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ON RESTRICTING IRREDUCIBLE CHARACTERS
TO NORMAL SUBGROUPS

RICHARD L. ROTH

This paper is about the situation where χ is an irreducible
character of a finite group G and K is a normal subgroup.
A construction of Serre's relating the characters of G with
those of G/K is used to give a new proof of a well-known
lemma concerning the case that χ \κ is irreducible and to
generalize this lemma. It is seen that the irreducibility of
χ I* is equivalent to the property that (1/| K\) ΣX^K I χ(x) I2 = 1
for each coset of G modulo K and also to the property that
χ is not a component of λχ for any irreducible character λ of
G/K except for λ — 1. The subgroup Jx = Ji(χ) is defined as
the intersection of the kernels of the irreducible characters
λ of G/K for which χ is a component of λχ. It is seen that
an irreducible component σ of the restriction of % to if will
extend to Ju eJχ(γ) = eκ(χ) and Jx is the maximal normal
subgroup with these two properties.

Preliminary remarks* G denotes the set of irreducible complex
characters of G. 1 will often be used for the one-character of the ap-
propriate group (according to context). <χ, <p)G=(l/\ G\) Σffe<?%(δ#(#)>
the usual inner product.

We include here a couple of well-known theorems to be referred
to later.

THEOREM A. (Clifford) // K<\G, χeG, σeK and σ a com-
ponent of χ \κ then χ \κ = eκ(χ) Σ£=i °9i where eκ(χ) is a positive integer
called the ramification index, m = [G: I(<?)] with I(σ) being the in-
ertial group for a and {glf , gm} are a set of coset representatives
for G modulo I(σ). (See for example [1, Theorem 9.10].)

THEOREM B. Let K<\G and χ an irreducible character of G
which remains irreducible when restricted to K. Then the characters
XX are distinct and irreducible as λ varies over the characters of
G/K. Further if θ is an irreducible character of G such that χ \κ

is a component of θ\κ, then θ is of the form λZ as above. (See [3,
Lemma 3.1].)

1* In this section we review a construction due to Serre which
bears some resemblance to the familiar process for inducing charact-
ers from a subgroup. Theorem l.l(b) is analogous to the Frobenius
reciprocity theorem and was stated by Serre without proof in [8,
p. 106].
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By a class function on a group G is meant any function from G
to the complex numbers which is constant on conjugacy classes. Let
K be a normal subgroup of the finite group G. If φ is any class
function of G/K, let φ* denote the corresponding class function on
G obtained in the usual way by φ*(g) = φ(gK). [Note that it is
usually the custom to write ψ instead of φ* and this will be done
in the latter part of this paper but here it is useful to make the
distinction.] If ψ is a class function on G let ψ* denote the function
on G/K defined by ψ*(hK) = (l/\K\)Σ>..kκΉ*).

THEOREM 1.1. (Serre) ( a ) ψ* is a class function on G/K.
( b ) (φ*, ψ)σ = (φ, ψ*)oiκ where ψ is any class function on

G/K.

Proof. ( a ) If hK and htK are conjugate in G/K then hjί =
g~xhKg for some g e G. Hence

x ' \κ\
_ 1

1*1
( b ) <(<p, ^^}GIK

Σ Ήff-ιyg) = J L Σ Ήy) = f*(hK) .

I G/K\ hKeβ/K

Σ Γ^X)~ Σ
hKeG/K L I U L I xe hR

1

| G | .
The following corollary shows that the construction appears not

as promising as Frobenius' induction; nevertheless it has some use
as will be seen shortly.

COROLLARY 1.2. Let ψeG.

( a ) If KS Ker ψ and hence ψ may be regarded also as an
element of G/K, then ψ* = ψ (under the latter identification).

( b) If K£ Ker ψ then ψ* = 0.

Proof. If φ e G/K then (φ, ψ*)Gικ = <^*, Ψ)G = 1 or 0 depending
on whether ψ = φ* or not. Case (b) means that f Φ φ* for any
φ e G/K and since G/K forms a basis for the class functions on G/K
we get that ψ* = 0. If (a) holds, then ψ = φ* for exactly one φ
and so ψ* = φ.

COROLLARY 1.3. // ψ is any class function on G write ψ =
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Σ aiXi + Σ bjψ3- where χi9 ψ3 eGf K £ Ker χ̂  each i but K ξj£ Ker ψ3-
each j . Then (ψ*)* = Σ ai%i* Further if ψ is a character then
(Ψ*)* is also a character or the zero function.

In what follows, we omit the upper star and identify characters
of G/K with characters of G.

