COVERING THE VERTICES OF A GRAPH BY VERTEX-DISJOINT PATHS

Shahbaz Noorvash

Abstract

Define the path-covering number $\mu(G)$ of a finite graph G to be the minimum number of vertex-disjoint paths required to cover the vertices of G. Let $g(n, k)$ be the minimum integer so that every graph, G, with n vertices and at least $g(n, k)$ edges has $\mu(G) \leqq k$. A relationship between $\mu(G)$ and the degree sequence for a graph G is found; this is used to show that

$$
\frac{1}{2}(n-k)(n-k-1)+1 \leqq g(n, k) \leqq \frac{1}{2}(n-1)(n-k-1)+1
$$

A further extremal problem is solved.

1. Introduction. A graph G is a finite collection $\mathscr{V}(G)$ of vertices (or points) some pairs of which are joined by a single edge; the collection of edges is denoted by $\mathscr{E}(G) . \mathrm{H}$ is a subgraph of G if $\mathscr{V}(H) \subseteq \mathscr{V}(G)$ and $\mathscr{E}(H) \subseteq \mathscr{E}(G)$. If H and K are two vertex-disjoint graphs, $H \cup K$ is the graph with $\mathscr{V}(H \cup K)=\mathscr{V}(H) \cup \mathscr{V}(K)$ and $\mathscr{E}(H \cup K)=\mathscr{E}(H) \cup \mathscr{E}(K) ; \quad H+K \quad$ is $H \cup K$ together with all $|\mathscr{V}(H)||\mathscr{V}(K)|$ possible choices of edges joining a vertex of H to a vertex of $K . \bar{G}$ denotes the complement of $G ; \Gamma_{n}$ denotes the complete graph with n vertices and $\Gamma_{m, n}$ denotes the complete bipartite graph, $\bar{\Gamma}_{m}+\bar{\Gamma}_{n}$.

Let G be a graph. A path of length n in G is an ordered sequence $P=\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle$ of distinct points, where if $n \geqq 2, a_{i}$ is adjacent to a_{i+1} for $\quad 1 \leqq i \leqq n-1 . \quad\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle \quad$ is the same path as $\left\langle a_{n}, a_{n-1}, \cdots, a_{1}\right\rangle$. If P and Q are paths, by $P * Q$ we shall mean that one end-point, a of P, is adjacent to one end-point, b of Q, and that $P * Q$ is formed by joining a to b. More specifically we may write $P a * b Q$ or $P * b Q$ or $P a * Q$ to specify, in varying degrees, which end-point of P is joined to which end-point of Q. Also, $\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle *\left\langle b_{1}, b_{2}, \cdots, b_{m}\right\rangle=$ $\left\langle a_{1}, a_{2}, \cdots, a_{n}, b_{1}, b_{2}, \cdots, b_{m}\right\rangle$ where a_{n} must be adjacent to b_{1}. A Hamilton-path is a path of length $|\mathscr{V}(G)|$. A path-cover of G is a collection, \mathscr{P}, of vertex-disjoint paths such that every vertex of G lies on some path in \mathscr{S}. The path-covering number, denoted by $\mu(G)$, of G is defined by:

$$
\mu(G)=\operatorname{Min}\{|\mathscr{S}|: \mathscr{S} \text { is a path-cover of } G\}
$$

A minimal path-cover (M.P.C.) of G is a path-cover, \mathscr{S} of G, with $|\mathscr{S}|=\mu(G)$.

We note that $\mu(G)$ is an invariant of G and remark that a graph, G, has a Hamilton-path if and only if $\mu(G)=1$. It has been shown by Nash-Williams [1] and others that the problem of classifying all Hamiltonian graphs is equivalent to that of classifying all graphs which have a Hamilton-path. Thus a classification of all graphs with $\mu(G)=k$ ($k=1,2,3, \cdots$) would also solve the Hamiltonian problem as a special case.

