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THE SUM OF THE DISTANCES TO CERTAIN
POINTSETS ON THE UNIT CIRCLE

K E N N E T H B. S T Ό L A R S K Y

Let Pi, , pn be points on the unit circle U. For peU
define Tx(p) = Σ IV — Pi\λ- The extremal behavior of Tλ(p) is
completely described in two cases: (i) 0 5g λ S 2 and n — 3
and (ii) 0 ^ λ < 2n and Pi, -,pn the vertices of a regular
n-gon.

Introduction* Let | p — q | denote the Euclidean distance between
p and q. The first main result of this paper (proved in §5) is

THEOREM 1.1. If j)^ p2, and pz are points on the unit circle U,
and 0 ̂  λ ^ 2, then there is a p e U such that

(1.1) Σ I P - f t l ' ^ 2 + 2',

and this is best possible.

The second main result (proved in §2) is

THEOREM 1.2. Let elf - *,en be the vertices of a regular n-gon.

Let pe U, and for 0 ^ λ < 2n let

(1.2) Γ a(p) = Σ | p - β < | i .
t = l

If X is an even integer, then Tλ(p) is constant. Otherwise, let m
be the integer such that

(1.3) 2m < λ < 2(m + 1) .

// m is even (odd), then Tλ(p) is maximal (minimal) if and only if
p bisects the arc between consecutive et. Moreover, Tλ(p) is minimal
(maximal) if and only if p = et for some i.

It follows from the case n = 3 of Theorem 1.2 that Theorem 1.1
is best possible. Theorem 1.2 is proved by means of a differential
inequality related to Sturm-Liouville problems [3, pp. 140-142], A
more restricted version of this theorem is proved in [11] by means
of an integral transform.

We remark that in many extremal problems of this type the
cases 0 ̂  λ <; 1 and 1 < λ <; 2 tend to be different, or at least require
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242 KENNETH B. STOLARSKY

different methods. For example, the problem of placing points p19

• , pn on the unit circle so that

(1.4) S(n) =Σl3>* - VόY

is maximal has been solved for 0 ^ λ ^ 1; one simply places them
at the vertices of a regular %-gon [2, 6]. However, for 1 < λ < 2 this
is still an open question. We comment that there is a growing
literature on the sum (1.4) and its analogues S{n, m) in m-dimensional
Euclidean space; see [1-2, 4-10, 12]. The results of Bjorck [4] show
that the problem of maximizing S(n, m) for λ < 2 is radically different
from the problem for λ > 2.

In the course of proving Theorem 1.1 we shall in fact prove a
bit more. We say that a continuous and strictly increasing real
valued function f{x) defined for 0 ^ x <L 2 has the monotonic midpoint
property for Θ if the following is true: whenever q is on an arc of
length greater than or equal to Θ, with endpoints qlf q2e U, the sum
/(I? ~ Qι\) + f(\q — & I) is maximal if and only if q is the midpoint of
this arc, and, moreover, the sum decreases strictly as q moves away
from the midpoint to qx. Let M(θ) be the class of all such functions.

THEOREM 1.3. For pup2,pze U and feM(π) there is a pe U
such that

(1.5) i
peU

where the et are the vertices of an equilateral triangle. Equality
holds if and only if plf p2, p3 are themselves the vertices of an equi-
lateral triangle.

It is rather easy to show that f(x) = xλe M(0) for 0 < λ <Ξj 1,
and that for any θ > π it belongs to M(θ) when λ = 2; it is true
but somewhat more difficult to show that f(x) e M(π) when 1 < λ <
2. We give the details in §3. Clearly Theorems 1.2 and 1.3 imply
Theorem 1.1. The proof of Theorem 1.3 is given in §5, after the
preliminary results of §4.

