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A DYNAMICAL CRITERION FOR
CONJUGATE POINTS

KURT KREITH

This paper presents a technique for establishing the ex-
istence of conjugate points for real fourth order differential
equations defined on an interval [α,0 0). The point β > a is
conjugate to a if there exists a nontrivial solution y(x) of the
equation which satisfies

An important feature of this technique is that it is not limited to
equations of selfadjoint type and that the general theory applies
to nonlinear equations as well.

For the special equation

(1.1) l[y] = (P2(t)y")" + Po(t)y=O (p2(O>0)

criteria for the existence of conjugate points have been established by
Leigh ton and Nehari [4] under the additional assumption po(t)<
0. Subsequent studies (see [6]) have e.xtended parts of this theory to
the general real selfadjoint equation

(1.2) l[y] ^(P2(t)y'T-(Pi(t)yΎ + Po(t)y = 0

or the general real equation

(1.3) l[y] s (p2(t)y"-qM)yΎ-(Pι(t)y' - <?i(f)y)' + Po(t)y = 0.

replacing hypotheses on the coefficients with hypotheses specifying the
nonexistence of solutions with certain orders of zeros. In this way,
properties of solutions of (1.1), which were established in [4], became
hypotheses which allowed the consideration of more general equations.

The present paper follows a similar pattern. In §2, we consider a
second order system which can be used to represent equations of the
form (1.2) or (1.3) and allows a simple dynamical interpretation in terms
of a particle of unit mass in a force field. By making a number of
qualitative assumptions regarding this force field which are motivated
by (1.1), we demonstrate the existence of conjugate points for such
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systems. In §3, we establish conditions on the coefficients of the
differential system which assure that these qualitative assumptions are
satisfied; these conditions on the coefficients of the system are trans-
lated to conditions on the coefficients of the related fourth order
equation in §4.

2. A related second order system. In this section we
assume that the fourth order equation in question is represented by the
second order system

(2.1) y"=

whose coefficients are continuous in [α,o°). It has been shown by
Whyburn [7] that the self adjoint fourth order equation (1.2) can be
represented in the form (2.1) with b(t)= Hp2(t)>0 and a(t) =
d{t). The author [1] has shown that the general real linear fourth order
equation (1.3) can also be reduced to the form (2.1), with the nonselfad-
jointness reflected by the inequality of a (t) and d(t). In particular, the
equation (1.1) can be represented in the form (2.1) with b(t) = l/p2(t),
c ( 0 = -Po(0, and a(t) = d(t) = 0.

It will be helpful to interpret (2.1) as representing the motion of a
particle of unit mass in the (JC, y)-plane with t denoting time. Our
objective is to impose conditions on the force field

F(t) = (Fx(ί), Fy(t)) = (c(ί)y + d(t)x, a(t)y + b(t)x)

which assure the existence of a conjugate point — i.e., the existence of a
trajectory C in the (JC, y)-plane which is tangent to the x-axis at t = a
and t = β.

This problem can be normalized by considering initial conditions of
the form

Physically this corresponds to firing a particle of unit mass from
(x, y) = (l, 0) tangent to the x-axis with velocity v0 in the positive x
direction. The resulting one-parameter family of trajectories will be
denoted by C(v0). We also denote by I, II, III, and IV the open
quadrants of the (JC, y)- plane.

Motivated by the system representation of (1.1), we consider the
following conditions on the force field F:
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(A) If for some ίo = α the quantities y(t0), y'(ίo), x(h) and x'(t0)
are all nonnegative (but not all zero), then y(t), y'(t),x(t) and x' t) are
all positive for t > tQ.

(B) No trajectory C(v0) can remain in II for arbitrarily large
values of t.

(C) No trajectory in I satisfies
(i) JC(O l*o^O and y(t) f oo as ί-*<*>,•

or
(ii) y(Olyo^O and JC(OT°° as f->oo,

nor can any trajectory in I tend to a finite limit point (xθ9 y<>) in the
closure of / as t -»oo.

(D) No trajectory can go directly from II to I to II.

LEMMA 2.1. There exist values of vQ such that C(vQ) enters the
closed lower half plane

Proof. By [1] the system (2.1) represents a fourth order linear
differential equation of the form l[y] = 0. If {y, (f)} (i = 1, ,4) rep-
resents a fundamental set of solutions, one can find a linear combination
y(t) = Σf=i cyXt) having three preassigned zeros. In particular for any
β > a, there exists a solution y(t) satisfying y(α) = y'(α) = y(j3) = 0.

THEOREM 2.2. If conditions (A)-(D) are satisfied, then there
exists a nontrivial solution y(t),x(t) of (2.1) satisfying y(a) = y'(α) =
0=y(β) = y'(β) fora <β<cc.

Proof. Solutions of (2.1) depend continuously on the initial data,
and for the normalized problem under consideration the only initial
parameter is v0. It follows that in any compact interval [α, γ], C(v0)
can be approximated uniformly by trajectories of the form C(v0 + e) for
16 I sufficiently small. Consider first

V, = {vo\C(co) enters III UIV}.

