic subgroup
of P of index 2 acts semiregularly. Thus since P has 2" noncentral
involutions x we have

‘ U Cotx)*|=2"@ -1 =(q+ D@~ D=|Q"

and every element of Q” is fixed by some involution of P.

Now let p =2 and suppose g =2" + 1 is a Fermat prime. If P, is
cyclic of order 2" = g — 1 then P, acts faithfully and transitively on V*
where V = Z, is cyclic of order q. Thus P = P, | Z, acts faithfully on
Q = V, X V,, adirect product of two copies of V. Write P =(P,, P,, x)
where P, is cyclic of order g — 1 and acts transitively on V7 and where x
interchanges V,and V,. If v = (v, v,) € Q and say v; = 1 then C»(v) D
P, for j#i. On the other hand if v;# 1 for i = 1,2 then by transitivity
there exists y; € P; with v} = v; (j# i), viewed as elements of V, so that
y,y.X centralizes v.

Finally let ¢ =2 and let p = 2" — 1 be a Mersenne prime. Then Z,
acts faithfully and transitively on V* where V is elementary abelian of
order 2" and hence P = Z, | Z, acts faithfullyon Q = V, X V,x--- XV,
a direct product of p copies of V. As in the preceding example the
transitivity of Z, on V”* implies easily that every element of Q has a
nontrivial centralizer in P.

As an indication of the basically different behavior with respect to
semisimplicity of odd and even order finite solvable groups we prove
the following.

ProrosiTION 2.2. Let G be a finite solvable group and let P be a
p-subgroup of G. Suppose that either P is abelian or |G-| is odd. Then
JK[GINK[P]1#0 if and only if PN O,(G) #(1).

Proof. Suppose first that L =PﬂO,,(G)7—‘(1}. Then for the
augmentation ideal w(K[L]) C K[P] we have
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07# o(K[L]) C0(K[0,(G)]) CJK[G]

so JKIGIN K[P]#0.

Conversely suppose that PN 0,(G)=(1) and define N <G by
N20,(G) and N/O,(G)=Fit(G/0,(G)). By Fitting’s theorem P
acts faithfully on N/O,(G) and hence on N/N,, the Frattini quotient of
the nilpotent p’-group N/O,(G). Now according to Lemma 1.4 we
must have

N/N,= LhJ Crine(h)

for all h € P” but since either P is abelian or |G| is odd this violates
Lemma 2.1. The result follows. \

On the other hand if G = QP for any of the three examples given
above then G is solvable, P N 0,(G) = (1) since P acts faithfully on Q
and JK[G]N K[P]#0 by Lemma 1.5.

LEMMA 2.3. Let G be a finite group with subgroups H, H, and H,.

(i) Suppose that for all g € G, H¢ N\ H, contains an element of
order p. Then there exists an element x € H, of order p with
[G:C(x)]élHl['lHZ’-

(i) Suppose G acts transitively as permutations on ) and that for
each o €Q, H contains an element of order p fixing «. Then there
exists an element x € H of order p with [G: C(x)I=|H|-|G,|.

Proof. We consider (i). Let X be the set of elements of H, of
order p and let Y be those of H,. Then by assumption for each g € G
there exist x € X, y € Y with x®* =y. Thus g belongs to a certain right
coset of C(x) depending on x and y. We therefore have

G=U Cx)g.,

and hence for some x € X, [G: C(x)]=|X]|-|Y|. Since XCH, YC
H, this part follows.

Finally for (it) we merely apply (i) with H, = H, H, = G,. For each
g € G we have by assumption an element of order p in

HNG,=HN(G,)"

so there is an element of order p in H* NG, = H{ N H,.
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LEMMA 2.4. Let G be a locally finite group with 0,(G) =(1) for all
primes q. If H is a finite subgroup of G then there exists a subgroup G*
of G with G* D H and such that G* is the ascending union of the finite
groups HC G,C G,C---. Furthermore for i >j, G; N Fit(G;) =(1).

Proof. We first find such a sequence of groups G; with G; N
Fit(Gi.,)=(1). Set G,=H and suppose we have found
G, G, -+, G,. Now 0,(G)=(1) for all primes so for each x € G,,
x # 1 the normal closure (x )¢ is not locally nilpotent. Thus there exists
a finite group L with (x)" not nilpotent. We merely let G,., be the
group generated by G, and those finitely many L’s, one for each x € G,
x#1. Clearly G, NFit(G,,,) =(1).

Finally let i >j soi=j+1. Then

G, NFit(G) = G, N (G,., N Fit (G)))
C G, NFit(G;.) =(1)

and the lemma is proved with G*= U G.

We now come to our main result on locally solvable groups. The
oddness hypothesis is obviously too restrictive here and the conclusion
is not strong enough. Never-the-less we do show that JK[G]# 0
implies the existence of some nontrivial global structure on G, certainly
a first step towards the complete solution.

THEOREM 2.5. Let K be a field of characteristic p >0 and let G be
a locally finite, locally solvable group. Suppose that either all p-
subgroups of G are abelian or that G is a 2'-group. Then JK[G]#0
implies 0,(G) # (1) for some prime q.

Proof. We assume that O,(G) = (1) for all primes q and show that
JK[G]=0. Suppose by way of contradiction that JK[G]# 0 and let
a €JK[G] with 1€Suppa. Set H=(Suppa) and apply Lemma
2.4, By Lemma 16.9 of [2] @ €EJK[G*] so we may assume that
G = G*= U G, since clearly 0,(G*) =(1) for all q. Set F; = Fit(G,)
and write F; = P, X Q; where P, = O,(F,) and Q; = O,(F)).