2. The regular w-gon* For ^ ^ 3 , let el9 * ,eΛ be, in coun-
terclockwise order, the vertices of a regular %-gon inscribed in Z7.
Choose co-ordinates so that p0 = (1, 0) lies on the midpoint of arc
(βi, β»), the smaller arc determined by et and en. We shall obtain
Theorem 1.2 from the differential inequality of Lemma 2.3. Lemmas
2.1, 2.2, and 2.3 are probably obvious to any expert on Green func-
tions, but we give complete proofs to keep the paper self-contained.
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LEMMA 2.1. Assume that f{x) has a continuous second derivative
for 0 < x < T, that /(0) = f(T) = 0, and that

(2.1) /"(*) + ¥f{x) = φ)

where k is a constant such that 0 < kT < π. Then f(x) = J(x), where

(2.2) J(x) =

and

(2.3) G(a?, ί) = {sin A Tsin k(x - £)-sin kx sin &(Γ - ί)}/& sin kT

for 0 ^ t <; a? ̂  Γ, α^d

(2.4) Gίaj, ί) = G(ίf x)

/or 0 ^ x <>t ^ Γ.

Proof. Since G(#, ί)r as a function of x, need woί be differentiable
at t, we must use considerable care in verifying that J(x) satisfies
(2.1). Write

J(x) = [TG(x, t)r(t)dt
Jo

= \'G(X, t)r(t)dt + (-ΐ)[*G(x, t)r(t)dt
Jo Jr

Ξ J,{x) + J2(α?) .

For Jλ{x) we can assume that (2.3) is always valid. Thus

J[(x) = G(α;, α?)r(a?) + \*Gx(x, t)r(t)dt
Jo

and

since k2G(x, t) + Gxx(x, ί) = 0. For J2 we can assume that

G{x, t) = {sin kTsin k(t - α?)-sin fcί sin fc(T - x)}/k sin A Γ

is always valid, so

Ά(x) = -G(x, x)φ) - [*Gx(x, t)r(t)dt
Jr

and

J't'(x) + VJt(x) = —f-{G(x, x)φ)} - Gm(x, t)r(t)\t=x .
ax
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Hence (remember that G has a "two-part definition")

J"(α?) + Jc2J(x)

r ^ {sin &Γ cos k(x - t) \t=x - cos kx sin k(T - t) \t=
sin kT

+ sin kT cos k(t — x) \tssχ — sin kt cos &(T — a?) \t=x}

= r(x){2 - Bin(te + *(Γ-«))l = r ( a ; ) ;
I sin&Γ )

it is also clear that J(0) = J(T) = 0. Now if iΓ(a$) is another solution
to (2.1) with K(0) = K(T) = 0, then L(x) = J(a?) - £(&) = A cos to +
B sin to for certain constants i and B. From L(0) = L(T) = 0, it
follows that A = B — 0. This completes the proof.

LEMMA 2.2. Under the hypotheses of Lemma 2.1 we have

(2.5) G(a?, ί) ^ 0

for 0^x,t^ T.

Proof. It suffices to prove this for 0 <̂  t ^ a? ̂  T. In that case

G(a;, t) = {sin2 ^i-sin2 2̂}/fc sin feT

where

7Γ . _ k(T - t - x) ^ n _ fc(Γ- a? + t) . π
~Ί<θl 2 ~ 2 2 < ¥ '

Thus (consider the graph of sin2x for — ττ/2 ^ x ^ π/2) it suffices to
show θ2 is closer to π/2 than θ1 is to — ττ/2. But θ1 — {—π/2) ^ π/2 — #2

is equivalent to kT ̂  kx, so the proof is complete.

LEMMA 2.3. Assume that f(x) has a continuous second derivative
for 0 < x < T, that /(0) = f{T) = 0, and that

(2.6) f\x) + &2/(α;) ̂  0

where k is a constant such that 0 < /bT < π. Then f(x) is a non-
negative concave function for 0 ̂  x ^ T.

Proof. Set r(a?) = f"{x) + Λ2/(a;). From (2.2) and Lemma 2.2
we see that f(x) ^ 0 for 0 ̂  x ^ T. Hence /"(#) = -k2f(x) + r(x) ^
0 for 0 ^ x ^ T and the proof is complete.

