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THE RANGE OF A NORMAL DERIVATION

B. E. JOHNSON AND J. P. WILLIAMS

The inner derivation δA implemented by an element A of
the algebra MVM) of bounded linear operators on the separable
Hubert space W is the map X -* AX - XA (X G ® (W)). The
main result of this paper is that when A is normal, range
inclusion Jί(δB) CιM(δA) is equivalent to the condition that
B=f(A) where Λ(z, w) = (/(z)-/(w))(z - w)"1 (taken as 0
when z = w) has the property that Λ(z, w)t(z, w) is a trace class
kernel on L2(μ) whenever ί(z, w) is such a kernel. Here μ is
the dominating scalar valued spectral measure of A constructed
in multiplicity theory. In order that a Borel function / satisfy
this condition it is necessary that / be equal almost everywhere to
a Lipschitz function with derivative in σ(A) at each limit point
of σ(A) and it is sufficient (for A self-adjoint) that / G C(3)(R).

For such operators B there is a>o a factorization δB = δAτ = τδA by
an ultraweakly continuous linear map r from 38($?) into itself satisfying
τ(A']XA'2) = A\τ(X)A'2 for X e » ( I ) and A\,A'2 commuting with A.

When 2C is finite dimensional (X, Y) = trace (XY*) is an inner
product and 38(20 = 9t(δA)®{A*}' is the orthogonal direct sum of the
range of δA and {A *}' = { Y G 38 (30 : YA * = A * Y}, the commutant of
the adjoint of A. This simple fact suggests that ^(δ^) is a natural
subspace, like the commutant, associated with A. The orthogonal
decomposition also shows that range inclusion &ί{δB) C0ί(δA) holds for
a pair of operators if and only if B G {A}'\ or equivalently, if and only if
B is a polynomial in A. In this case δB = δAτ = τδA with r as above.

When $f is infinite dimensional the situation is less clear. We do
not know whether 9t (δA) Π {A *}' = 0 in general. The sum
S2(SA) + {.4*}' is always weakly dense in 38 (X) but is rarely norm
closed; in fact for A normal it is closed if and only if A has a finite
specturm [1].

The condition BG{A}" is neither sufficient for 0l{δB)C0i{δA)
(even if A is positive and compact [19]), nor necessary [Yang Ho,
private communication].

If A G 38 (20 and B = /(A-), where / is analytic in a neighborhood
of the specturm of A, then 3#(δB) C<3i(δA) but range inclusion does not
imply B = f(A) for some analytic / [20]. Finally, if {A}' contains no
nonzero trace class operator then the norm closure of 3l{δA) contains
the ideal of compact operators [22]. In this case there are operators
B£ {A}" with 0l(δB)CSk(δA)". There are normal operators A with this
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property (multiplication by x in L2(0, 1) for example) and compact
operators [16] but none that is both normal and compact. (See the
remark following (2.1) below).

As byproducts of our study of the range of a normal derivation we
obtain improvements of the results of [19, 20] and a simpler proof of the
theorem of [1] mentioned above. Our results also yield solutions to
some asymptotic commutativity problems raised in [3].

1. Auxiliary results. If E,F,G are Banach spaces, SG
35 (F, G) and T E 35(F, G), then the closed graph theorem implies that
Θi(S) C$(Γ) if and only if there is JR E 33(F,F/Ker(Γ)) with S = TR,
where f is the element of 3S(F/Ker(Γ),G) associated with T. In
particular, range inclusion <3l{δB)C@l(δA) of derivations on 33(20
amounts to a factorization 8B = 8Aσ with σ a bounded linear operator
from 3δ($0 into 3δ($0/{Λ}'. Our first goal is to show that if A is
normal this trivial factorization can be sharpened to: δβ = 8Aσ for some
ultraweakly continuous linear operator σ from 39 (ffl) into itself. For
this and later applications we need some simple facts about range
inclusion in general.

LEMMA (1.1). // S,T E 3δ(F, F) the following are equivalent:
(1) There exists a constant c such that \\Sx | |g c \\Tx \\ for all

xGE.
(2) There exists a constant c such that for each fEF* there is a

gEF* with \\g || ̂  c 11/11 and S*f = T*g.
(3) $(S*)$(Γ*)

Proof Suppose that (1) holds, and fix / E F*. Then Tx -+ (5x, /)
extends to a bounded linear functional on F by the Hahn-Banach
theorem and therefore there is a vector g E F * with ||g || S c \\f\\ such
that (SxJ) = (Tx,g) for all x E E. Hence 5*/= Γ*g so that (2) is
satisfied.

Clearly (2) implies (3). Suppose that (3) holds. If fEF* then
S * / = Γ * g f0Γ some g<ΞF* and therefore |(Sx,/)| = |<x, T*g)\ S
|| g Illl Tx || for each x E E. The uniform boundedness theorem implies
that there is a constant c such that |<£x,/>| ̂  c ||7JC ||| |/|| for all x E E
and all / E F*. Then ||5x \\^c\\Tx \\ so that (1) holds.

COROLLARY (1.2). J/S, Γ E S8(F,F) then0l{S**)cgi{T**) if and
only ifSk{S)C0i{T^) where <31{S) is identified with its canonical image
in F**.