Let Q=(Q,,Q,---). Since Q; normalizes Q; for j=i, Q is
clearly a p’-group. This group can best be visualized as the acending
union of the n-fold semidirect products Q,Q,-; - Q,. Now G; nor-
malizes (Q, Q..,,- - ) a normal subgroup of Q of finite index so since
G = U G; we conclude from Lemma 1.6 that Q is almost normal in
G. Furthermore Q is a p’-group so JK[Q] =0 and hence by Lemma
1.7 D=Ds(Q) carries the radical, that is JK[G]=
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JK[D]-K[G]. Thus @p,(JK[G]))CJK[G] so replacing «a by
mp(a) # 0 if necessary we may assume that HC D. Now HCG,so H
normalizes all Q; and since G; N Q; = (1) for j > i it follows easily that
forany h€ H

Co(h) ={(Cq(h),Cofh), )

and

[Q: Co(M]=IL[Q:: Co(h)].

Thus since HC D we have [Q: Cy(h)]<x and it follows that h
centralizes all Q; after awhile and hence since H is finite, H centralizes
all Q; for i sufficiently large.

Now set R, =(P,, P,,- -+, P,) so that R, is a p-subgroup of G,. We
also define S,.,/P,., = Fit(G,,,/P,.;). Then S,.,/P,., is a nilpotent p’-
group and we let S,.,=(S..i/Pii)/®(S,.,/P..)) be its Frattini
quotient. Observe that H C G, implies that H normalizes R, and that
R.H acts on S,,,. We will use this action to show that for some
element h € H* we have [R,: Cg,(h)]=|H "

Now R, is a p-subgroup of G, so R, N P,,,=(1) and hence by
Fitting’s theorem, since G,.,/P,,, is solvable, we see that R, acts
faithfully on S,.,,/P,.,. Hence R, also acts faithfully on S,.,. If H
does not act faithfully on S,., and if h € H* acts trivially then
(R, h) CR, act trivially so h centralizes R, and [R,: Cg, (h)]=1=
|H |2 Thus we may assume that H acts faithfully on S,., and therefore
that H N S,., = (1) since S,,, acts trivially on S, ...

By assumption either R, is abelian or both R, and S, ., have odd
order. Hence we conclude from Lemma 2.1 that there exists x € S,
with Cg.(x) =(1). We consider the action of L = R,H on the L -orbit
Q of x. By the above C.(x)NR,=(1) so |C.(x)|=|H]| for this
particular x € S,,,. Furthermore since H N S,.,, = (1) Lemma 1.4 im-
plies that every element of S, ., is centralized by some element of H of
order p. Thus by Lemma 2.3 (ii) there exists h € H* with

[L:C.(WI=|H|-|C.(x)|=|H.

Since [R,: Cg,(h)]=[L: C.(h)] this fact follows.

Let P=(P,P,,---). Then since P is the ascending union of the
groups R, and since H is finite, it follows from the above that there
exists h € H* with [P: Cp(h)]=|H . Again we have

Cr(h) =(Cp(h), Cp(h),---)
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and
|H]?= [P: Cp(h)]=T1,[P;: Cp(h)]

so h centralizes all P, with j sufficiently large. Since h also centralizes
all Q; with j sufficiently large, it follows that h centralizes F; for some
j>1. ButG; is solvable and h € G, h € F; so we have a contradiction
by Fitting’s theorem. This completes the proof.

We remark finally on locally solvable groups which are not neces-
sarily locally finite. If G is such a group and if H is a finitely generated
subgroup of G, then H is of course a finitely generated solvable
group. Thus by a theorem of Zalesskii [7] (or see [4] Theorem 4.2)
JK[H]= NK[H] and hence by Lemma 4.1 of [4] we have JK[G]=
N*K[G]. Now by Theorem 1.6 of [4]

N*K[G]1=JK[A'(G)] - KI[G]

where A*(G) is a certain locally finite characteristic subgroup of
G. Clearly A*(G) is locally finite and locally solvable so Theorem 2.5
applied to A*(G) yields results on JK[G].

3. Linear group reductions. We now begin our work on
locally finite linear groups over fields of finite characteristic ¢ # p. The
cases ¢ =0 and q = p have already been considered in [3] and [4]. In
the following, unless otherwise indicated, q will be a fixed prime
different from p and all groups will be locally finite linear groups in
characteristic q. The first lemma is well known. We let GL,(q")
denote the general linear group over GF(q~), the algebraic closure of
GF(q).

LeEMMA 3.1. Let G be an irreducible subgroup of GL,(F) with F
algebraically closed. Then G is conjugate in GL,(F) to a subgroup of
GL.(q").

Proof. Since F is algebraically closed we have F D GF(q~) and
since G acts irreducibly the linear span FG is the whole matrix ring F,.

Since FG = F, choose x,,x,, " - *,x, € G which form a basis for the
matrix ring F,. Then H =(x,,x,," -, X, ) is a finite subgroup of G and
the embedding of H in F, is clearly an absolutely irreducible represen-
tation for H in characteristic g. Now H is finite so all such representa-
tions are realizeable over GF(q~) and hence there exists a nonsingular
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matrix s € GL,(F) with s'Hs C GL,(q"). Replacing G by s'Gs we
may clearly assume that H C GL,(q").

We now proceed as in the proof of Burnside’s lemma. Let tr
denote the usual matrix trace so that tr defines a nondegenerate bilinear
form on F,. Hence the matrix [trxxx;] is nonsingular. Now let x €
G. Since the x,’s span F, we have

X = 2 ax;
for suitable a; € F. Hence multiplying by x; and taking traces yields
trxx =, atrxyx i=1,2,-,m.

Observe that xx, and xx; are elements of G. Thus they are periodic
matrices and have traces contained in GF(q®). Therefore the above is
a set of m equations over GF(q~) in the m unknowns a,, a, " - -, a,, wWith
nonzero determinant. The solution is therefore in GF(q~) so a, €
GF(q~) for all i and hence x € GL,(q").

In view of earlier work on linear groups it is reasonable to expect
that 0,(G)=(1) implies JK[G] nilpotent. Thus the following few
lemmas are relevant.

