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COVERING THE VERTICES OF A GRAPH
BY VERTEX-DISJOINT PATHS

SHAHBAZ NOORVASH

Define the path-covering number μ(G) of a finite graph G
to be the minimum number of vertex-disjoint paths required to
cover the vertices of G Let g(n,k) be the minimum integer so
that every graph, G, with n vertices and at least g(n,k) edges
has μ(G)^=k. A relationship between μ(G) and the degree
sequence for a graph G is found; this is used to show that

λ

2(n - k)(n - k - 1 ) + 1 ̂  g ( n , k ) ^ { { n - \){n - k - 1) + 1

A further extremal problem is solved.

1. Introduct ion. A graph G is a finite collection V(G) of
vertices (or points) some pairs of which are joined by a single edge; the
collection of edges is denoted by <£(G). H is a subgraph of G if
V(H) C V{G) and Έ{H) C Έ{G). If H and K are two vertex-disjoint
graphs, HUK is the graph with T(H U K) = Ψ(H)UV(K) and
« ( H U J C ) = « ( H ) U ? ( K ) ; H + K is HUK together with all
\T(H)\ I T(K)\ possible choices of edges joining a vertex of if to a
vertex of K. G denotes the complement of G; Γπ denotes the
complete graph with n vertices and Γm n denotes the complete bipartite
graph, Γm +Γ n .

Let G be a graph. A path of length n in G is an ordered sequence
P = {au α2, , an) of distinct points, where if n S 2, a{ is adjacent to ai+i

for 1 ^ / ^ n - l . (al9a29

m * -,an) is the same path as
(aH9 an-u , α,). If P and ζ) are paths, by P * ζ) we shall mean that one
end-point, a of F, is adjacent to one end-point, b of Q, and that P * Q is
formed by joining a to b. More specifically we may write Pa * bQ or
P * bQ or Pα * Q to specify, in varying degrees, which end-point of P is
joined to which end-point of Q. Also, (aua29 * ,α n )*(bi ,b 2 , * * ,bm"> =
<flj,α2, * **,«„, bub2, *,bm) where απ must be adjacent to &,. A
Hamilton-path is a path of length |y*(G)| . A path-cover of G is a
collection, Sf9 of vertex-disjoint paths such that every vertex of G lies
on some path in if. The path-covering number, denoted by μ(G), of G
is defined by:

μ(G) = Min{| Sf |: Sf is a path-cover of G}.
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A minimal path-cover (M.P.C.) of G is a path-cover, tf of G, with

We note that μ(G) is an invariant of G and remark that a graph, G,
has a Hamilton-path if and only if μ(G) = 1 . It has been shown by
Nash-Williams [1] and others that the problem of classifying all Hamil-
tonian graphs is equivalent to that of classifying all graphs which have a
Hamilton-path. Thus a classification of all graphs with μ(G) = k
(k = 1,2,3, •) would also solve the Hamiltonian problem as a special
case.

Historically, O, Ore [3] first introduced the graphical invariant
μ. In [2] some elementary properties of μ are derived. In §2 we
generalize a result of O. Ore (Theorem 2.1 in [3]) and in §3 we consider
two extremal problems involving μ.

2. Valency considerations. In this section we derive a
connection between the path-covering number and the degree sequence
of a graph. We begin with some definitions:

DEFINITION 2.1. Let A be a finite set and / a real-valued function

defined on the collection of subsets of A. For B CA and for any

integer / with 1 ̂  i g | B |, define the function 5, by:

A)-,**) — ZJ J v w
CCB
\C]=i

DEFINITION 2.2. If G is a graph, B C T(G), and either H C Y(G)
or H is a subgraph of G, then define the generalized valence function, p,
by

= the number of vertices of H which are adjacent

to every member of B.

If x is a vertex of G, then we write ρ(x) for pG({*}).

DEFINITION 2.3. Let G be a graph and X C V(G) with |X | = k ^ 2.
Define:

The following lemma is easily verified:
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L E M M A 2.4. If X = {xux2, ,x fc}, and l ^ m ^k - 1, then

We n o w state the main result of this sect ion:

THEOREM 2.5. Let G be a graph with μ=μ(G)^2,\V(G)\ = n
and k an integer with 2 g f c g μ , then there exists a set X consisting of k
mutually non-adjacent vertices of G, satisfying:

(2.6) μ^n-D(G,X).

Note that the case k = 2 reduces to the result of Ore (Theorem 2.1
in [3]):

Proof. Let & = {PuPi, ,Pμ} be a M.P.C. for G. For each
1 ̂  ί g /c, let Xi be an end-vertex of Pf. Since 5̂  is a M.P.C, x, is not
adjacent to JC; for iVj.