Proof. Since S** is an extension of S the necessity is
trivial. Suppose 3?(S) C^(Γ**). If JC E F then there is ξ E E** with
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Sx = T**ξ and hence |<x,S*/>l = |<Γ *£J>|S| |£| | | |Γ /II for
fEF*. Hence by the uniform boundedness theorem there is a con-
stant c such that |<X,S*/")| = C | | JC | | | |Γ*/ | | for xGE and / E
F*. Consequently | | S * / N c IIΓ*/II and so $(S**)C$(Γ**) by
Lemma (1.1).

COROLLARY (1.3). 7/ S, Γ E 3&(E9 F) these are equivalent:
(1) ^(S*)$(Γ*)
(2)
(3)

Proof. Conditions (2) and (3) are equivalent by Corollary
(1.2). Also (1) trivially implies (2). Suppose (2) holds. If / E F* then
S*f = j***ξ for some ξ^F***. Now each such ψ has the form
£ = £o + £i where ξ0 E F° and ξ, F*. Also Γ*** extends T* and maps
F°into F° and so 5 * / - Γ*f, = Γ***£0E F * Π F° = {0}. Thus 5*/ =
Γ*£i E 3?(Γ*). Therefore (2) implies (1).

In the next result and in several subsequent arguments we shall
make use of the duality relations between the Banach space % = JK{^€)
of compact operators on Sίf, equipped with the usual sup norm, and the
Banach space 3~ = S'i'X) of trace class operators on $?, equipped with
the trace norm || ||̂ . Recall [4, 14] that ?f may be isometrically
identified with the conjugate space of X and that 33 ($ί) is the conjugate
space of 3~. The canonical bilinear form here is (X, Γ) = trace (XT) =
trace (TX) for T E SΓ and X belonging to either 3δ (?O or to X. Finally,
the ultraweak topology on 38 (X) is the weak* topology σ(

COROLLARY (1.4). These are equivalent for A,B E
(1) There exists a constant c such that \\ δB (X) || g c || δΛ (X) || for all

(2) There exists a constant c such that for each T E SΓ{%) there is
SΓ(W) with \\Sy^c\\T\\rindδB(T) =
(3)
(4)

Proof Conditions (3) and (4) are equivalent by Corollary (1.3)
with S = (δa IX) and T = (δA\ X). Also (1) and (3) and (2) and (4) are
equivalent by Lemma (1.1).

COROLLARY (1.5). These are equivalent for A,B E
(1)
(2)
(3) There exists a bounded linear map σ from $($?) into
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St(X)l{A}' such that δB = δAσ where δA : &(%)l{A}'->9t(δA) is the
canonical map associated with δA.

(4) There exists a constant c such that | |δβ(Γ)| | j ^ c \\δA(T)\\<r for
all T

Proof. Conditions (1) and (4) are equivalent by Lemma (1.1)
applied to S = (δB\2Γ) and T = (δA\SΓ). Conditions (1) and (2) are
equivalent by Corollary (1.2) applied to the restrictions of δA and δB to
3ΐ, and (1) and (3) are equivalent by the remark preceding Lemma (1.1).

2. N o r m a l derivations. In this section we show that if A is
a normal operator on a Hilbert space Sίf (assumed to be separable here
and in the remainder of the paper) then range inclusion 3ί{δB) C9l(δA)
holds only for operators B E{A}". We use the fact that there is a
projection P of norm one from 33(20 onto {A}' with the property
P(A5X4 J) = A \P{X)A'2 for X G &(%) and A \9A'2 in {A}'. In fact any
projection of norm one onto the commutant has this commutativity
property [17]. The existence of such projections is a standard fact in
the theory of von Neumann algebras [2; Chapter 2]. A simple way to
obtain one is to choose a unitary operator V with {V}' = {A}' and set
P(X) = glim^oc V*nXVn where glim is a fixed generalized limit on /"
and the equality is in the weak (inner product) sense. (See [23])

The commutativity property of P immediately implies 0l(δA)C
$fc(l - P) but one does not have equality here in general since for A
normal, $l(δA) + {A}' is norm closed only in the trivial case in which the
spectrum of A is finite [1]. The following fact is sufficient for our
needs here:

LEMMA (2.1). ί%(δΛ) and ̂ ( 1 - P) have same ultraweak closures.
Hence if Aξ = λξ and Aη = λη for ξ, η E X then ((1 - P)(X)ξ, η) = 0.

Proof. We have 0l{δA)C^ί{\-P) so that by considering an-
nihilators in SΓ(^) it suffices to show that ((1 - P)(X), Γ> = 0 for each
trace class operator T that commutes with A. Now for such a T we
have the polar factorization T = ί7(Γ*Γ)^ where U is a partial isometry
and both factors belong to {A}'. Since P(XU) = P(X)U it suffices to
consider the case T ̂  0. In fact, by the spectral theorem we need only
show that <(1 - P)(X),E) = 0 for X G 98(30 and E E{A}1 a projection
of finite rank. Now for the projection P constructed in [12] this can
easily be verified since P(X) is obtained from the operators V*XV with
V unitarv in {A}". However we can also prove the assertion assuming
only th< existence of P as follows: With respect to the decomposition
^ = 3$ ' : ) θ ^ ( £ ) i = % θ ^ ι simple calculations with two by two
operatr matrices show that P induces a norm one projection p from
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'Q onto the commutant of A0 = (A\ 3€0) such that (X - P(X), E) =
trace(Xo-p(Xo)), where X0 = E(X\W0), and this last quantity is 0
because the formula &(%*) = 9%(δΛo) + {A$}f shows that 9t{\-p) =
$(δAo), that is, Xo-p(Xo) is a commutator.