LEMMA 3.2. Let G C GL.(F) with 0,(G)=(1). Suppose that
G,=G N SL,(F) and JK[G,] is nilpotent. Then JK[G] is nilpotent

Proof. Now G,<9G and JK[G,] is nilpotent so by Lemma 1.7,
JK[G]=JK[D]-K[G] where D =Dg(G,). It therefore suffices to
show that JK[D] is nilpotent.

Now D, = D N G, = A(G,) and since D is a linear group, Lemma 1.2
(i) of [3] implies that D, has a subgroup Z of finite index which is central
in D. Since D/D,C GL,(F)/SL,(F) we have D/D, abelian. This
implies that H = C,(D,/Z) is a nilpotent normal subgroup of D of finite
index. Now D <G so O,(D) = (1) and hence O,(H)=(1). But H is
nilpotent so H is a p’-group and JK[H]=0. Finally [D: H] <~ so we
conclude from Lemma 16.8 of [2] that JK[D] is nilpotent.

LemMA 3.3. Let G C GL,(F) and suppose we know that for all
H <G if dim FH <dim FG then JK[H] is nilpotent. Let M G with
dim FM <dim FG. Then ceither JK[G] is nilpotent or [M: MN
Z(G)] < .
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Proof. Since dimFM <dimFG we know that JK[M] is
nilpotent. Hence by Lemma 1.7, D = Ds(M) carries the radical. Now
D <G and if dim FD <dim FG then JK[D] would be nilpotent and
hence so would JK[G]. On the other hand if dim FD = dim FG then
G CFD so by Lemma 1.2 (i) of [3] M has a subgroup of finite index
central in D and hence in G. Thus [M: M NZ(G)] < .

Let r be a prime. By a Sylow r-subgroup of G we mean a
maximal r-subgroup. Thus by definition, every r-subgroup is certainly
contained in a Sylow r-subgroup of G. Now suppose G is a locally
finite linear group. Then by a theorem of Platonov (see [6] Theorem
9.10), for each prime r, the Sylow r-subgroups of G are conjugate in
G. We will use this result implicitly in the remainder of this
paper. Furthermore we have

LEMMA 3.4. Let G C GL,(F) and let P be a Sylow p-subgroup of
G. Then P contains a normal abelian divisible subgroup A of finite
index, Moreover if F is algebraically closed then A can be diagonalized.

Since the existence of subgroups of finite index is frequently
annoying the following is useful. We use the subgroup ¥(G) as
defined in [5] §5.

LemMMA 3.5. Let G CGL,(F). Then G has a characteristic sub -
group G, such that G|/G, is a p' by finite group and such that G, has no
proper subgroups of finite index. Moreover if JK[G,) is nilpotent then
so is JK[G] and if $(Gy) carries JK[G,] then ¥(G) carries JK[G].

Proof. For any group G let R(G) be the intersection of all its
normal subgroups of finite index and let S(G) be given by S(G)/R(G) =
0,(G/R(G)). Then clearly R(G) and S(G) are characteristic sub-
groups of G. We show first that G C GL, (F) implies [G: S(G)] < .

Let P and A be given as in Lemma 3.4. If H is a normal subgroup
of G of finite index then H D A since A has no subgroup of finite
index. Since G has Sylow theorems it follows that P maps onto a
Sylow p-subgroup of G/H so |G/H|, =[P: A]. Now choose H <G
of finite index so that |G/H |, is as large as possible. Then G D H D
R(G) and H/R(G) is residually finite so it follows that H/R(G) is a
p'-group. Hence S(G)2D H and [G: S(G)] <.

Define G, = S(G)’, the group generated by all p-elements of S(G),
or equivalently G, = 07(S(G)). Clearly G, is characteristic in G and
G/G,is p’' by finite. We show now that G, has no proper subgroups of
finite index. Let S =S(G,). Then S is a characteristic subgroup of
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G, of finite index and hence S <<G. We consider the group G =
G/S. If C is the centralizer of G, in S(G) then certainly S(G)/C is
finite. Also C/(CNG,)CS(G)/G, is a p' -group so C has a finite
" central Sylow p -subgroup and we conclude that [C:0,(0)]1<
. Therefore O, (C) is a normal subgroup of G of finite index
contained in S(G) so clearly S(G) 2 0,(C) 2 R(G) since R(G)2 G2
S Hence by definition of S(G) we have that S(G)/0,(C) is a
group so S(G) is a p’-group and by definition of S = S(G,) we have
=(1) and G,= S(G,). Thus G/R(G,) is a p’'-group. Since G,=
S(G)” is generated by p-elements this yields G, = R(G,) and G, has no
proper subgroups of finite index.

Suppose now that JK[G,] is nilpotent. Since S(G)/G, is a p'-
group G, carries the radical of S(G) and hence JK[S(G)] is
nilpotent. Thus by Lemma 16.8 of [2], JK[G] is nilpotent. Finally
suppose ¥(G) carries the radical of G,. Again G, carries JK[S(G)] so
F(G,) carries the radical of S(G). Since ¥(H) is generated by
p-elements for any group H it follows easily that #(S(G))=
F(G,). Corollary 5.5 of [5] now yields the result.

4. Finite Sylow p -subgroups. Our linear group techni-
ques differ sharply accordingly as the Sylow p -subgroup of G is finite or
infinite. In this section we consider the finite case. The following
lemma is proved in [3] in a slightly different form. It also follows easily
from topological considerations. '

LeEmMMA 4.1. Let G CGL,(F) and let T\, T,,---, T, be a finite
number of affine subspaces of F, with GC UT. Then G has a
subgroup H of finite index with H C T, for some i.

Proof. We proceed as in Lemma 2.1 of [3] with S deleted and with
the T,’s affine subspaces. The latter causes no difficulty. At the end
of that proof we deduce that G permutes transitively by right multipli-
cation certain affine subspaces M, M,,---,M,. Since M|\NG# ¢
some M, contains the identity. If H is the stabilizer of this M; then
[G:H)]<» and MH C M, yields HC M, C T..

