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P-PRIMARY DECOMPOSITION OF MAPS
INTO AN ίΓ-SPACE

ALBERT 0. SHAR

If Y is a finitely generated homotopy associative iϊ-space1

and X is finite CW then [X, Y] is a nilpotent group. Using
this it is easy to show that for any set of prime integers P,
a localization map ί: F-> YP induces l*[X, Y] -> [X, YP] with
the order of ϊ*1^) prime to P. (e.g. see [2]) Since there is
no theory of the localization of algebraic loops the same
technique does not apply if Y is not homotopy associative.
The purpose of this paper is to show that the above theorem
holds in this situation.

THEOREM A Let X be finite CW, Y be a finitely generated H-
space (or the localization of such a space) and let l:Y-+YP be a
localization map. Let <xe[X, YP]; then the order of l^icc) is prime
to P or is empty. Furthermore there is always a localization map
L:Y—»YP such that Liι(oί) is not empty.

By [3], [X, Y] is finite if and only if [X, YP] is finite and in this
situation l*:[X, Y]—*[X, YP] is onto for any ϊ. Thus from Theorem
A we get the following result.

THEOREM B. Let X and Y be as in A and let [X, Y] be finite.
Then [X, Y] ~ Π [-3Γ, Yq] where q is a prime integer and the order
of [X, Yg] is a power of q.

The structure of this paper is as follows: in §2 we prove an
algebraic lemma which we need and in §3 we prove the main theorem.

With reference to Theorem B it should be noted that [X, Y] is
a finite (centrally) nilpotent loop ([5]) which is a product of loops
of prime power order. While every finite nilpotent group pos-
sesses this property it is known ([1], p. 98) that there exists finite
nilpotent loops which are not direct products of loops of prime power
order.

2* Recall that an algebraic loop G is a set with a binary operation
with a unit which satisfies the cancellation laws and has left and
right inverses.

Consider the following commuting diagram of algebraic loops and
homomor phisms.

1 By space we mean connected simple CW space.
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A f

1'
LEMMA. 2.1. Let beB with beKerg. Assume that f"ιφ) is a

finite set of order n. Let a e f"ι(J>) and a' the left inverse for a (i.e.
a'a — 1). Then

(1) Ker / = a'f-ι{b) = {a'a \ a e f~ι{b)}

(2) KerkΠf-'ib)

is either empty or the order of Ker k f] f'^b) is equal to the order
of Ker k Π Ker / and divides n.

Proof. (1) Trivially there is a 1 - 1 set mapΦ: f~ι{b) —Ker /
defined by Φ{a) = a'a similarly there is a 1 — 1 map Ψ: Ker / —> f~ιφ)
defined by W(β) = aβ. Since A is not associative Φ and W are not
necessarily inverses but the existence of Φ implies that α'/~1(6) £
Ker / and W's existence implies equality.

(2) If Ker k Π f"1 (&) Φ 0 we may assume, without loss of
generality that k(a) = 1. Since Ker k Π Ker / is a normal subloop
of Ker/ we have by ([B], p. 92) that the order of Kerkf] Ker/
divides n. But k{a'a) = 1 if and only if k{a) — 1.

3* Proof of Theorem A. By 4.1 of [3] there exists a localization
L:Y->YP such that L^(ά) Φ 0. By 4.2 of [3] or 2.2 of [4] for
any localization I:Γ-*Y"P, l^(a) is finite. Thus we may assume ϊ*1^)
is finite and nonempty. By (1) of 2.1 the order of I*1^) is equal to
the order of Ker I*.

We proceed by induction on the Postnikov systems for Y and
YP. Consider the following homotopy commutative diagram:

γ I* > Y

Pn PPn

K(πn(Y), n + 1)-^ K{πn{YP), n+1)

where ΐn and iP correspond to the the nth Postnikov invariants, ln,
!„_!, le are the localization maps induced by l:Y—+YP and pnf and pPn
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are the fibrations induced by ln and ίF respectively. Note that all
the maps in the diagram are if-maps. Let us assume that the order
of Kerl%_!* is prime to P.

By ([5], 2.3) the commuting diagram

[X, y # _j->-£-> [JΓ, γpn_,]

H*"(X; πn{Y)) -±> H^(X; πn(YP))

is a diagram of nilpotent loops and homomorphisms. By 2.1, 2), the
subloop H of ker In_u which lifts to [X, Yn] divides the order of
ker IΛ_! and hence is prime to P.

Let K be the subloop of H which have liftings β e [X, Yn] such
that βeKerln*. Since ker l^* is nilpotent ([1], P. 96, 1.1), we have
([1], 93) that the order of K divides the order of H and hence
is prime to P. But by ([3] 3.3 and 4.1), the set of liftings
{βe[X, Yn]\pn*(β) = a, ln*(β) = 0} is in 1 — 1 correspondence with a
finite group of order prime to P. Thus the order of ker ln* is again
finite of order prime to P. Since the assumption trivially holds at
the first stage of the Postnikov decomposition, the result follows.

To prove Theorem B note that by [3] the finiteness of [X, Y]
implies that I*: [X, Γ]-> [X, YP] is onto for any I. Thus [X, YΦ] is
finite. But Yφ = ΠK{Q, n), so that

[X, Yφ] = [X, ΠK(Q, n)] = ΠH*(X; Q)

which is finite if and only if [X, Yφ] = 0.

If q is a prime and q its complimentary set of primes then by
([2], [4])

[X,Y]—>[X,Yτ]

I I
[X, ΓJ >[X,YΦ]

is a pullback diagram. Therefore
, Y] = #[X, Yγ]4[X, Yq] (where #S is the order of the set S).

Since I*: [X, Y] —>• [X, Xj\ is onto we see, by the proof of A,
that there is an integer k such that Stl*1^)] = qk for all ae[X, F7].

Thus #[X, Y] = qh%[X, YT] or [X, Γ,] = q*. By [4], and the fact
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that [X, Yφ] - 0 we get [X, Y] = Π[X, Yq].
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