By Lemma 2.1 there are trajectories C(v0) which are either tangent to
the x-axis or enter the lower half plane, and we may therefore assume
that V, is not empty. Furthermore, (A) implies that if υ0 g 0, then C(v0)
is "trapped" in I for all t > α, so that Vx is also bounded above by
zero. Finally the continuous dependence of C{vQ) on v0 implies that V,
is an open subset of R. Consider next

V2 = {VQ\C(VQ) remains in the open upper half plane for all t >a}.
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By (A), V2 contains [0,o°) and is therefore not empty. We shall show
that V2 is also open. Since by (B), C(v0) cannot remain in II for all
t > γ, and by (D) no trajectory can go from II to I to II, we may restrict
our attention to trajectories C(v0) for which there exists γ > a such that
C(v0) remains in / for t > γ. Condition (C) rules out limit points in / as
well as asymptotic trajectories for which x'(t) and y'(t) have opposite
signs for all t > γ, so that every trajectory which remains in / eventually
has positive values of y(t)9y'(t),x(t)9 and x'(t). Because of the
continuous dependence of C(u0)

 o n the parameter ι?0, it follows that
neighboring trajectories will also eventually have positive values of
y(0, y'(t),x(t)9 and x'(t) and that V2 is an open subset of R.

Consider now ΰ = sup Vx. Since ϋ belongs to neither VΊ nor V29 it
follows that C{ϋ) lies in / U IF but not in / U // — i.e., C{ϋ) must be
tangent to the x- axis for some x = β > a. This completes the proof.

3. Criteria for conjugate points. We now consider the
task of imposing conditions on the system (2.1) such that properties
(A) - (D) are satisfied. A basic assumption which will be made through-
out is that the coefficients of (2.1) are positive in [α,«). The reason for
this assumption is the following.

THEOREM. 3.1. If the coefficients of (2.1) are positive in [α,»), then
(A) is satisfied.

Proof This follows readily from the integral representation

f Γ [a(τ)y(τ) + b(τ)x(τ)]dτds

f Γ [c(τ)y(τ) + d(τ)x(τ)]dτds
to Jto

for solutions of (2.1).
In order to establish (B), we introduce a vector representation

(3.1) Y" = A(t)Y

for (2.1) where

-(d{t) C{t))
" U ( 0 α(ί)/
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Also H will denote a constant vector

and inner products will be denoted by ( , •) so that

etc.

THEOREM 3.2. / / c ( ί ) δ a(t)>0 and b(t)^ d(t)>0 in [α,«>) and
the equation

(3.2) un + πάn{b(t)-d(t), c(t)-a(t)}u = 0

is oscillatory at t -&>, then (B) is satisfied.

Proof. If y is a nonzero element in // then x < 0, y > 0 and

(fί, y) = y - x > 0 .

Also

~(H,AΫ) = (b - d)(-x) + (c - a)y ̂ nάn{b - d, c-α}(y-x)δθ.

Therefore

(3.3) -%Aγ) ~ m i n { b -d>c~a}

for all Y e /I
Define m(ί) = min{ft(ί)~d(O, c(i)-«(O} and let ί , < ί 2 < be

the zeros of an oscillatory solution of (3.2) where tk f α>. If Y(t)
remains in II for all t g γ , then (H, Y(t))>0 in [γ,00) and a direct
calculation yields

dt[UU u (H, Y)\ m u U (H, Y)+Γ U(H,Y)\

If 4+i >, tk ^ γ we have
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with equality if and only if u (t) = </f, Y(t)"> in (tk, tk+ι). Since (H, Y(t))
is assumed positive in [γ, oo) the above inequality must be strict. But
this contradicts (3.3) and completes the proof.

Condition (C) requires that we preclude certain asymptotic paths
and paths of finite length in /.

THEOREM 3.3. If

Γ oo /*oo

(3.4) tb(t)dt=*> and I tc{t)dt=™

then condition (C) is satisfied.

Proof. Consider first an asymptotic trajectory in / for which
y(Olyo = 0 and jc(ί)T°° a s f-*00- Since J C " > 0 in I there exist
positive constants k and γ such that x(t)^kt for t ^ γ. Since
y"^b(t)x(t) in / we have

Γ
Jt

tb(t)dt.
to

Thus the first part of (3.4) is inconsistent with such asymptotic trajec-
tories, and the second part of (3.4) similarly precludes asymptotic
trajectories for which x(t) j J C 0 S 0 and y(ί) f » as ί —>».

To deal with paths of finite length which might terminate in /, we
note that x" > 0 and y" > 0 at every point of I except (0, 0). Thus the
origin is the only equilibrium point in I and the only point at which finite
paths might terminate.