LEMMA 42. Let G CGL,(F), let y,,y, - --,y,€F, be a finite
number of matrices and let {T;} for i =1,2,---,r; j=1,2,--,5s be a
finite number of affine subspaces of F,. Suppose that for each x € G
there exists i,j with x'yx € T;. Then G has a subgroup H of finite
index such that for some fixed i,j and all h € H, h™'yh € T
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Proof. Observe that G acts on F, by conjugation and that this
yields a homomorphism of G into E = Endg(F,) = F,:.. Let the image
of G be denoted by G so that G is contained in the appropriate general
linear group. Furthermore for y € F, and ¢ € E we let y° denote the
image of y under e. Thus clearly for x EG, y €F, we have y* =
x'yx =y~

For each i,j let

M, ={e€E|y:€T,}.

Since Tj is an affine subspace of F, it follows easily that M; is an affine
subspace of E. Moreover by assumption G C UiL M,. Hence by
Lemma 4.1 G has a subgroup H of finite index with H C M; for some
i,j. If H is the complete inverse image of H in G then H has the
required properties.

If G C GL,(F) we let P,= P,(G) be the Sylow p-subgroup of the
set of scalar matrices contained in G. Thus P, is isomorphic to a
subgroup of the multiplicative group F —{0} = F°. Observe that P, is
independent of the choice of basis which gives rise to GL,(F). In
other words if s € GL,(F) and if G is replaced by s'Gs then
Py(s7'Gs) = P(G). As usual we let mp: K[G]— K[P,] denote the
natural projection and tr: F, = F the ordinary matrix trace. The main
result of this section is as follows.

ProposiTiION 4.3. Let G C GL,(F) and let

a =1+ ax € JK[G]

with x;#1 and with (o) € JK[P,). Suppose that the Sylow p-
subgroups of G are finite and that Q is a Sylow q-subgroup of G. Then
there exist x; € Supp a, a nonscalar group element, H C G a subgroup of
finite index and Q C Q a subgroup of finite index such that

trx'"(1—y)=0

forall h€H, y € Q.

Proof. Since G has only finitely many conjugacy classes of
p-elements it follows that there are only finitely many possibilities for
trx if x is a p-element. Say these values are wj,pz ", €
F. Furthermore if x is a {p, q}-element of G then writing x = x,x, as a
product of its p and g parts with (x,)*" = 1 we have since char F = q
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(trx)" =trx?™ =trxi" =(trx,)?.

Thus trx =trx, = w; for some i.
Let x € G. Then

a* =14 ax’i € JK[G]

and mp(a*) = mp(a) EJK[P,]. If yEQ then y is of course a g-
element so by Lemma 1.2 we deduce that for some i, x*& P,and x}y is a
{p, q}-element. Observe that this implies that x, is not a scalar matrix
since the scalars contain no elements of order q. Hence we have
shown that given x €G, y € Q there exist i,j with x,ESuppa a
nonscalar matrix and with trxiy = w;.

For fixed x and for those nonscalar x;’s let

M; ={y EF, |trx}y = u}.

Then M, is clearly an affine subspace of F, and we have QC
U M;. Thus by Lemma 4.1 Q has a subgroup Q, of finite index such
that for some subscript i = f(x) we have Q, C M, for some j. That is,
trxiy = pu; forally € Q.. Note that 1 € Q, so ; =trx?} and the above
becomes

trxi(1—-y)=0
for all y € Q.. Note also that by choice x; is not a scalar matrix.
Now for each nonscalar x; define S; to be the subspace of F, given

by

S =1 fx)=1i).

Observe then that for each x € G there exists i, namely i = f(x), with
xi €S. Thus by Lemma 4.2 G has a subgroup H of finite index such
that for some i,x% € S; forall h € H. Say this occurs for the nonscalar
matrix x;.

Let {xi} be a finite spanning set for S, with w, € G and with
fwy)=1. f Q= MN,Q., then [Q: Q)< and for all y € Q

trxt(1—y)=0

for all k. Thus for all s,€S, we have trs,(1-y)=0 and since S,
contains all H-conjugates of x, the result follows.
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Observe that in the above if Q is finite then the conclusion is
decidedly uninteresting. Namely we could then have Q = (1) so cer-
tainly trx”*(1—y)=0for y € Q. Fortunately in this case we can apply
the following well known theorem of Brauer and Feit (see [6] Corollary
9.7).

ProrosiTiON 4.4. (Brauer-Feit). Let G be a locally finite sub-
group of GL,(F) with F a field of characteristic ¢ >0. If the Sylow
q-subgroups of G are finite then G has a normal abelian subgroup of
finite index.

This is of course a modular analog of Jordan’s theorem for complex
linear groups. Furthermore there is a bound for the index depending
upon n and the size of the Sylow g-subgroups.

5. Infinite Sylow p -subgroups. We now consider the
case of infinite Sylow p-subgroups. This will require a close look at
p"th roots of unity.

LeEMMA 5.1. Let f>1 be an integer and assume that p |f — 1 and
that 4|f—1if p =2. Then for all integers a = 1

lfa—llp=|a|p'|f_1|p~

Proof. This is standard. We first consider some special
cases. Suppose p Y a. Since f =1(p) we have

-f;—_——ll=1+f+---+f"“'-=‘a(p)

SO Ifa_1|p=|f—1[p=|a|0|f—llp°
Now let a=p. If p=2then4|f—1so f=1+4k and

fo-1_ -
o1 1 =2+ 4k

Thus |f* —1|,=2|f —1},. On the other hand for p >2we havep |f— 1
so f =1+ pk(p?. Thus f' =1+ipk(p? and

1;1:11=1+f+'--+f""5p+p2(£-§2k(p2)

=p(p?.
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Therefore we have |f*—1|, =p|f—1|, =]|al, - |f— 1|,
The result follows easily by induction on a. Namely if a = bc is a
proper factorization then

fa-llp=l(fb)c_llp=lclp|fb_llp
=|Clp|blplf_1|p=|a|p',f_1|p-

LEMMA 5.2. Let GF(f) be a finite field and suppose that p |f—1
and that 4|f—1if p =2. Let n generate the Sylow p-subgroup of the
multiplicative group GF(f)°. Then for all n the polynomial x*" —n €
GF(f)(x] is irreducible.