The second assertion of the Lemma follows from the first by
obserivng that the operator ξ (g) η defined by (ξg) η)(ζ) = (ζ9 η)ξ is a
trace class operator commuting with A so that 0 =

REMARK. A similar duality argument shows that if A is normal and
compact and if B G 38(30, then » ( δ B ) C » ( δ Λ ) " if and only if B - λ G
(A}" Π 3ίf for some scalar A.

The next result appears in [7; Theorem 3.2]:

LEMMA (2.2). If A is a normal operator on 3€ then

n » {o}
zee

Although we shall make no use of the fact, it is worth observing
that (2.2) implies a stronger version of itself.

COROLLARY (2.3). Let μ be a (positive, regular) Borel measure on
C with compact support and let A be the operator f(z)-+zf(z) on
L\μ). If fE0l(A-zl) for μ almost every z EC then / = 0.

Proof. Let {Kn} be a sequence of compact sets with limμ(KJ =
|| μ || and / G 98 (Λ - zl) for all z G Kn. If Pn is the spectral projection
corresponding to Kn then PjE^iiPJiA - λI)Pn) for all λEKn and also
for λ EC\Kn because σ(PnA\PnH)CKn. Thus Pnf=0 for all n and
consequently / = 0.

We shall also need the following result of Korotkov. For a proof
see [10, 21]:

LEMMA (2.4). Let μ be a Borel measure on C of compact
support If ΓGS3(L2(μ)) has &(T)CL"(μ) then T is a Hilbert-
Schmidt operator with kernel t G L\μ x μ) satisfying

ess sup i |ί(z, H>)Nμ(H>)=iK2

where K is the norm of T as an operator from V to L00.

We come now to the main result of this section.
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THEOREM (2.5). // A is a normal operator on X then
contains no nonzero left or right ideal of 3&(W). Hence if B E
and m(δB)C0l(8A) then B <Ξ{A}".

Proof Observe first that for any S, Te®(%) the identity
Xδs(T') = δs(XT') - δs(X)T implies that if &(δs) C0l(δτ) then 9t(δτ)
must contain the left (and dually, also the right) ideal of 58(20 generated
by δs(Tr) for each T" commuting with T. Hence if ί%(δτ) is known not
to contain any left or right ideal ideals then 5 E {Γ}". Thus the second
assertion of the theorem is a simple consequence of the first.

For ξ, η E $? let ξ g) η denote the operator ζ -H> (ζ, η )ξ. Every left
ideal contains an ideal $f(g)τj and so it is enough to show that
Sίf (g)τj C*3l(δA) implies η = 0. (The assertion for right ideals follows
on taking adjoints.)

By restricting to the smallest reducing subspace of A that contains
η we can suppose that A is the operator f(z)-+zf(z) in ft = L2(μ) for
some regular Borel measure μ on C of compact support. Let P be a
projection of norm 1 from 38($?) onto {A}'.

For ξEL2(μ) let γ(ξ) be the unique element of &(%) with

The operator γ is continuous by the closed graph theorem and if
Mh E <k{dt€) is the multiplication operator on 5ίf induced by h EL*(μ)
then γ(Mhξ) = Mhγ(ξ) because δA(Mhy(ξ)) = MhδA(y(ξ)) = Mhξ®η
and P(Mhy(ξ)) = MhP(y(ξ)) = O. In particular, γ(Λ) = MΛ(γ(l)) for

If ft e L » , £EL2(μ) then \\Mhy(ψ\\ = ||γ(Λ)ίNllrll IIΛ ||2||^ ||2
so that /ι -^Mhγ(l)£ = ft γ(l)^ is continuous in the V norm, and
therefore y (l)ξ E L°°(μ) with | |γ(l)f ||β ^ || γ || ||ξ ||2. By Lemma (2.4) the
operator γ(l) is Hilbert-Schmidt with kernel t(z,w) satisfying
ess sup/|ί(z, w)\2dμ(w) = X2<oo. Fix a vector ξEL2(μ). Then
there is a measurable set E = Eξ with μ(E') = 0 and

= J (z -
for z ELE. Since δA(y(l))ξ = (1 ® η)ξ = (£, 17), the Cauchy-Schwarz
inequality gives

/ r \ / r \

for zEE. Therefore \(ξ9η)\^K\\(A-zI)ξ\\ = K\\(A-zl)*ξ\\almost
everywhere, and consequently, for all z Eσ(A) by continuity of the
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right side of this inequality. It follows from this that η E0l(A - zl)
for each z G C (see the proof of Lemma (1.1)) and therefore η = 0 by
Lemma (2.2).

COROLLARY (2.6). Let A be a normal operator on X. If B G
35($f) and 0l(δB)Cίft(δA) then δB = δAσ = σδA for some ultraweakly
continuous linear operator σ from 58($?) into itself with the property
σ(A\XA'2) = A\σ{X)A 2 forXG^(X) and A\, A f

2 commuting with A.