Let X = {JC,,JC2, ••-,**}. We first show that for 1^/^fc and
l ^ j g μ , the inequality:

(2.7)

holds. Let Pj be the path (al9a29- —,at), let l ^ m ^ / c f m^/, and
consider the following cases:

(i) i = j . In this case assume that JC, = α,.
(ii) m = j . In this case assume that xm = at.

(iii) m ^ j and i^j.
Let

A ={r : αΓ is adjacent to JCJ,

jBm ={r : αΓ_! is adjacent to xm}

and

We claim that A Π Bm = φ, for if r G A Π Bm, then in each case we can
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construct a path-cover, & for G, as follows (see Figure 2.8):

x, - Qx a2 a

Path P,

Case (i)

Path P,

Case (ii)

ax a2

o o o-

tfr-i ar

Path P,

at

In case (i), let:

X,

Case (iii)

FIGURE 2.8

= if U {<α,, αf_,, " ,αr,x,, α2, α3, , α r _,)*x m P m }- {Pi,Pm}.
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In case (ii), let:

SΓ = ίf u {<α,, α2, , αΓ-,, xm, α,_,, α,_2, , flr> * xt P { } - {Pn Pm}.

In case (iii), let:

In either case, \SΓ \ = \ίf\-\<\ίf\, contradicting the minimality of
if. Hence A Π Bm = φ. Also, in each case a}fέA'9 so AC
Pi-BΌ{aι}. This gives \A | g l ^ | - |JB U{α,}|, since BU{α,}C
Py. But then, since a{£B, we get:

(2.9) | A | = g | P , | - ( l + | B | ) .

For 1 ^ m ̂  /c, let:

Cm ={r: ar is adjacent to xm}

Then since xm is not adjacent to ax, \ Cm \ = | Bm \ and:

ίB| = U Bn U

fe-l

Σ
ι = \

= Σ(-D'+1

ISmι<m2<
Ic m i ncn nc,

So since | A \
(2.7) for \^i

pPi({x,}), (2.7) follows from (2.9) and (2.10). Summing
k and applying Lemma 2.4, we get:
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Summing (2.11) for 1 ^ / g μ , we get:

from which (2.6) follows.

3. Extremal problems.

DEFINITION 3.1. Let k and n be integers with 1 g fc ^ n. Define:

g(n,k) = Min{m: every graph, G, with |°F(G)| = n and

| £ ( G ) | ^ m has μ(G)^k}.

In this section we determine bounds for g(n,k). See [4] for
techniques in proving the following:

LEMMA 3.2.

(3.3) g (-

(3.4)

(3.5)
i=2

LEMMA 3.6. Let Kbea graph with | T(K) \ = s ^\,andletkbe an
integer with k ^ 2, and suppose H = Γk + X, f/ten:

Proo/. For 1 g ί g k - 1 and B C T(Γk) with j B | = i, each member

of B is adjacent to every member of V(K). There are ί . j choices for

B and | T ( K ) | = s; thus:



COVERING THE VERTICES OF A GRAPH 165

This gives:

= 2s, using (3.3).

T H E O R E M 3.7. For \^k^n,

(3.8) g{n,k)M{n-\)(n-k-\)+\.

Proof. Let G be a graph with | r ( G ) | = n, and
Hn - l)(n — fc — 1)+ 1. Suppose μ(G)> k and X = {JC,, JC2, * -, Jcfc, Jcfc+i}
is a set of mutually nonadjacent vertices of G.

G may be considered to have been obtained from the complete
graph Γn through the elimination of at most:

\ n ( n - \ ) - \ { n - \ ) { n - k - \ ) - \ = \ ( n - l ) ( f c + l ) - l

edges. \k(k + 1) are removed in obtaining, from Γπ, the graph H in
which only members of X are nonadjacent. Thus, to obtain G from if,
at most:

(3.9) \{n - 1) (k + 1 ) - 1 -\k{k + 1) = \{n - k - \){k + 1 ) - 1

edges are removed from if.
We wish to compute D(G,X). By Lemma 3.6,

(3.10) D(tf,X) = 2 ( n - f c - l ) .