Historically, O, Ore [3] first introduced the graphical invariant μ. In [2] some elementary properties of μ are derived. In §2 we generalize a result of O. Ore (Theorem 2.1 in [3]) and in $\S 3$ we consider two extremal problems involving μ.
2. Valency considerations. In this section we derive a connection between the path-covering number and the degree sequence of a graph. We begin with some definitions:

Definition 2.1. Let A be a finite set and f a real-valued function defined on the collection of subsets of A. For $B \subseteq A$ and for any integer i with $1 \leqq i \leqq|B|$, define the function S_{i} by:

$$
S_{i}(f, B)=\sum_{\substack{C \subset B \\|C|=i}} f(C)
$$

Definition 2.2. If G is a graph, $B \subseteq \mathscr{V}(G)$, and either $H \subseteq \mathscr{V}(G)$ or H is a subgraph of G, then define the generalized valence function, ρ, by

$$
\begin{aligned}
\rho_{H}(B)= & \text { the number of vertices of } H \text { which are adjacent } \\
& \text { to every member of } B .
\end{aligned}
$$

If x is a vertex of G, then we write $\rho(x)$ for $\rho_{G}(\{x\})$.
Definition 2.3. Let G be a graph and $X \subseteq \mathscr{V}(G)$ with $|X|=k \geqq 2$. Define:

$$
D(G, X)=\frac{1}{k} S_{1}\left(\rho_{G}, X\right)-\sum_{i=1}^{k}(-1)^{i}\left(\frac{k-i}{k}\right) S_{i}\left(\rho_{G}, X\right)
$$

The following lemma is easily verified:

Lemma 2.4. If $X=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$, and $1 \leqq m \leqq k-1$, then

$$
\sum_{i=1}^{k} S_{m}\left(f, X-\left\{x_{i}\right\}\right)=(k-m) S_{m}(f, X)
$$

We now state the main result of this section:
Theorem 2.5. Let G be a graph with $\mu=\mu(G) \geqq 2,|\mathscr{V}(G)|=n$ and k an integer with $2 \leqq k \leqq \mu$, then there exists a set X consisting of k mutually non-adjacent vertices of G, satisfying:

$$
\begin{equation*}
\mu \leqq n-D(G, X) \tag{2.6}
\end{equation*}
$$

Note that the case $k=2$ reduces to the result of Ore (Theorem 2.1 in [3]):

$$
\mu \leqq n-\rho\left(x_{1}\right)-\rho\left(x_{2}\right)
$$

Proof. Let $\mathscr{S}=\left\{P_{1}, P_{2}, \cdots, P_{\mu}\right\}$ be a M.P.C. for G. For each $1 \leqq i \leqq k$, let x_{i} be an end-vertex of P_{i}. Since \mathscr{S} is a M.P.C., x_{i} is not adjacent to x_{i} for $i \neq j$.

Let $X=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$. We first show that for $1 \leqq i \leqq k$ and $1 \leqq j \leqq \mu$, the inequality:

$$
\begin{equation*}
\rho_{P_{i}}\left(\left\{x_{i}\right\}\right) \leqq\left|P_{j}\right|-\left(1-\sum_{l=1}^{k-1}(-1)^{l} S_{l}\left(\rho_{P_{j}}, X-\left\{x_{i}\right\}\right)\right) \tag{2.7}
\end{equation*}
$$

holds. Let P_{j} be the path $\left\langle a_{1}, a_{2}, \cdots, a_{t}\right\rangle$, let $1 \leqq m \leqq k, m \neq i$, and consider the following cases:
(i) $i=j$. In this case assume that $x_{i}=a_{1}$.
(ii) $m=j$. In this case assume that $x_{m}=a_{t}$.
(iii) $m \neq j$ and $i \neq j$.

Let

$$
\begin{aligned}
A & =\left\{r: a_{r} \text { is adjacent to } x_{i}\right\} \\
B_{m} & =\left\{r: a_{r-1} \text { is adjacent to } x_{m}\right\}
\end{aligned}
$$

and

$$
B=\bigcup_{\substack{1 \leq m \leq k \\ m \neq i}} B_{m}
$$

We claim that $A \cap B_{m}=\phi$, for if $r \in A \cap B_{m}$, then in each case we can
construct a path-cover, \mathscr{T} for G, as follows (see Figure 2.8):

Case (i)

> Case (ii)

Case (iii)