Note that if the inequality (2.6) were reversed, the conclusion
would be that f(x) is nonpositive and convex.

We can now prove Theorem 1.2. Write n = 2k + s where k and
s are integers with 0 ^ s ^ 1. We can assume without loss of
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generality that p — (cos φ, sin φ) is on the smaller arc joining e1 and
en. Set

<2 " Φ K ^ ί )

Here the first sum on the right involves distances from p to vertices
strictly above the x-axis, the second sum is for vertices strictly below
the α -axis, and the third term corresponds to the vertex, if any, at
(-1,0).

For 0 < λ <̂  1 Theorem 1.2 is an easy consequence of the second
part of Lemma 3.2. For 1 < λ < 2, the second derivative of Fλ(φ)
with respect to φ has singularities, so Fλ(φ) cannot be constant on
any interval. Thus it suffices to show that F\φ) S 0 for 0 ^ φ ̂  π/n
where F(φ) = Fλ(φ). Since F(-φ) = F(φ) it then follows for 0 ^ φ ^
π/n that F(φ) is maximal if and only if φ = 0 and minimal if and
only if φ = π/n. Make the change of variable δ = λ — 1 and t =
π/2n - φ/2. Then

F(φ) = Σ sm1

It now suffices to show that Kδ(t) ^ 0 f or 0 ^ t ^ 7r/2̂  and - 1 <
δ < 1 where

Ξ _ 1 _ dJM. = ± sin̂  (Q - ^ + t) cos

(2.8) - Σ sin5 f A _ Λ cos f ̂  - ί

2n I V 2n

If δ is negative, this follows from

n n

because each term of the second sum of (2.8) is then at most as
large as the corresponding term of the first sum. Next, say 0 ̂  d ̂  1.
It is easy to verify that the differential equation
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(2.9) JJ'(ί) + (δ + l)2Jδ(t) = -8(1

is satisfied by Jδ(t) = sinδ ί cos £. Thus it is also satisfied by Kδ{t).
Also, Kδ_2(t) ^ 0 since <5 — 2 is negative. Moreover, Kδ(0) — Kδ(π/2n) =
0 and 0 < (δ + l)τr/2w < π. Thus Lemma 2.3 yields Kδ(t) :> 0 for
0 ^ έ ^ π/2n and the proof is complete for 0 < λ < 2.

Next, say 2 < λ < 3, so 1 < δ < 2. Then (2.9), the fact that
δ - 2 is negative, and Lemma 2.3 yield Kδ(t) ^ 0. For 2 < δ < 3 we
have Kδ_2(t) ^ 0 by what has already been proved, and —8(1 — δ) >
0. Hence Lemma 2.3 once again yields Kδ(t) ^ 0. This completes
the proof for 2 < λ < 4. By continuing in this manner we obtain
the theorem for 0 < λ < 2n whenever λ is strictly between even
integers. But if λ equals an even integer in this range, then it is
clear by continuity that Tλ(p) is constant.

3. The midpoint property* Let f(x) = xλ where 0 < λ < 2.
Our goal here is Lemma 3.2.

LEMMA 3.1. // 8 < 1, then

(3.1) (sin u)δ cos u ^ (sin v)δ cos v

for (u, v) in the isosceles triangle T determined by π/2 — u ^v ^u
and 7r/4 ^ u ^ π/2. If δ Φ 0, equality holds if and only if u = v or
(u, v) = (π/2, 0). Ifδ — O equality holds if and only if u = v.

Proof. Inequality (3.1) is clearly true for u = π/2 and u = v.
For u = π/2 — v the inequality becomes

(sin v)1'3 ^ (cos v)ι~δ

which is obviously true since v ^ ττ/4. Thus (3.1) is true on the
boundary of T, so it suffices to show that

f(u, v) — δ log sin v + log cos v — δ log sin u — log cos u

has no critical point in the interior of T. At a critical point (u, v),
we have

_Z- = — 3 cot u + tan u = 0
ou

and

_JL — § cot v — tan v ~ 0
dv

so δ = tan2v = tan2^. Thus w = v and (u, v) is not in the interior of
T. The cases of equality are trivially determined by inspecting (3.1)
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on the boundary of T. This completes the proof.