There are two cases to consider in completing the proof:
(i) The trajectory never leaves L In this case y" > 0 for all t > a

and y(ί) is bounded away from zero in [γ,«) for every γ > a.
(ii) The trajectory leaves I and re-enters. In this case xf or y' is

positive at the time the trajectory crosses into / and the positivity of x"
and y" precludes the possibility of the trajectory approaching the origin.

Finally we note that a very similar argument to that used above
establishes (D). If a trajectory enters I from // at time ί0, then
x'(to) > 0 when C(v0) enters /. Since x" > 0 in I, Jt'(ί) is positive as long
as C(v0) remains in I and therefore C(v0) cannot return directly to //
from /.

Collecting all the conditions imposed above on the coefficients of
(2.1) we can state our principal result.
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THEOREM 3.4. If the coefficients of (2.1) satisfy
(i)
(ii)

in [α,0 0) and
(Hi) u" + min{b(O - d(t),c(t)-a(t)}u =0 is oscillatory at t = »,

/* 00 /" 00

(iv) I ί b ( ί ) Λ = l tc(t)dt=™,

then there exists a nontrivial solution y(t)yx(t) of (2.1) satisfying
y(a) = y'{a) = 0 = y(β) = y;(jS) /or .some β > α.

4. Application to fourth order equations. In [1] the
author shows how to reduce (1.3) to the form

(4.1) l[y] s (p 2(ί)yΎ-(Pi(Oy')' + qx{t)y' + po(ί)y = o

and that there is a one-to-one correspondence between equations of the
form (4.1) with p2(t) > 0 and systems of the form (2.1) with sufficiently
regular coefficients and b(t)>0. This correspondence is obtained by
defining

Λ . ( f ) = 1 ..»,., ait)

and setting

P . - I <7i
a=—r^

2p2

Pi

2p2
*

p"-q\
2
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These equations can be solved for p2,P\,Po, and q, to yield

a + d
Pι = ~b~

d-a\
b

ad

This transformation makes it routine to apply Theorem 3.4 to the
equation (4.1), though the transformation required to represent (1.3) in
the form (4.1) makes the general application more involved.

It is of interest to examine the hypotheses of Theorem 3.4 for the
special case a(t) = 0 and d(t) = 0 where our considerations reduce to
the fourth order equation

(4.2) (P2(t)yT + Po(ί)y = 0 (p0(O<0)

considered by Leighton and Nehari in Part 1 of [4]. Condition (iii) of
Theorem 3.4 is then satisfied if

(4.3) w" + m i n { ^ , -p o (ί )}n=O

is oscillatory at <». By the Sturm comparison theorem, (4.3) oscillatory
implies that both u" + (\lp2(t))u = 0 and u"-po(t)u = 0 are oscillatory
at oo, but one would not expect the converse to be true without some
further hypotheses regarding the asymptotic behavior of p2(t) and
Po(t). By a well known oscillation criterion of Kneser, (4.3) is oscillat-
ory if

(4.4) lim mf |V min { ^ , - P o(ί)}] > \

and this gives some measure of allowable rates of decay for l/p2(0 and

Condition (iv) of Theorem 3.4 becomes
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While these conditions also put limits on the rate of decay of l/p2(O and
p0(0> they are not sufficient to assure the oscillatory behavior of
u"+llp2(t)u = 0 and u"-po(t)u=O. For example, w"+l/4f2 is

nonoscillatory at <» but yet I ί/4tdt = α>.

A special case of Theorem 6.2 of [4] assures the existence of a
conjugate point for any a < °° if

(4.5) liminf ί 2 — ^ - > 7 and liminf * 2 (-Po(0)>7
t-+°° P2\t) 4 '—°° 4

while it precludes the existence of conjugate points for sufficiently large
a if

lim sup t2 —γ— < -7 and lim sup t \ - p0(O) < 7
ί->00 P2\t) 4 f-̂ QO 4

While (4.4) is slightly stronger than (4.5), the two conditions are roughly
equivalent, and this comparison therefore suggests that the results of
Theorem 3.4 are reasonably sharp even in this special case.

One is tempted to conjecture that the oscillatory behavior of both

=0 and u"-po(t)u=O

should insure the existence of conjugate points for (4.2) for all a < ».

5. Concluding remarks. The techniques presented here
are not quite as sensitive as those of [4] in the special case of equation
(4.2). Their principal virtue is that they apply to non self adjoint
equations such as (4.1) and (1.3).

Several authors have used comparison theorems to establish lower
bounds for conjugate points of nonselfadjoint equations of order 2n,
and have thereby also established criteria for this disconjugacy (see for
instance [5], [6], and [7]). However, I know of no results which
establish upper bounds in the nonselfadjoint case if n > 1.

Theorem 3.4 at least gives criteria for the existence of a conjugate
point in the nonselfadjoint case. The question of how to obtain
specific upper bounds for such conjugate points unfortunately remains
unanswered, but it is hoped that these techniques may also prove useful
in this connection.
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