Figure 2.8

In case (i), let:

$$
\mathscr{T}=\mathscr{S} \cup\left\{\left\langle a_{t}, a_{t-1}, \cdots, a_{r}, x_{i}, a_{2}, a_{3}, \cdots, a_{r-1}\right\rangle * x_{m} P_{m}\right\}-\left\{P_{i}, P_{m}\right\} .
$$

In case (ii), let:

$$
\mathscr{T}=\mathscr{S} \cup\left\{\left\langle a_{1}, a_{2}, \cdots, a_{r-1}, x_{m}, a_{t-1}, a_{t-2}, \cdots, a_{r}\right\rangle * x_{i} P_{i}\right\}-\left\{P_{t}, P_{m}\right\} .
$$

In case (iii), let:

$$
\mathscr{T}=\mathscr{S} \cup\left\{\left\langle a_{1}, \cdots, a_{r-1}\right\rangle * x_{m} P_{m},\left\langle a_{t}, a_{t-1}, \cdots, a_{r}\right\rangle * x_{i} P_{i}\right\}-\left\{P_{t}, P_{i}, P_{m}\right\} .
$$

In either case, $|\mathscr{T}|=|\mathscr{S}|-1<|\mathscr{S}|$, contradicting the minimality of \mathscr{S}. Hence $A \cap B_{m}=\phi$. Also, in each case $a_{1} \notin A$; so $A \subseteq$ $P_{j}-B \cup\left\{a_{1}\right\}$. This gives $|A| \leqq\left|P_{j}\right|-\left|B \cup\left\{a_{1}\right\}\right|$, since $B \cup\left\{a_{1}\right\} \subseteq$ P_{j}. But then, since $a_{1} \notin B$, we get:

$$
\begin{equation*}
|A| \leqq\left|P_{j}\right|-(1+|B|) \tag{2.9}
\end{equation*}
$$

For $1 \leqq m \leqq k$, let:

$$
C_{m}=\left\{r: a_{r} \quad \text { is adjacent to } x_{m}\right\} .
$$

Then since x_{m} is not adjacent to $a_{1},\left|C_{m}\right|=\left|B_{m}\right|$ and:

$$
\begin{align*}
|B| & =\left|\underset{\substack{1 \leqq m \leqq k \\
m \neq i}}{\bigcup} B_{m}\right|=\left|\bigcup_{\substack{1 \leqq m \leq k \\
m \neq i}} C_{m}\right| \\
& =\sum_{l=1}^{k-1}(-1)^{l+1} \sum_{\substack{1 \leqq m_{1}<m_{2}<\cdots<m_{1} \leq k \\
m_{1}, m_{2}, \cdots, m_{l} \neq i}}\left|C_{m_{1}} \cap C_{m_{2}} \cap \cdots \cap C_{m_{l}}\right| \\
& =-\sum_{i=1}^{k-1}(-1)^{l} S_{l}\left(\rho_{P_{1}}, X-\left\{x_{i}\right\}\right) . \tag{2.10}
\end{align*}
$$

So since $|A|=\rho_{P_{j}}\left(\left\{x_{i}\right\}\right)$, (2.7) follows from (2.9) and (2.10). Summing (2.7) for $1 \leqq i \leqq k$ and applying Lemma 2.4 , we get:

$$
\begin{equation*}
S_{l}\left(\rho_{P_{i}}, X\right) \leqq k\left|P_{i}\right|-\left(k-\sum_{l=1}^{k-1}(-1)^{l}(k-l) S_{l}\left(\rho_{P_{i}}, X\right)\right) \tag{2.11}
\end{equation*}
$$

Summing (2.11) for $1 \leqq j \leqq \mu$, we get:

$$
S_{1}\left(\rho_{G}, X\right) \leqq k n-\left(k \mu-\sum_{l=1}^{k-1}(-1)^{l}(k-l) S_{l}\left(\rho_{G}, X\right)\right)
$$

from which (2.6) follows.