Proof Suppose 3#(δβ) C3#(δΛ). Then by (1.5) we can factor
δB = δAτ0 for some r 0 : &(%)-+&(2e)l{A}'. Making use of a projec-
tion P of norm 1 from £$ (SO onto {A}' we can replace τ0 by τ E
&(&(%)) to get δB = δAτ. Thus for X G 38(20, τ(X) is the unique
operator satisying P(r(X)) = 0, δΛ(τ(X)) = δβ(X). Since B G {A}" it is
easy to check that r inherits the commutativity properties of P, that is

We now replace T by an ultraweakly continuous σ with the desired
properties by the following device: the map (τ\X) from JC into
$ ( $ 0 = 3ίf** has adjoint (τ\X)* from 3ίf*** into X*. For Γ G J =
%* C3ίf*** we therefore obtain an operator a{T) = (r |35f)*(Γ) in ST. It
is clear that a G 38(5"), that (δA \ 3~)a =a(δA\SΓ) = (δB | J") and that
δβ = α*δΛ = δΛα:*. Since α* G S8(Sδ(Sf)) agrees with r on 3ίT we also
have a*(A\XA'2) = A\a*(X)A2, first for X G 5ίf, then by ultraweak
continuity of α* and of multiplication by a fixed element of έS($?), for
all X in the ultraweak closure of 5ίΓ which is 38(5ίf). Thus σ = α*
satisfies the requirements of the Corollary.

3. On a separable space an operator B in the second commutant
of a normal operator A must be a bounded Borel function of A. In this
section we determine which such functions are admissible for range
inclusion of the corresponding derivations. For this we need to
develop some background information about Hadamard multipliers.

DEFINITION (3.1). A matrix (γ0) is a Hadamard multiplier of
if there is an orthonormal basis {£} of 3€ such that for each X G
there is an operator Γ(X) G 38 (30 with (Γ(X)& £) = γίy (X& £) for all /, j .

Thus (γ/;) is a //-multiplier if the Hadamard product of (γt7) and the
matrix of any bounded operator is again the matrix of a bounded
operator. I. Schur [15] gives several sufficient conditions that (γί7) be
an //-multiplier, among them being that (γ0) is itself the matrix of an
operator.

LEMMA (3.2). (1) The condition that (γl7) be an H-multiplier is
independent of the choice of orthonormal basis of $f.
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(2) // (γ 0) is an H-multiplier then X—»Γ(X) defines a bounded
linear operator on 35 ($?). Moreover Γ is ultraweakly continuous and is
the adjoint of the H-multiplier on ίf($f) induced by the transpose of (γ,7).

(3) Let {Γn} be a sequence of H-multipliers. If s u p j Γ j < » and
if (Γn(X)ξh fi)-> α<,(Λ£, ξ,) for each Xe®(W) and each i,j then (α/y) is
an H-multiplier.

(4) Let aa = \Q γ > ' Then (ai}) is not an H-multiplier on

for π = /2(Z) or for W = /2(Z+).

Proof (1) If {TJ,} is another orthonormal basis of $? and if
(Γ(X)ηh η,) = γ^Xηy,i,,) then Γ(X) = U*Γ(UXU*)U where ί/ is the
unitary operator defined by Lfy; = ξh

(2) That Γ is bounded on 35 ($0 is a simple consequence of the
closed graph theorem. The other two assertions of (2) are easy to
verify.

(3) The hypotheses imply that for each XE$(3€) the map
T -*limn(Γn(X)9T) is a bounded linear functional on the subspace of
ίT(ffl) consisting of finite linear combinations of the operators
ξi<g)ξj. Since the dual of 3~ is Sδ(^) there is an operator Z £$(%)
such that (Z,Γ) = limπ<Γn(X),Γ) for any T of the form £(g)£. It
follows that (aaiXξjjξi)) is the matrix of Z and thus that (αf/) is an
//-multiplier.

(4) Consider first the case in which (αί7) is a doubly infinite matrix
(ί,/GZ) and let ξ}(eiθ) = eiiθ be the usual basis of L2(0,2τr). If Mφ

denotes the operator f-*φ f on V for a given φ EL00, then the
Hadamard product of (αiy) and the matrix of Mψ is the matrix associated
with MΦ where φ is the function whose Fourier coefficients (φ,ξn)
vanish for n < 0 and agree with those of <p for n g 0. Since there are
φ EL" for which φ £ L00 it follows that (atj) cannot be an //-multiplier of
L2(0,2π) and consequently cannot be an //-multiplier of /2(Z) either.

Consider now the matrix βi} = 1 or 0 depending on whether or not
i^ j for i, jGZ+ . Then (&) cannot be an //-multiplier of /2(Z+)
because the doubly infinite matrix (α(/) just mentioned is the sum of the
direct sum (β^φίβ-, , , ) and a matrix which is an obvious //-multiplier
of /2(Z).

There is another, perhaps more natural, way to see that the doubly
infinite matrix (αiy) of (4) is not a Hadamard multiplier of /2(Z) that we
now sketch. It is enough to show that (αo ) does not induce an operator
a on j he trace class matrices SΓ on /2(Z). Now & is isometric with
/2(Z)(g)/2(Z) so the convolution product gives rise to the map (ρS)k =
Σj_, «fc*ϊ of 3Γ into Λ(Z) and in fact A(Z) is isometric with J*/Ker(p).
Clearly a (Ker (p)) C Ker (p) so a lifts to a' G 38 (A (Z)). Here a' is the
operation of multiplication by the characteristic function of Z+ and it is
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well known that A(Z) is not closed under this operation. (V(Ί) is not
closed under the Hubert transform.) The harmonic analysis used here
appears in [13; pp. 80-81] and [9; p. 64].