LEMMA 3.2. If f(x) = xλ where 0 < λ < 2 then f(x) e M(π). If
0 < λ ^ 1 then f(x) e M(0).

Proof. Let qx = (cos θ, sin θ), q2 = (cos 0, —sin 0), and q = (cos ̂ ,
sin φ) where π/2<L θ <>π and 0 < 0 < 0. We must first show that
g'(φ) < 0 where

i.e., that

(3. 2 ) ( s i n l ± i ) c o s ^

In the case where π — θ ̂  φ it is clear geometrically that increasing
0 will strictly decrease both \q — qλ\ and \q — q2\. If φ ̂  TΓ — θ,
make the change of variables u — (θ + ^)/2 and v = (θ — φ)/2. Since
λ — 1 < 1, the first statement follows from Lemma 3.1.

To prove the second statement, assume 0 < φ < θ ̂  π. Again
we can assume φ ̂  π — θ. But then

0 <r Φ <• & + Φ

and, since 0 < λ ^ 1, inequality (3.2) is immediate. This completes
the proof.

4* Lemmas on maximality* The first two results of this section
are almost self-evident, but we prove them for the sake of complete-
ness.

LEMMA 4.1. Let X and Y be compact subsets of an m-dimensional
Euclidean space and let F be a real valued continuous function on
XxY. Define G(y) by

G(y) = max F{x, y) .

Then G{y) is a continuous function of y.

Proof. If not, let {yn} be an infinite sequence converging to some
yeYsuch that |G(yn) — G{y)\ > c > 0 for some fixed positive constant
c. Since X is compact we can choose xn so that G(yn) — F(xn, yn).
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Since J x Γ i s compact we can choose a subsequence so that (xn9 yn) —>
(x', y) for some x' e X. Finally, choose a subsequence again so that
either G{yn) > G(y) + c or G(y) > G{y%) + c for all n. Since F is
continuous

G(yΛ) = F(xn, yn) > F(x', y) ̂  G(y) = F(x", y)

for some x" e X. Hence G(y) > G(yn) + c. Also

G(yn) ^ F(x", yn) > F(x", y) = G{y) ,

so G(yn) > G(y) + c. This contradiction proves the Lemma.

LEMMA 4.2. / /

3

K = K(plf p2, p3) = m a x Σ f(\P ~ Pt\)
peU i=l

where f is continuous, U is the unit circle, and ply p2, and pd are
points of U, then K is continuous.

Proof. Apply Lemma 4.1 with X = U, Y = UxUxU, and

F(p)=±f(\p-pi\).

Before stating Lemma 4.3, we introduce some terminology. If
al9 a2, and α3 are three points on U, we denote by arc (au a2) that
closed arc, with ax and α2 as its endpoints, which does not contain
α3. We define arc (al9 a3) and arc (α2, a3) similarly.

LEMMA 4.3. Let

ΣF(p) = F(p; pu p2, p8) -

where f is continuous and strictly increasing. Then F(p) is a
continuous function on U which attains its maximum on every
longest arc of the triple {arc (pίf p2), arc (plt p3), arc (p2j p3)}, and
nowhere else.

Proof. We shall prove only the case where one of the arcs (call
it a) is strictly larger than the others; the rest of the argument is
quite similar. If the length of a is at least π, let d be a diameter
of U such that a contains both endpoints of d. If F has a maximum
at p and p g a, let pr be the reflection of p in d. Clearly F{pf) >
F(p), a contradiction. Thus we can assume that the length of a is
less than π. Say a = arc (pu p2), but F(p) is maximal for some
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p e a r c ( p 3 , pλ). Choose p'sarc(pl9 p2) so that \p2 — p'\ = \pz — p\.
It follows that | p — p2 | = | pΫ — pz | and π ^ arc (p', p j > arc (pf pj ^ 0,
so I pf — p11 > I p — px |. Hence i*Xp') > i*Xp). This contradiction proves
the result.