Proof. Note that o(n)=p™ =|f—1|,. Thus if § is a root of
x”"—mn then o(8§)=pm". If &€ GF(f*) then p""=|f*—-1|, =
la|, -|f—1|, by Lemma 5.1 so p"=|a|, and p" =a. Thus x*" — 7
must be irreducible.

We now assume that G C GL,(q~) and that G has an infinite Sylow
p-subgroup P as described in Lemma 3.4. Furthermore by considering
a conjugate of G in GL,(q") if necessary we may assume that the
maximal abelian divisible subgroup A is diagonalized. If [P: A]l=p*°
then we define the field F, = Fy(G) by Fy= GF(q)[%] where o(%)=
p®*?. Observe that if F is any finite field containing F, then clearly
|F°|, Zp® and hence Lemma 5.2 with F = GF(f) will always
apply. We fix the choice of F,.

Let k = k(A) denote the maximal number of distinct eigenvalues of
any element of A. Clearly 1=k(A)=n. If k(A)=1then A consists
of scalar matrices and is essentially trivial for our purposes. Thus our
interest is in k(A)=2.

Let F be a finite subfield of GF(q®). By an F-functional
l: GF(q"), —» GF(q~) we mean a linear functional of the form

[([x;]) = i fixi

with f; € F, some f; = 0 so that not all diagonal entries occur and some
f.# 0 so that this is not the zero form. The following lemma is the crux
of our argument.
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LemMMA 5.3. Let G C GL,(q%) and let P be a Sylow p-subgroup of
G as described above and with A diagonal. Let

a =1+ kx; €JK[G]
with x;# 1 and mwp(a) € JK[P,]. Define
F = F(a) = Fg[trx,‘ lx,‘ S Supp a].

(1) Ifk(A)=3 then there exists an F-functional | and a nonscalar
x; with I(x;) € F.

(i) Ifk(A)=2and G C SL,(q") then there exists an F-functional |
and a nonscalar x; such that I(x;)" € F.

Proof. Since k(A) =2 we have A # (1) and we can choose y € A,
y#1 to have the maximal number k =k(A) of distinct
eigenvalues. Since any root of y in A has at least as many distinct
eigenvalues-as y does, by taking a suitable root if necessary, we may
assume that o(y)>n? This will only be needed for (ii).

Let L be the finite subfield of GF(q~) generated by F, and all the
entries of all the matrices x. Clearly L D F. Let |L°|, =p" and
choose x EA with x*" =y. Since A is diagonal we have x =
diag(A i, Az, o0, Ay).

Now x is a p-element so by Lemma 1.2 there exists x;Z P, such
that x,x is a p-element, say i = 1. This clearly implies that x, is not
scalar. Write

w, *

X = w,

* W,

so all w; €L and since x,x is a p-element it is conjugate to some
element z € P. Note that z may not be diagonal but let its eigenvalues
be i, 2, . Thus we have

) WA =trxx =trz =, w.

Choose p-element A € GF(q~) of sufficiently large order so that
Ay €E(A) and o(A)=p". Say o(A)=p"*™ and write

Ai=Ab;=APMbi+Ci 0§Ci<pm

pi = Adi= prnare 0=e<p™
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Then (1) yields

@) PDICITRSICES WILRIPE

Note that 0 (A?") = p" so A?” € L and thus A is a root of the polynomial
in L[t] given by

i (WAP™ )t —i (AP"a)te,

Furthermore since A”" in fact generates the p-part of L° Lemma 5.2
implies that the minimal equation for A over L has degree p™. Since
all ¢; and ¢ satisfy 0=c, ¢ <p™ we deduce therefore that this
polynomial must vanish identically. Hence

3 Z (A% = 3 APt

We first consider the left hand side (lhs) of (3). If ¢, =¢; then
AifA; = X277 50 (A, /A;)P" = 1and A" = A?". Note that by definition of
X

h

y =x"" =diag(A5", A%, -+, A2")

so we see that x has at least as many distinct ¢;’s as y has distinct
eigenvalues. Now certainly x has at least as many distinct eigenvalues
as it has distinct ¢;’s. Finally y € A was chosen to have the maximal
number k of distinct eigenvalues. All this implies that x has precisely
k distinct eigenvalues and that these have distinct ¢;’s. For conveni-
ence let us assume that the rows and columns are so labeled that
Ay, Ay, - -, A are distinct. Then the lhs of (3) looks like

k
lhs = ) (aid?™)t*
1

where each o; is the appropriate sum of those w;’s such that A; = A..
Now if some o; =0 then

l(x1)= 2 W; =0
A =Ai
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is an appropriate F-functional with value 0 € F since k 2. Thus we
may assume that o; # 0 for all i. This implies that the lhs of (3) contains
precisely k terms.

We now consider the right hand side (rhs) of (3). By (3) and the
above there must be at least k distinct e;’s.  Since 0(A) = p™*" we have
(wilp)P" = A" and hence w?" =pu?" if and only if ¢ =¢. Now
L D F, so h=Za by definition of F,, Hence z’" € A implies z*" €
A. Observe that z*" has eigenvalues w?", u%", -+, u2" so by definition
of k(A) there are at most k distinct «?"’s and hence at most k distinct
e.’s. This therefore implies that there are precisely k distinct e;’s say
€, €, 6.