Hadamard multipliers are important for studying the range of a
derivation mainly because of the following simple fact: (Recall that a
diagonal operator is an operator for which there is an orthonormal basis
of eigenvectors.)

LEMMA (3.3). Suppose A ESft(ffl) is a diagonal operator with
matrix diag(λ1? A2, •) with respect to the orthonormal basis {£}. If
BE®(2e) then5fc(δB)C$ίl(δA) if and only if B = diag(/z,,μ2, •) with
respect to {£} and (γή ) is an H-multiplier of 38(20 where

= ( μ ι μ i ) ( ι / r / , ^ ,
Ύii 1 0 if λ, = Ay *

Proof Suppose Θl(δB)C0l(δA). Then Be {A}" by (2.5) and
hence B has a diagonal matrix with respect to the given basis. If
X E 38(20 there is Z E 38(20 with δB(X) = δA(Z). Computing (/,/)
entries yields (μ{ - μ})(Xξh£) = (A, - λ}){Zξh£). Now we can choose
Z so that P(Z) = 0 where P is a norm one projection from 53(20 onto
{AY For such a choice Lemma (2.1) shows that (Zξh £) = 0 whenever
λ i = λ j and therefore {Zξh ξt) ^ yή{Xξh ξ,) with γl7 defined as in the
statement of the Lemma. This proves that the multiplier condition is
necessary for ί%(δβ)Cί%(δΛ) and it is clear that it is also sufficient.

LEMMA (3.4). Let μ be a finite measure on C and let A be the
operator h{z)-+zh{z) on L\μ). Suppose that f E C(σ(A)) and that
£%(δ/(Λ)) CM(δA). If B is a diagonal operator with distinct eigenvalues
λ,,λ2, inσ(A) then

Proof Let {£} be an orthonormal basis of X such that JB£ = λ(£
for ί = l,2, •••. Fix an integer n > 0 and let <pu<p29'—9<pn be the
normalized characteristic functions in L\μ) of disjoint neighborhoods
NuN2, ,Nn of the λh each having diameter at most n~\ Finally let
U = Un be a partial isometry from ffl into L\μ) with

By (2.6) there is a map α from SΓ = J{L\μ)) into itself such that
(δ/(Λ)|̂ ") = a(SA \3f) = 8Aay and this induces a map β from #"(30 into
itself, namely β(T) = U*a(UTU*)U. An easy calculation gives
0(6
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)-1 f ί λ(z,w)dμ(z)dμ(w) 1 ̂  ij g n
β\i}=[ JN> J * i>n or j>

and λ(z,w) = (f(z)-f(w))(z- w)~\l-δz,w). Now if Γn is the
Hadamard multiplication on SΓ{ffl) associated with the matrix (β ;

n)) it
follows that Γn and β agree on the operators ξt (g) § and since both
operators are ultraweakly continuous we have ||Γn|| = \\β | |S
| |α | | . Hence the matrix (γjj0) defined by yf = βf- 8φf has mul-
tiplier norm at most 2||α||. Since γ^-^γo where

- λ, ) ' for 17̂  j
Ύii 1 0 f o r / = /

it follows from (3.2) that (γo ) is an //-multiplier on SΓ(ffl) with multiplier
norm at most 2\\a ||. Thus (δ/(β)| &) = aB(8B \ 3Γ) = δBaB for an operator
aB on 2Γ(d€) with norm at most 2| |α| | so that <Ά(δHB))C0l(δB).

Our next result shows that the question whether ^(δ / ( A ))C^(δ Λ )
depends only on the values of / on σ(A) and not on the normal operator
A itself:

COROLLARY (3.5). Let A and f be as in the statement of the
Lemma. If B is any normal operator with σ(B)Cσ(A) then 0t(8f(B)) C

Proof. Any normal operator B on ffl is a countable direct sum of
operators h{z)->zh{z) on V spaces and each of these is uniformly
approximable by diagonal operators (approximate the identity function
by a simple function.) Hence B itself is the uniform limit of a
sequence {/?„} of diagonal operators on %C and clearly we may also
choose the Bn to have distinct diagonal entries for each n. Now for
each n there is an operator an on 5"($?) with (8HBn)\SΓ) = an(δBn \SΓ) =
8Bnan and supn || an \\ < oo by the proof of the Lemma. Fix XEffl(ffl)
and let Zn =α*(X). Since the Zn are bounded we can pass to a
subsequence if necessary to insure that the sequence {Zn} converges
ultraweakly to some Z G 38 (^). Then

δfiB)(X) = (f(B) - f(Bn))X + (Bn-B)Zn + (BZn -ZnB) + Zn(B - Bn)

+ X(f(BΛ)-f(B))

so that, taking ultraweak limits, 8f{B)(X) = 8B(Z) G9t(δB) as required.

THEOREM (3.6). Let Abe a normal operator on $? with dominating
scalar spectral measure μ (see [5; Theorem 10, p. 916].). IfB G
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then 3l(δB)C0i(δA) if and only if B =f(A) where /eC(σ(A)) and
(at)(z, w) = {f(z)-f{w))(z - w)~ιt(z, w) (taken as 0 when z = w) is a
trace class kernel with respect to μ whenever t(z, w) is such a kernel.