Now suppose that at some stage in the transformation from H to G,
we have obtained a graph K with «(ff) D «(K) D «(G) and Y(K) =
T(H) = r ( G ) . Let L = K - e where g G «(K) - «(G). We wish to
know the effect, /(e) = D(L, X) - D(K, X), on D, of removing the edge
e. Since e is an edge of if, it cannot join two points of X. If neither
end-point of e is in X, then f(e) = 0 since 5,(pκ,X) = Si(ρuX) for
1 ^ i: ̂  k. Now suppose that one end-point, y,, of e is in X and that the
other end-point, υ, is not in X. Let y,, y2, * ',)>] be the points of X
which are adjacent to v in the graph K. Note that 1 ̂ / ^/c f 1.
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If 1^/^i and B C ^ j v J , ] with |JB| = i - l , and C =
B U{yi}, then | C | = i and v is adjacent to every member of C in the

graph K but not in the graph L. There are \ _ i) choices for such a

set C. Furthermore, for any other combination of a vertex, t, and a set
A C X with IA I = i, t is adjacent to every member of A in the graph
L. Thus:

f - ( ΐ - Ξ τ ) for i ^ ί = g j
Si(puX)-Si(Pκ9X) = \ V ί ] /

I 0 for />/.

This gives:

{:!)]

fc +
2

i f i = k + ι

iί-mk-i + D(j:j)] if 2^/s
if / = 1

if 3 ^ / ^ ,

if / = 2
fc + 1
1 if i = 1

using (3.4) and (3.5).
Notice that /, ^ f2 ^ •••ί/ t g/, t |<0 and that in order to realize

the effect fh edges with effects fk+u fk, ,fi+ι must first be
removed. Hence when (k + 1) edges are removed, the combined effect
is at least:

* + ι

Σ/.--2.
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So if r edges are removed in obtaining G from H,

(3.11) D ( G , X ) - D ( H , X ) g - ^ .

Using (3.9) and (3.10) in (3.11) now gives:

(3.12) D{G, X) § [2(n - k - 1) - (n - k - 1) + 2/(fc + 1)] > n - fc - 1.

But Theorem 2.5 guarantees the existence of a set X as constructed
above, and satisfying:

This contradicts (3.12) and completes the proof of the theorem.

COROLLARY 3.13. For n ^ 4, g(n, n - 3) = n.

Proo/. The bipartite graph Γlπ_, is a graph with n vertices, (n - 1)
edges and path-covering number (n - 2). Thus g(n, n - 3) ̂  n. The
reverse inequality is given by Theorem 3.7.

To obtain a lower bound for g(n, fc), consider the graph G =
Γn-*UΪ\; then μ(G) = /c + l, while | r ( G ) | = n and |«(G)| =
\{n-\){n - fc-1). This gives:

PROPOSITION 3.14. For n > f c g l

(3.15) g(n,fc)^i(n-fc)(ιi-fc-l)+i.

The following proposition gives some results that are easily ver-
ified:

PROPOSITION 3.15.

(i) g(n,n) = 0, g(n + 1, n) = 1, g(n + 2, n) = 2 /or n g 1
(ii) g(6,2) = 7
(iii) g(n + U + l)έg(n,fc

Part (iii) can be seen by letting G = H U{x} where H is a graph
with n vertices, g(n, k) - 1 edges, and μ(H) = /c + 1, and c is an isolated
vertex with x£ | /th x ^ T(i ί) . Then G has (n + 1) vertices, g(n,k)- 1
edges, and (G) = fc + 2.
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In the case k = 1, the upper bound in (3.8) is seen to be the same as
the lower bound in (3.15) and hence equality holds for g(n,k) in both
inequalities. However, Corollary 3.13 shows that the upper bound in
(3.8) and not the lower bound in (3.15) is achieved in the case
k = n - 3. * Part (ii) of Proposition 3.15 shows a case where the lower
bound and not the upper bound is achieved. It is conjectured that for
small values of fc, g(n, k) is close to the lower bound in (3.15), while for
large values of k,g(n,k) is closer to the upper bound in (3.8).

We now turn to another extremal problem. Let v and n be
integers with 0 ̂  υ ̂  n. Define:

h(n, v) = Min{k: every graph, G, with \V(G)\ = n and

for every x G V(G)9 has

THEOREM 3.16.

1 if v^τ

n -2v if v <-z.

Proof. The case v^- and the upper bound h(n,v)^n -2v if

v < -z follows from 0. Ore's result (the note to Theorem 2.5). If υ < -z,

let K=Γvn^υ. Then clearly | r ( X ) | = π and p(x)^v for every
JC <ΞT(G); and in [2] (Theorem 2.2.10) we show that μ(X) =
n - 2v. Hence

h(n,v)^ n -2v

completing the proof of the theorem.
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