Now observe that since h = a, u?* = u”?" implies p?" = u?" and
hence e, = ¢, Thus there are at least k distinct u%"’s. But z?" € A so
by definition of k there are at most k distinct w?"’s. Therefore we
deduce that e; = ¢; implies that u?" = w?" so (w:/i;)*" = 1 and w:/u; € F,
by definition of F,. Finally by grouping together all the terms of the rhs
with the same ¢, we have

k
rhs = Z (TA P4 )t
1

with 7, € F, since 7; is the sum of all those terms w;/u; with ¢ = e.
We now have the equal polynomials in ¢

k k
2 (@A™ =3 (AP
1 1

with the ¢;’s distinct, the ¢;’s distinct and all o;# 0. Thus the terms on
the right and left sides must match one for one and by renumbering the
right side if necessary we deduce that for i =1,2, -,k

O Ci=¢

g, = T,‘Apm(di_bi) Ti (S Fo.

Let w =A"" so that o(u)=p" and p generates the p-part of
L°. Then o, =7u%"* Now clearly LDFDF, so if |F°[,=p" we
have h =r and say h =r+s. Write

o =Tt = i P 0=v <p-

Then , € F,CF, u” €F, trx,EF so
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k
trx‘ =0, +0-2+ “ e +a-k —_ 2 (Tiup!u,)”v,
1
and u is a root of the polynomial in F[t] given by
k
trx, — 2 (ﬂ“P'u,)tv:-
1

But o(u?)=p” =|F°|, so Lemma 5.2 implies that the minimal polyno-
mial of u over F has degree p°. Since 0=uv, <p°* we deduce that

k
) > (Pt =trx,
1

Suppose two distinct v;’s occur. Then let v be one such nonzero
v. It follows that

2 T =0
n=v

SO

u=v

is an appropriate F-functional for x, with value 0 € F.
Thus we may suppose that all v; = v. If trx, #0 then by (5) we
must have v = 0 and hence since k =2

lx)=0,=1uP"EF
is an appropriate functional. Also if k >2 then
[(x)) = o\/Tpu?™ = oo TouP™ =0
is an appropriate F-functional with value 0 € F.
There remains the case k(A) = 2, trx, = 0 and here we can assume
G g SL,,(qw). Note that g, + g, = trx] =0 and by (4) g, = 71[L|/A| and

0, = T2i2/A,.  Suppose that A, occurs in x with multiplicity b so that A,
occurs with multiplicity n —b. Then

1=detx = A5A57°.
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Now suppose that ¢; = e, for ¢ values of j so ¢ = e, for n — ¢ values of
j. Since e; = ¢; implies that y;/g; is a p “th root of unity we then have

l=detz =puins"p

where p?* =1 and hence p € F,C F.
By renumbering if necessary we may suppose that 0(A,) Z 0(A,) so
that o(A,) = 0(x). Since o,= — o, we have using uiu; “ €F

ol =0i(—0)" =(T/A) (= T A)"  pips™
)
(6) ol =nATAT"
for some n € F. Thus using A3® =A7* we have

O.rlt(n—b) —

n—b/\ Tc("_b)A (zc—n)(n—b)

n

— n-by —c(n=b)y) —b(c—n)
=mn A 1 /\ 1
=7

"—bA n(b-c)
1 .

Note that o, #0so n#0and o, €L. Thus A}* 9 is a p-element of
L so by definition of h,o(A"*)=p* and A2"¢9=1. Now o(x) =
o(A) and x*" =y so y"* 9 =xP"®-9 =1 On the other hand y was
chosen to have order larger than n2.  Since 1 = b, ¢ = n — 1 this implies
easily that b = ¢. Therefore (6) yields

ol =mAPAi"=n€EF

and /(x,) = o, is an appropriate F-functional with value an nth root of
an element of F. This completes the proof.

The main result of this section is now an easy consequence.

ProPOSITION 5.4. Given the assumptions of Lemma 5.3, there
exists a subgroup H of finite index in G, an F-functional | and a
nonscalar x; € Supp a with

Hx 3y =1(x:)

for all h € H.



ON THE SEMISIMPLICITY OF GROUP RINGS 201

Proof. We use the notation of Lemma 5.3. For each F-
functional | and constant ¢ with ¢" € F let

M, c)={y €GF(q). |l(y)=c}.

Then M(l,c) is an affine subspace of the matrix ring
GF(q~).. Furthermore since F is finite there are only finitely many of
these.

Let x € G. Then

a* =1+ kxi €JK[G]

with x¥#1 and since P, is central, ma(a®) =
() ZJK[P,]. Moreover since trx*=trx; we have F(a*)=
F(a). Thus by Lemma 5.3 applied to a*, there exists an F-functional /
and nonscalar x} (and hence x; is nonscalar) so that [(x}) = ¢ for some ¢
with ¢" € F. In other words we have shown that for each x € G there
exists a nonscalar x; € Supp a with x¥ € M(l,c) for some [, c. Thus by
Lemma 4.2 G has a subgroup H of finite index such that for some fixed
i,l,c we have x" € M(l,c) for all h € H. Finally since 1€ H, the
definition of M(/, c) yields

[(x")=c=1(x}
and the result follows.

6. Some linear groups. The results of the preceding two
sections lead us fairly naturally to the following definition. Let G C
GL,(F). We say that G is a large subgroup of GL,(F) if for all
nonscalar matrices x € G and all subgroups H of finite index in G, the
F-linear span of the matrices x"—x" for all h, h,€ H consists
precisely of all the matrices in F, of trace 0. Let us write S(x, H) for
the above linear span of x" — x": and T(F,) for the set of all matrices of
trace 0. We have clearly

LEmMA 6.1. Let G C GL,(F).

(i) If L is a field extension of F then G is large in GL,(L) if and
only if it is large in GL,(F).

(i) Ifs € GL,(F) then G islarge in GL,(F) if and only if s"'Gs is
large.

(iii) Suppose G islargein GL,(F), N <Gand [G: H]<®. Then
His large in GL,(F). Moreover either N consists of scalar matrices or
N acts irreducibly.

Our main result is as follows.
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THEOREM 6.2. Let K be a field of characteristic p >0 and let G be
a locally finite group. Suppose that G C SL,(F) is a large subgroup of
GL,(F) where F is a field of finite characteristic q# p. If P, denotes
the Sylow p-subgroup of the group of scalar matrices in G, then

JK[G]=JK[P,]-K[G].