Proof. Suppose first that A is the operator /z(z)—>z/i(z) on
L\μ). If 0i{δB)C0ί{δA) then B e {A}" by Theorem (2.5) so that
B = f(A) for some /GL°°(μ). Also, by (2.5) there is an operator a
from the trace class operators SΓ on L2(μ) into itself such that
(δB ISΓ) = a(δA 12Γ) = (δA 13T)a. If t(z,w) is the kernel of a trace class
operator on L2(μ) then (z - w)(at)(z, w) = (/(z)- f(w))t(z, w) almost
everywhere μ x μ. Now if μ has mass at z0 and ξ0 is the corresponding
normalized characteristic function, then (at)(z0,z0) = (ξo®£o,at) =
(« *(£o ® £o), 0 = 0 because the range of a * is contained in the range of
1 - P, where P is the projection of 33($?) onto {A}' used to construct a,
and therefore 0 = Pa *(ξo <g)ξo) = (x *(P(ξo Θ ξo)) = a *(ξ0(g) £0). Thus
(αOfe w) = (/(z)-/(w))(z - w)"!ί(z, w) (taken as 0 when z = w) and
this holds μ x μ almost everywhere. To complete the proof we appeal
to Theorem (4.1) below which implies that the multiplier condition on /
just established forces / to be equal μ, a.e. to a continuous function on
σ(A).

Conversely, if at is a trace class kernel for each trace class kernel t
then t —> at defines a bounded operator on the trace class by the closed
graph theorem and a(δA)t(z, w) = (/(z)-/(w))ί(z, w) = δf(A)t(z, w) for
z φ w by definition of a and for z = w since both sides of the equation
are 0. Thus δB = δΛα* and &t{δB)C0l(δA).

Consider now the general case. If 0l(δB)C0i(δA) then there is a
reducing subspace % of ffl on which A is unitarily equivalent to the
operator h (z) —» zh (z) on L2(μ). The subspace 3ίf0 reduces B and since
δB(2ί?o)CδΛ(^o) t h e first P a r t of t h e argument shows that B=f(A)
where / has the asserted properties.

Conversely if B = f(A) with / of the given form then ^(δβjC
^(δΛ o) where A0,B0 are the restrictions of A,B to Xo. Corollary (3.5)
then implies that $ί(δB) C&ί(δA) where A, B are the direct sum of
countably many copies of Ao and Bo respectively. Since A is the
restriction of A to a reducing subspace it follows that 01 (δB) C 91 (δA).

COROLLARY (3.7). Let A be a normal operator on %C and let
B E9S(X). Then 0ί{δB)C0ί(δA) if and only if there is a constant c
such that \\δB(X)\\^c\\δA(X)\\ for all X<

Proof. Suppose || δβ (X) \\^c\\ δA (X) || for all X. Then BE {A}"
so that B = f(A) for some bounded Borel function /. Also if T E 3~
then δB(T) - δA(S) for some S G J by (1.4) and, in the notation of (3.6),
at is the kernel of the trace class operator Si satisfying
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for all KeX, i.e., S, = S-(P*(S)|3Γ). Thus 9KδB)C9l(δA). The
converse is clear from (2.6).

4. We now consider the problem of determining the elements of
C{σ{A)) that satisfy the multiplier condition of Theorem (3.6). It
seems that, just as there is no satisfactory way of recognizing which
periodic functions have absolutely convergent Fourier series, so no
easy description of the class of functions in Theorem (3.6) exists.

THEOREM (4.1). Let μ be a finite measure on C of compact
support and let f G L°°(μ) satisfy the criterion of Theorem (3.6). Then f
is equal a.e. μ to a continuous function which satisfies a Lipschitz
condition and is differentiable relative to σ{A) at each nonisolated point
ofσ(A).

Proof Let Λ(z, w) = (f(z)-f(w))(z - w)~ι for z/ w and Λ(z, z) =
0. The function Λ is μ -measurable and if ξ, η are unit vectors in L\μ)
then the trace class norm of the operator with kernel Λ(z, w)ξ(z)η(w) is
no less than its Hilbert-Schmidt norm

Uf\A(z,w)\2\ξ(z)\2\η(w)\2dμ(z)dμ(w)γ

for which the upper bound as ξ, η vary is K = ess sup |Λ(z, w)\. Thus
Λ G L\μ x μ) and | f(z) - f(w)\ ^ K \z - w | for almosf all (z, w). Put

E ={z GSupp(μ): \f(z)-f(w)\ ^ K \z - w | for almost all

wGSupp(μ)}.

The complement of E is of measure 0. If zί9z2EE we have

except for values of w in a set of measure 0. If μ ({zj) = 0 then we can
find a sequence of values of w outside this exceptional set converging to
z, so | / ( z , ) - / ( z 2 ) | ^ K | z , - z 2 | . If μ({z,})^0 we get the same ine-
quality from the fact that z2 belongs to E. As E is dense in Supp(μ)
and / is uniformly continuous on E there is a continuous function g on
Supp(μ) equal to / on E, that is, equal to / a.e. By continuity
\g(z)-g(w)\^K \z - w\ for z, w in σ(A).

Suppose now that λ is a nonisolated point of σ{A) and that g is not
differentiable at λ. Then, as g is a Lipschitz function, we can find a
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sequence {λ, } ( - oo < ϊ < oo) of distinct points in σ(A) - {λ} with A, —• λ
as i -» ± oo and

\im

Replacing g by h(z) = (g(z)-pz)(q - p)~ι if necessary we can assume
that p = 0, q = 1 since g satisfies the criterion of Theorem (3.6) if and
only if h does.