3. Extremal problems.

Definition 3.1. Let k and n be integers with $1 \leqq k \leqq n$. Define:

$$
\begin{gathered}
g(n, k)=\operatorname{Min}\{m: \text { every graph, } G, \text { with }|\mathscr{V}(G)|=n \text { and } \\
|\mathscr{E}(G)| \geqq m \text { has } \mu(G) \leqq k\} .
\end{gathered}
$$

In this section we determine bounds for $g(n, k)$. See [4] for techniques in proving the following:

Lemma 3.2.

$$
\begin{equation*}
\sum_{i=1}^{k=1}(-1)^{i}\left(\frac{k-i}{k}\right)\binom{k}{i}=-1 \quad \text { if } \quad k \geqq 2 \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=2}^{k}(-1)^{i}(k-i+1)\binom{k}{i-1}=k \quad \text { if } \quad k \geqq 2 \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=2}^{i}(-1)^{i}(k-i+1)\binom{j-1}{i-1}=k \quad \text { if } \quad 3 \leqq \mathrm{j} \leqq \mathrm{k} . \tag{3.5}
\end{equation*}
$$

Lemma 3.6. Let K be a graph with $|\mathscr{V}(K)|=s \geqq 1$, and let k be an integer with $k \geqq 2$, and suppose $H=\bar{\Gamma}_{k}+K$, then:

$$
D\left(H, \mathscr{V}\left(\bar{\Gamma}_{k}\right)\right)=2 s
$$

Proof. For $1 \leqq i \leqq k-1$ and $B \subseteq \mathscr{V}\left(\bar{\Gamma}_{k}\right)$ with $|B|=i$, each member of B is adjacent to every member of $\mathscr{V}(K)$. There are $\binom{k}{i}$ choices for B and $|\mathscr{V}(K)|=s$; thus:

$$
S_{i}\left(\rho_{H}, \mathscr{V}\left(\bar{\Gamma}_{k}\right)\right)=s\binom{k}{i}
$$

This gives:

$$
\begin{aligned}
D\left(H, \mathscr{V}\left(\bar{\Gamma}_{k}\right)\right. & =\frac{s}{k}\binom{k}{1}-\sum_{i=1}^{k-1}(-1)^{i} s\left(\frac{k-i}{k}\right)\binom{k}{i} \\
& =s\left[1-\sum_{i=1}^{k-1}(-1)^{i}\left(\frac{k-i}{k}\right)\binom{k}{i}\right] \\
& =2 s, \quad \text { using }
\end{aligned}
$$

Theorem 3.7. For $1 \leqq k \leqq n$,

$$
\begin{equation*}
g(n, k) \leqq \frac{1}{2}(n-1)(n-k-1)+1 \tag{3.8}
\end{equation*}
$$

Proof. Let G be a graph with $|\mathscr{V}(G)|=n$, and $|\mathscr{E}(G)| \geqq$ $\frac{1}{2}(n-1)(n-k-1)+1$. Suppose $\mu(G)>k$ and $X=\left\{x_{1}, x_{2}, \cdots, x_{k}, x_{k+1}\right\}$ is a set of mutually nonadjacent vertices of G.
G may be considered to have been obtained from the complete graph Γ_{n} through the elimination of at most:

$$
\frac{1}{2} n(n-1)-\frac{1}{2}(n-1)(n-k-1)-1=\frac{1}{2}(n-1)(k+1)-1
$$

edges. $\frac{1}{2} k(k+1)$ are removed in obtaining, from Γ_{n}, the graph H in which only members of X are nonadjacent. Thus, to obtain G from H, at most:

$$
\begin{equation*}
\frac{1}{2}(n-1)(k+1)-1-\frac{1}{2} k(k+1)=\frac{1}{2}(n-k-1)(k+1)-1 \tag{3.9}
\end{equation*}
$$