Proof. By Lemma 6.1 (i) we may assume that F is algebraically
closed. If G consists of scalar matrices then, since G C SL,.(F), G is
in fact a finite abelian group so the result is clearly true here. Thus we
may assume by Lemma 6.1 (iii) that G acts irreducibly. Now accord-
ing to Lemma 3.1 G is conjugate to a subgroup of GL,(q*). Therefore
finally by Lemma 6.1 (i) (ii) we may assume that F = GF(q~) and clearly
also that n = 2.

Now we have

m(JK[G]) - KIG]1 2 JK[G] 2 JK[P] - K[G].

Thus we need only show that 7, (JK[G]) CJK[P,]. Suppose by way
of  contradiction  that  there  exists B € JKI[G] with
me(B) € JK[P,]. Then certainly mp(B8)#0 so we can choose w €
SuppB, w EP,. If B=aw +--- then clearly a =a'w™'B €JK|[G],
me(@) = a”'w'mp(B) & JK[Po] and

a=1+2 k,‘x,‘

with x;# 1. There are now three cases to consider.

Suppose first that the Sylow p-subgroups of G are infinite and use
the notation of Proposition 5.4. By replacing G by a conjugate if
necessary we may assume that the divisible subgroup A of P is
diagonal. Since P is infinite and [P: A]<®~ we have that A is
infinite. Furthermore G C SL,(q*) so k(A)=2 since otherwise A
would consist of scalars and have order at most n. Thus Proposition
5.4 applies and there exists a subgroup H of G of finite index, a
functional !/ for some subfield of GF(q~) and a nonscalar x; € Supp «
with [(x%)=1(x;) for all h€H. Then for h,h,€H we have
[(x""—x"%) =0 so | annihilates S(x;, H). Since G is large, | therefore
annihilates T(GF(q~),) certainly a contradiction since n = 2.

Now suppose that the Sylow p-subgroups of G are finite but the
Sylow g -subgroups of G are infinite and use the notation of Proposition
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4.3. Then there exists a nonscalar x; € Supp a, H C G a subgroup of
finite index and Q C Q a subgroup of finite index such that

trx"(1—-y)=0

for all h €H, y € Q. Thus for a fixed y € Q we have trS(x, h) X
(1—-y)=0so since G is large tr T(GF(q~),)(1—y) =0 and hence 1 —y
is a scalar matrix. But then y is a scalar g-element so y =1 and
Q =(1), a contradiction since we assumed Q is infinite.

Finally suppose that the Sylow g-subgroups of G are finite. Then
by the Brauer-Feit result, Proposition 4.4, G has a normal abelian
subgroup B of finite index. Since n >1 B cannot be irreducible and
hence by Lemma 6.1 (iii) B consists of scalar matrices and is central in
G. Now for any x € G we have S(x, B) =0# T(GF(q*),) so G must
consist of scalar matrices, a contradiction since n>1 and G is
irreducible. Thus 7 (JK[G]) CJK[P,] and the theorem is proved.

We remark that the assumption of largeness is not as restrictive as
it might seem. For example if one wished to study linear groups
inductively on the dimension of FG as in Lemma 3.3 then the limiting
groups in which induction does not work might be expected to be
large. We will see this below at least when n = 2.

In addition the assumption G C SL,(F) in the above is not very
restrictive in view of Lemma 3.2. Finally we could of course neaten
the definition of large by assuming that G has no proper subgroups of
finite index. We could safely do this in view of Lemma 3.5. We now
consider subgroups of GL,(F).

LemMA 6.3. Let G C GLF) with F algebraically closed and let
M be a subspace of F,. Suppose T(F,)>M >0 and g"'Mg = M for all
g €G. Then either M consists of scalar matrices (which can only
occur for ¢ = 2) or G has a subgroup of finite index which is reducible.

Proof. Let u,= (g (1)) and u,= <(1) 8) Then it is easy to see
that g~'u,g € Fu, implies that g is upper triangular and g 'u,g € Fu,
implies that g is diagonal. Hence if G normalizes either Fu, or Fu,
then G is reducible. We observe in general that if s € GL,(F) then G
normalizes M if and only if s 'Gs normalizes s 'Ms. Thus we can
freely modify M by conjugation. Since dimT(F,)=3 we have
dimM =1 or 2.

Suppose first that dim M = 2. Then it follows immediately that for
some nonscalar matrix 7
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M ={a € T(F,)|trar = 0}.

If 7 has distinct eigenvalues then by conjugating we may assume 7 is
diagonal and then M is the set of all matrices of the form

(2 ?)) Observe now that M contains precisely two 1-dimensional

subspaces of singular matrices namely Fu, and Fu, where u;=

((1) g) Since conjugation preserves rank G must permute these two

and G has a subgroup of index =2 which normalizes Fu, and is
therefore reducible. If 7 has distinct eigenvalues then by conjugating
i) tl) and then M is the set of all matrices of
the form <g_:). Since Fu, is then the unique subspace of M of

we may assume that 7 = (

singular matrices we see that G normalizes Fu, and is reducible.
Now let dimM =1 so that M = Fr with 7 nonscalar. By con-

jugating we may assume that 7 is diagonal or (:) tl) Observe that G

normalizes M +S where S is the set of scalar matrices. If 7 is
diagonal then M + S consists of all the diagonal matrices. Thus M + S
contains precisely two subspaces of singular matrices one of which is
Fu,. It follows that a subgroup of G of index =2 normalizes Fu, and

is therefore reducible. Finally if 7 = (g tl) then M + S consists of all

0 :) so Fu, is its unique subspace of singular

matrices and the lemma is proved.

matrices of the form (a

LEmMA 6.4. Let G C GL,(F) with F algebraically closed. Then
either G is large or G has a subgroup of finite index which is reducible.