If

= ί(g(λi)-g(λj))(λi-λj)-] for iV/
γ " 1 0 for ί = j

then (γo ) is an Hadamard multiplier of $ (/2(Z)) by (3.3) and (3.4). This
implies that the matrix (β/7) where βi7 = y-u for i,j g 1 is an //-multiplier
of ^(/2(Z+)). Indeed if {<pt: -oo</<oo} is an orthonormal basis of
/2(Z) and {ξi: i '^ 1} is an orthonormal basis of /2(Z+) then the operator Γ'
on S3(/2(Z+)) corresponding to //-multiplication by (βί7) is given by
Γ(X) = V*Γ(VXU*)U where Γ is the operator on 38(/2(Z+)) associated
with (γn) and U, V are the isometries from /2(Z+) into /2(Z) defined by
l/6=φ. , V$=φ_ t f o r / δ l .

Fix a positive integer n. Since

lim lim ft, = 0, lim lim β/y = 1

we can find one-to-one maps π, σ from Z+ into itself such that

\ β ^ i ) M i ) - l \ < n - ] for i > / δ l

10^0)1 o r 1 for l^i^/.

(See [8; p. 694].) Since (β^o.σo)) i s clearly an //-multiplier with
multiplier norm at most equal to the multiplier norm of the matrix (jf̂ -),
and since n can be taken arbitrarily large here, it follows from (3) of
Lemma (3.2) that (α0) is a Hadamard multiplier where

_ ί 1 for i > j
10 for ί ^ Γ

This contradicts (4) of Lemma (3.2) and completes the proof.
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COROLLARY (4.2). Suppose that f is continuous on the closed unit
disk D and that £%(δ/(Λ))C£%(δΛ) for some normal operator A with
σ{A) = D. Then f is analytic at each point of D. In fact, f and its
derivative f belong to if00,/ satisfies the Lipschitz condition \f(eia)-
f(eiβ)\ i K \a - β I on the unit circle, and the Taylor series of f is
absolutely convergent on D.

Proof That / and /' belong to H00 is clear from the theorem. The
other assertions about / are consequence of these, a theorem of Hardy
aad Littlewood, and Hardy's inequality. See [6; pp. 48, 78].

There is a natural anti-involution τ->τ* on 55 ($(20) defined by
τ*(X) = τ(X*)* for X e 38(30. With respect to this involution it is
easy to check that δΛ and (δΛ)* commute if and only if A is normal so
that the term "normal derivation" is unambiguous. It is known [2] that
normal derivations on 3δ($?) exhibit some of the properties of normal
operators on 3ίf, for example the orthogonality of range and kernel
mentioned earlier. But Theorem (4.1) indicates that whereas a normal
operator on $f and its adjoint always have the same range, this property
fails in general for normal derivations, even those induced by diagonal
operators, because z —»z is not analytic. (However, the ranges of δA

and δΛ* have the same norm closure. In fact, $fc(δB)CSfc(δAy for any B
in the C*-algebra generated by the normal operator A.) This fact can
be expressed in a slightly different way to provide a negative answer to a
question raised in a conversation with the authors of [3].

COROLLARY (4.3). There exist a diagonal operator A (with distinct
eigenvalues) and a sequence {Xn} in <3l(3€) such that \\AXn - XnA ||—>0
but | |AΛΓ*-X*A||>1 for each n = l,2, .

Proof. There exists a diagonal operator A with 0ϊ(δΛ*) not
contained in 2fc(δA) by the preceding remarks. For such a choice of A
Corollary (3.7) implies that for each n there is an operator Zn with
|| δΛ * (Zn) II > n || δA (Zn) ||. Then δΛ (Zn) ̂  0 by the Fuglede theorem so
the choice Xn = Zn/n \\δΛ(Zn)\\ satisfies the required conditions.

REMARK. The sequence {Xn} cannot be chosen to be uniformly
bounded however [R. L. Moore, private communication.]

In [3] a counterexample is constructed to show that if A is a normal
operator on $f and P is a projection in {A}", then in general one cannot
find a positive number δ corresponding to each e > 0 so that the
conditions X E S& (%), \\ AX - XA || < δ imply || PX - XP \\ < e. Or e-
quivalently, by (3.7), the condition P G {A}" is not sufficient for 3$(δP) C
έ%(δΛ). Theorem (4.1) helps to explain this situation more fully:
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COROLLARY (4.4). Let A be a normal operator on $f with spectral
measure E( ) and let P be a projection on X. Then &(8P)C0l(8A) if
and only if there are disjoint closed sets Δo, Δi with Δo U Δi = σ(A) and
P = £(Δ,).

Proof If 9i{8P)CSk{8A) then by (4.1) there is a continuous
function / on σ(A) with P = f(A). The spectral mapping * theorem
implies that σ{A) is the union of the disjoint closed sets Δo = /"'(0) and
Δ, = /-!(1). Also P = f(A) = Jf(λ)dEk = E(Δ,).

Conversely if P = f?(Δi) where Δo, Δj are disjoint closed sets whose
union is the spectrum of A then by the Riesz-Dunford functional
calculus P - f(A) for some function / that is analytic in a neighborhood
of σ(A). Hence 94(δP) = &(δ/(A))C94(δΛ) by (3.6) or by the result of
Weber [20] mentioned in the Introduction.