edges are removed from H.
We wish to compute $D(G, X)$. By Lemma 3.6,

$$
\begin{equation*}
D(H, X)=2(n-k-1) \tag{3.10}
\end{equation*}
$$

Now suppose that at some stage in the transformation from H to G, we have obtained a graph K with $\mathscr{E}(H) \supseteq \mathscr{E}(K) \supseteq \mathscr{E}(G)$ and $\mathscr{V}(K)=$ $\mathscr{V}(H)=\mathscr{V}(G)$. Let $L=K-e$ where $e \in \mathscr{E}(K)-\mathscr{E}(G)$. We wish to know the effect, $f(e)=D(L, X)-D(K, X)$, on D, of removing the edge e. Since e is an edge of H, it cannot join two points of X. If neither end-point of e is in X, then $f(e)=0$ since $S_{i}\left(\rho_{K}, X\right)=S_{i}\left(\rho_{L}, X\right)$ for $1 \leqq i \leqq k$. Now suppose that one end-point, y_{1}, of e is in X and that the other end-point, v, is not in X. Let $y_{1}, y_{2}, \cdots, y_{j}$ be the points of X which are adjacent to v in the graph K. Note that $1 \leqq j \leqq k+1$.

If $1 \leqq i \leqq j$ and $B \subseteq\left\{y_{2}, y_{3}, \cdots, y_{j}\right\}$ with $|B|=i-1$, and $C=$ $B \cup\left\{y_{1}\right\}$, then $|C|=i$ and v is adjacent to every member of C in the graph K but not in the graph L. There are $\binom{j-1}{i-1}$ choices for such a set C. Furthermore, for any other combination of a vertex, t, and a set $A \subseteq X$ with $|A|=i, t$ is adjacent to every member of A in the graph L. Thus:

$$
S_{i}\left(\rho_{L}, X\right)-S_{i}\left(\rho_{K}, X\right)=\left\{\begin{array}{ccc}
-\left(\frac{j-1}{i-1}\right) & \text { for } & i \leqq i \leqq j \\
0 & \text { for } & i>j
\end{array}\right.
$$

This gives:

$$
\begin{aligned}
f_{j} & =f(e)=D(L, X)-D(K, X) \\
& = \begin{cases}-\left[\frac{1}{k+1}-\sum_{i=1}^{k}(-1)^{i}\left(\frac{k-i+1}{k+1}\right)\binom{k}{i-1}\right] & \text { if } j=k+1 \\
-\left[\frac{1}{k+1}-\sum_{i=1}^{j}(-1)^{i}\left(\frac{k-i+1}{k+1}\right)\binom{j-1}{i=1}\right] & \text { if } 1 \leqq j \leqq k\end{cases} \\
& = \begin{cases}-\frac{1}{k+1}\left[k+1-\sum_{i=2}^{k}(-1)^{i}(k-i+1)\binom{k}{i-1}\right] & \text { if } j=k+1 \\
-\frac{1}{k+1}\left[k+1-\sum_{i=2}^{k}(-1)^{i}(k-i+1)\binom{j-1}{i-1}\right] & \text { if } 2 \leqq j \leqq k \\
-1 & \text { if } j=1\end{cases} \\
& = \begin{cases}-\frac{1}{k+1} & \text { if } 3 \leqq j \leqq k+1 \\
-\frac{2}{k+1} & \text { if } j=2 \\
-1 & j=1\end{cases}
\end{aligned}
$$

using (3.4) and (3.5).
Notice that $f_{1} \leqq f_{2} \leqq \cdots \leqq f_{k} \leqq f_{k+1}<0$ and that in order to realize the effect f_{j}, edges with effects $f_{k+1}, f_{k}, \cdots, f_{i+1}$ must first be removed. Hence when $(k+1)$ edges are removed, the combined effect is at least:

$$
\sum_{i=1}^{k+1} f_{i}=-2
$$

So if r edges are removed in obtaining G from H,

$$
\begin{equation*}
D(G, X)-D(H, X) \geqq-\frac{2 r}{k+1} . \tag{3.11}
\end{equation*}
$$

Using (3.9) and (3.10) in (3.11) now gives:

$$
\begin{equation*}
D(G, X) \geqq[2(n-k-1)-(n-k-1)+2 /(k+1)]>n-k-1 . \tag{3.12}
\end{equation*}
$$

But Theorem 2.5 guarantees the existence of a set X as constructed above, and satisfying:

$$
D(G, X) \leqq n-\mu(G) \leqq n-k-1 .
$$

This contradicts (3.12) and completes the proof of the theorem.

Corollary 3.13. For $n \geqq 4, g(n, n-3)=n$.