Proof. Suppose G is not large and choose x € G a nonscalar
matrix and HCG a subgroup of finite index with
S(x, H)# T(F,). Then T(F,)> S(x, H)D0and S(x, H) is clearly nor-
malized by H. Thus if S(x, H) is not contained in the scalar matrices
then by Lemma 6.3 applied to H we see that H has a reducible subgroup
of finite index. Finally if S(x, H) consists of scalar matrices then for
all h € H, x" = x + Al for some A € F. Since det x" =detx there are
at most two possible values for A. Therefore [H: Cy(x)]=2and Cy(x)
is reducible since its centralizer contains the nonscalar matrix x.

As an application we have for example
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PROPOSITION 6.5. Let G be a locally finite subgroup of GL,(F) with
char F=q >0. Let K be a field of characteristic p # q and suppose
0,(G)={1). Then JK[G] is nilpotent.

Proof. We may clearly assume that F is algebraically closed and
by Lemma 3.2 we may assume that G C SL,(F). Hence if G is large in
GL(F) then Theorem 6.2 yields the result. On the other hand if G is
not large then by Lemma 6.4 G has a normal subgroup H of finite index
which is reducible. Then H has a normal Sylow g-subgroup Q with
abelian quotient. If Q is finite then Cy(Q) is a normal nilpotent
subgroup of G of finite index. Since O,(G) = (1), C4(Q) is a p'-group
so its group ring is semisimple. On the other hand if Q is infinite then
we have easily here D =D,(Q) centralizes Q. Thus again D is a
p’-group and by Lemma 1.7 JK[H]=JK[D]- K[H]=0. Thereforein
either case G has a subgroup of finite index with a semisimple group
ring and Lemma 16.8 of [2] yields the result.

We remark that there is no real difficulty in dropping the 0,(G) =
(1) assumption in the above. The following is certainly not surprising.

LEMMA 6.6. Let F be an infinite field. Then SL,(F) is large in
GL,(F).

Proof. First PSL,(F) is simple and infinite so SL,(F) has no
proper subgroups of finite index. Let G = SL,(F) and let x € G be
any nonscalar matrix. Now all vectors cannot be eigenvectors for x so
choose v, so that v, = xv, & Fv,. If we then extend v,, v, to a basis of
the space V being acted on, then by a conjugation in G we may assume

x has the form
0ro0---0
x:
( * )

with r#0. Since F is infinite choose a € F, a # 0 with a® # 1 and set

d,=diag(a™ ", a,a, ", a)

—(n-1) e
"V, a).

d,=diag(a, a

Then d,,d,€ G and a " # a since a"# 1.
Now it is easy to see that y = di'xd, — x looks like

Ols 0 -+ 0
y=( )
* 0
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with s #0 and then z = d;'yd,—y looks like

()

with a# 0. Moreover since a™# 1
a"di'zdi—z=a(a™ — ey,

so the matrix unit e,;, is contained in S(x, G).

Finally by an appropriate permutation of the basis effected by
conjugation in G, e, is conjugate to any ce, for some ¢ #0 and any
i#]j. Soalle; withi#jarein S(x,G). Since e; is conjugate via 1 + ¢;
to (e; —e;)+(e;—e¢;) we conclude that e, —e¢; €S(x,G). Thus
S(x, G) D T(F,) and the lemma is proved.

In our last result we drop our assumption that groups are locally
finite or that char F = q. However the only new results here concern
those particular cases.

PrOPOSITION 6.7. Let K be a field of characteristic p >0 and let F
be an infinite field of any characteristic.

() IfG =SL,(F) or GL,(F) and if P,= P,(G) denotes the Sylow
p-subgroup of the scalar matrices in G then

JK[G]=JK[P,] - K[G].
(i) If G =PSL,(F) then JK[G]=0.

Proof. Suppose first that FZ GF(q~) for some prime q possibly
equal top. Then the groups G = SL,(F), GL,(F) and PSL, (F) are not
locally finite. By Theorems 4.4, 48 and 1.6 of [4], JK[G]=
JK[A™(G)]- K[G] where A*(G) is a certain locally finite characteristic
subgroup of G. The result now follows easily in this case.

Now let F C GF(p~) and apply Theorem 4.4 of [4] and Theorem
20.3 of [2]. It then follows immediately that for G = PSL,(F) we have
JK[G]=0. On the other hand if G = SL,(F) or GL,(F) then clearly
P,=0,(G) and G/P, has no finite normal subgroup whose order is
divisible by p. Thus in this case we have easily JK[G]=
JKI[P] - K[G].

Finally let F C GF(q~) with q# p. By Lemma 6.6, G = SL,(F) is
large in GL,(F) and hence by Theorem 6.2, JK[G]=
JK[P,]- K[G]. In particular JK[G] is nilpotent. Now let G =
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GL,(G) and set D = Ds(SL,(F)). Then by the above and Lemma 1.7,
D carries the radical of G. Since SL,(F) has no proper subgroups of
finite index we have clearly D = C;(SL, (F)) is the set of scalar matrices
in G so the result follows here. In addition since the center of SL,(F)
is finite we see that K[PSL,(F)] is a direct summand of the semisimple
algebra K[SL,(F)/P,]. Thus K[PSL,(F)] is semisimple and the prop-
osition is proved.

On the other hand, as was pointed out by A. E. Zalesskii, other
types of classical groups are not large in general. For example let G be
the orthogonal group with respect to transpose ¢ so that

G ={x eGL,(F)|x'x =1}.

If n =2 then G contains the nonscalar symmetric matrix

0 1
0 I
where I is the (n —2) X (n — 2) identity matrix. Since G normalizes the

set of symmetric matrices we have clearly S(x, G) # T(F,) here and
thus G is not large.

Added in proof. A. E. Zalesskii has suggested the following nice
paraphrase of Lemma 1.5. The proof is essentially the same.

LEMMA 1.5'. Let H be a finite subgroup of G and suppose that for
all x € G, HN H* contains an element of order p. Then JK[G]N
K[H]#0.
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