The sufficiency of the condition on P may also be established
directly by considering the decomposition 3€ = 2?(Δ0)3ίf 0f?(Δ,)$ί and
appealing to the theorem of Lumer and Rosenblum [11] on the solvabil-
ity of the operator equations AιZ-ZA0 = X9 A0Y-YAX= W for
operators AQ,A\ with disjoint spectra.

A theorem of Anderson [1] shows that if N is a normal operator
then 0l(8N)C U 2fc(8A) where the union is taken over the set of all self
adjoint operators A in £$($?). That is, any commutator of the form
NX-XN can also be written AY-YA for some A = A* and
YεS8(Sif). Theorem (4.1) implies that one cannot improve this to:
gi{8N)C<3l{8A) for some A = A*. Indeed if σ(N) has infinite one-
dimensional Hausdorff measure then we cannot have σ(N) = /(σ(A)),
and hence cannot have N - /(A), for any self-adjoint A and Lipschitz

/.
Theorem (4.1) also permits a somewhat simpler proof of the

theorem of Anderson and Foias [1] which determines when the range of
a normal derivation is closed.

COROLLARY (4.5). Let Abe a normal operator on $f. Then 9h (δΛ)
is norm closed in 8ft (2£) if and only if the spectrum of A is finite.

Proof Suppose that 34 (δΛ) is norm closed in 9i(3€). If P is a
norm 1 projection of 35 ($ί) onto the commutant of A then there is a
constant c > 0 such that | |δ Λ (X) | |^ c \\X\\ for all X e » ( l - P ) . For
B E {A}" and X G &(%) we have P(BX -XB) = BP(X) - P(X)B = 0
and so 94(δB)C94(l-P). Hence

c || δB ( X ) || ̂  || δ Λ ( δ B ( X ) ) II = II δB (δA ( X ) ) II έ II δ B IIII8A ( X ) II.
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Therefore &ί(δB)Cίk{δA) by (3.7) so that B = f(Λ) for some
continuous function / by (3.6). Thus {A}'\ the von Neumann algebra
generated by A, coincides with the C*-algebra generated by A. It
follows that σ(A) is extremally disconnected and therefore is a finite
subset of C.

Conversely if σ(A) is finite then A is a linear combination of
orthogonal projections and this easily implies that δΛ has closed range.

REMARK. With a different argument one can show that if A is
normal with infinite spectrum then 2ft(δA) + {A}r is not norm dense in
38(30. (See [2].) Hence 0t(δA)£9t(l -P) for any projection P of
norm 1 from 38(30 onto {A}'.

We conclude this section with an example that confirms a remark of
J. Taylor [18; p. 29].

EXAMPLE (4.6). Let A be the operator of multiplication by the
sequence λ, = /"I(iV0), λ0 = 0 in /2(Z), and let / be the Lipschitz
function f(χ) = χ+ = \(χ + |JC|). Then 9l{δίiA))(tS/i{δA). That is, there
does not exist a constant c such that \\f(A)X - Xf(A)\\^c\\AX - XA ||
for all operators X on /2(Z).

This follows at once from (4.1) since / is not differentiate at
x = 0. The result can also be proved directly by observing that

„ = ί ( / ( I ) / ( i ) ) ( ί λ / ) - 1 if IVJ
Ύii l O if i = j

cannot be an //-multiplier of 35(/2(Z)) because this would imply that the
matrix (JO'+jT1) is an //-multiplier of 39(/2(Z+)) which is impossible
because of the relations

lim /(/+/)"• = 1, lim j(ί + j)"1 = 0.

(See the proof of (4.1).)

5. We conclude by giving a condition which is sufficient for / to
satisfy the criterion of Theorem (3.6) for self-adjoint operators.

THEOREM (5.1). Let f be a complex valued function on R with
continuous third derivative. If A is a self-adjoint operator on X then

Proof. By (3.5) it is sufficient to prove the theorem for the case in
which A is the operator f(x)^>x - f(x) on L\I) where / is a compact
subinterval of R. Define
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x = y .

Then Λ is a C(2) function on R x R and, without altering Λ in a
neighborhood of σ{A) x σ(Λ) we can assume that Λ is doubly periodic

with periods p,q say. The Fourier coefficients λkl =p~ιq~ι \
Jo Jo

Λ(JC, y)exp2ττi(/cjcp"1 + lyqι)dxdy satisfy {k2λkl} E /2(Z2), {/%} G /2(Z2)
because d2A/dx2 and <92Λ/<9y2 belong to V. Since {(fc2 + Z2)'1}E /2(Z2) it
follows that {λkl}El\Z2).

Now if t (x, y) is the kernel of a trace class operator T on L2(/) then
(akιt)(x,y) = t(x,y)exp(-2τri(kxp~ι + lyq"*)) is the kernel of the
operator UTV where U and V are unitary so au is an operator of norm
1 in ί$(ίf). Hence a = Σwλwαw is an operator in £$(50 and this is
t —>Λf because A = Σλw exp(- 2πi(kxp~ι + /yq"1)). Thus At is a trace
class kernel whenever ί is and it follows as in the proof of Theorem (3.6)
that 9t(δfiA))C9t(δA).

Note that now that we know <3i(δnA)) C$t(δA) Theorem (3.6) shows
that / also satisfies the multiplier condition of that theorem. That is,
the function Λ(z, w), taken to be 0 when z — w, rather than /'(z), also
multiplies trace class kernels.
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