Proof. The bipartite graph $\Gamma_{1, n-1}$ is a graph with n vertices, $(n-1)$ edges and path-covering number $(n-2)$. Thus $g(n, n-3) \geqq n$. The reverse inequality is given by Theorem 3.7.

To obtain a lower bound for $g(n, k)$, consider the graph $G=$ $\Gamma_{n-k} \cup \bar{\Gamma}_{k}$; then $\mu(G)=k+1$, while $|\mathscr{V}(G)|=n$ and $|\mathscr{E}(G)|=$ $\frac{1}{2}(n-1)(n-k-1)$. This gives:

Proposition 3.14. For $n>k \geqq 1$

$$
\begin{equation*}
g(n, k) \geqq \frac{1}{2}(n-k)(n-k-1)+1 . \tag{3.15}
\end{equation*}
$$

The following proposition gives some results that are easily verified:

Proposition 3.15.
(i) $g(n, n)=0, g(n+1, n)=1, g(n+2, n)=2$ for $n \geqq 1$
(ii) $g(6,2)=7$
(iii) $g(n+1, k+1) \geqq g(n, k)$ for $n \geqq k \geqq 1$.

Part (iii) can be seen by letting $G=H \cup\{x\}$ where H is a graph with n vertices, $g(n, k)-1$ edges, and $\mu(H)=k+1$, and x is an isolated vertex with $x \notin \mid i$ th $x \notin \mathscr{V}(H)$. Then G has $(n+1)$ vertices, $g(n, k)-1$ edges, and $(G)=k+2$.

In the case $k=1$, the upper bound in (3.8) is seen to be the same as the lower bound in (3.15) and hence equality holds for $g(n, k)$ in both inequalities. However, Corollary 3.13 shows that the upper bound in (3.8) and not the lower bound in (3.15) is achieved in the case $k=n-3$. ' Part (ii) of Proposition 3.15 shows a case where the lower bound and not the upper bound is achieved. It is conjectured that for small values of $k, g(n, k)$ is close to the lower bound in (3.15), while for large values of $k, g(n, k)$ is closer to the upper bound in (3.8).

We now turn to another extremal problem. Let v and n be integers with $0 \leqq v \leqq n$. Define:

$$
\begin{gathered}
h(n, v)=\operatorname{Min}\{k: \text { every graph, } G, \text { with }|\mathscr{V}(G)|=n \text { and } \rho(x) \geqq v \\
\text { for every } x \in \mathscr{V}(G), \text { has } \mu(G) \leqq k\} .
\end{gathered}
$$

Theorem 3.16.

$$
(n, v)=\left\{\begin{array}{ccc}
1 & \text { if } & v \geqq \frac{n}{2} \\
n-2 v & \text { if } & v<\frac{n}{2}
\end{array}\right.
$$

Proof. The case $v \geqq \frac{n}{2}$ and the upper bound $h(n, v) \leqq n-2 v$ if $v<\frac{n}{2}$ follows from 0. Ore's result (the note to Theorem 2.5). If $v<\frac{n}{2}$, let $K=\Gamma_{v, n-v}$. Then clearly $|\mathscr{V}(K)|=n$ and $\rho(x) \geqq v$ for every $x \in \mathscr{V}(G)$; and in [2] (Theorem 2.2.10) we show that $\mu(K)=$ $n-2 v$. Hence

$$
h(n, v) \geqq n-2 v
$$

completing the proof of the theorem.

References

[^0]Received November 30, 1973.

[^0]: 1. C. St. J. A. Nash-Williams, Hamilton arcs and circuits, Recent Trends in Graph Theory, Berlin-Heidelberg-New York, Springer-Verlag, (1971), 197-210.
 2. S. Noorvash, Covering the vertices of a graph by paths, Hamilton cycles and 1-factors, with related tree enumeration problems, (Ph.D. Thesis, U.C.L.A.) 1972, 8-38.
 3. O. Ore, Arc coverings of graphs, Ann. Mat. Ser. IV 55 (1961), 315-321.
 4. J. Riordan, An Introduction to Combinatorial Analysis, New York, Wiley, 1958.