LEMMA 4.4. Let plt p2, and pz be points on U. Let L be a line
parallel to seg (pl9 p2), the line segment joining p1 and p2. Assume
L separates seg (plf p2) from p3, and let p[, p2 be the points at which
L intersects U. Assume that the smallest arc between ps and pm is
at least π/2, where pm is the midpoint of arc (pl9 p2). Then for
f 6 M(π) we have

with equality if and only if p1 = p[ and p2 = p2.

Proof. Let I be the line joining pm and the center of U. Let
p'3 be the reflection of p3 in I. Since / G M(π) we have

2α = [f(\Pl - p,|) + f(\px - pί|)] + [f(\p2 - p.!) + /(IP. ~ Pίl)]

(4.2) ;> [/(Ipi — Psl) + f(\p[ — Psl)] + [/(|pί — Pel) + /(Ipί ~ pίl)]

= 26

with equality if and only if pγ = p[ and p2 = pj.

5* The proof* Let the continuous (by Lemma 4.2) function
K(pl9 p2, p3) have its absolute minimum at (pl9 p2y p3) = (Pl9 P2, P3). It
is easy to show that no arc (Pi9 Pό) is longer than π. If some arc,
say arc (Plf P2), is strictly larger than the others, then there is a P 2

such that arc (Pl9 P2) is larger than arc (P2, P3) and arc (P3, PJ, but
smaller than arc(P 1 ? P2). Now, by Lemma 4.3, the function F(p; Pu

P[9 P3) will attain its maximum at some poe arc (Pl9 P2). Since |p 0 —
•Pίl < |Po — P*\, we have

K(P19 PJ, P3) = F(p0; Pl9 PJ, P3)

< F(p0; Pl9 P2, P3) ̂  K(Pί9 P2, P3) ,

a contradiction. Hence we may assume that

-y- ^ arc (Px, P3) = arc (P2, P3) ̂  arc (Px, P2) .

If strict inequality holds, let L be a line parallel to seg (Px, P2) which
separates it from P3, and so that

arc (PI, P3) - arc (P2, P3) > arc (Pi, Pf

2)
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where P[ and P2 are the points of intersection of L with U. Now
by Lemma 4.3, the function F(p; P[, P'2, P3) will attain its maximum
at some p0 e arc (Pi, P3). If arc (p0, Pm) < π/2 where Pm is the midpoint
of arc (Pi, P2), choose p'o e arc (P3, PJ) so that \p'o - P3 | = \p0 - P[\.
Then |pί - Pί| = |p 0 - P 3 | and \pΌ - P[\ ^ |p0 - Pi I (consider the
perpendicular bisector of seg (p0, pΌ)l). Hence we can assume that
arc (p0, Pm) ^ π/2. By Lemma 4.4 we now have that

/(bo - Pii) + f(\Po - P D + /(bo - p.i) <

;, P 3) = i ^ 0 ; Pi, P;, p3)
P1? P2, P3) ^ ^(P,, P2, P3) ,

so

a contradiction. Hence all arcs are equal and Pu P2, and P3 must
be the vertices of an equilateral triangle. This completes the proof
of Theorem 1.3. Theorem 1.1 is an easy consequence.

6. REMARK. In view of Lemma 3.2, it is quite easy to show
(in the notation of Theorem 1.1) that there is a pe U such that

That this is best possible again follows from Theorem 1.2. However,
the problem of generalizing Theorem 1.1 to the case of n points pl9

p2, , pn may require new ideas for its solution. We also mention
that the proof of Theorem 1.2 (see (2.8)) shows incidentally that for
λ < 0 the sum Tx{p) is minimal if and only if p bisects the arc be-
tween consecutive et. However, to determine the extremal behavior
of Tλ(p) for λ ^ 2n seems to require a different approach.
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