2 We now use the Serre construction to give a proof of a
theorem which generalizes both [2, Lemma, p. 178] of Gallagher and
[5, Lemma 4.2] of Iwahori and Matsumoto (see corollaries which
follow).

THEOREM 2.1. Let χ e G . Let S(χ) denote the set of irreducible
characters λ of G such that λχ contains χ as a component, i.e.,

, χ}σ=nλ>0. Then (χχ)* = Σ>χesm^n^ i.e., (l/|iΓ|)Σ.β«r|χ(s)lf =

Proof. nλ = <λχ, χ)G = <λ, χχ)G so that χχ = Σ ^ λ summed over
λeS(χ). By Corollary 1.3, (χχ)* = Σ

COROLLARY 2.2. The one-character always occurs with multi-
plicity one in (χχ)*.

COROLLARY 2.3. (Iwahori-Matsumoto [5, Lemma 4.2]) If G/K
is abelian and H(χ) is the group of (linear) characters λ e G/K such
that λχ = χ then (χχ)* = Σi.*«> λ

Proof. In this case S(χ) Γ) G/K = H(χ) since if λ is linear and
<λX> X) = ̂  > 0 then λχ = χ and w; = 1.

COROLLARY 2.4. (Gallagher [2, Lemma, p. 178]; also Isaacs
[4, Lemma 3.4]) // χ |* is irreducible then (χχ)* = 1.

It is instructive to give two different short proofs.

Proof 1. By Theorem B in the preliminary remarks the charact-

ers {λχ: λ e G/N} are all distinct and irreducible. Thus S(χ) Π G/N =

{1}.

Proof 2. χ |* irreducible means that

Σχ(g)χ(g) =

Hence (χχ)* is a character (Corollary 1.3) of degree 1. By Corollary
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2.2, we have (χχ)* == 1.

COROLLARY 2.5 (the converse to Corollary 2.4). // (χχ)* = 1
then χ \κ is irreducible.

Proof. As in Proof 2 of Corollary 2.4 above, note that <χ, χ)κ =
= l.

As a summary it is convenient to make a list of equivalent
statements.

THEOREM 2.5. Le£ %eG, K<\G. The following conditions are
equivalent:

( a ) χ U is irreducible.
(b) (χχ)*=jL
( c ) 1/ λ e G/iΓ α^d <λχ, χ># ̂  0 έ/̂ ê  λ = 1.
(d) The characters in the set {λχ: λ e G/E"} are distinct and

irreducible.

Proof, (a) <=> (b) by Corollaries 2.4 and 2.5. (b) ̂=> (c) by Theorem
2.1. So (a), (b) and (c) are equivalent. Clearly (d) ==> (c). (a) => (d)
is by Theorem B of the preliminary remarks.

3* In [6] the author considered the effect of the characters

G/K on an irreducible character of G in the case that G/K is abelian
(see also [5] for a similar treatment). In particular the irreducible
characters H(χ) that "fix" χ (i.e., λχ = χ) were studied and the
intersection of their kernels was singled out as the "dual inertial
group" J(χ). If G/K is non-abelian then its irreducible characters
need not be linear, and there are several ways to generalize the
above concept. In [7] we called H(%) the set of irreducible characters
λ such that λχ = (deg λ)χ. Some properties of J(χ) were dealt with
there where J(χ) is the intersection of the kernels of set of char-
acters H(χ). An alternative approach which we look at briefly here

is to examine instead IJΓi(χ) = S(χ) Π G/K — the irreducible characters
λ of G/K such that λχ contains χ as a component. Then let Jx(y) =
ΠίKerλ λeiJiίχ)}. It is seen below that Jx - J^χ) has at least
some of the properties of the "dual inertial group" of [6], namely
that if, (1) σ is a component of χ \κ then σ may be extended to
Ji(χ) and (2) βj^χ) = eκ(χ). Further it is shown (Theorem 3.5) that
Jx(χ) might be characterized as the (unique) maximal normal subgroup
between G and K having these two properties. (This latter fact is
new even for the case of G/K abelian treated in [6].)
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THEOREM 3.1. Let χeG, K<\G, and Jx = J^χ) be defined as
above. Let ψ be an irreducible component of χ \Jιm Then (ψψ)* = 1
on JJK and hence ψ \κ is irreducible.

Proof, (χχ)* = S^^cn nz\. So (χχ)* restricted to JJK consists
of a multiple of the one-character. Since f is a component of % \jlf

XX k — ΨΨ + τ where τ is another character of Jlf and the restric-
tion of (χχ)* to JJK equals (φφ)* + τ*. Hence (ψψ)* is a multiple
of the one-character, and hence is the one-character by Corollary 2.2.

COROLLARY 3.2. Let K <J G, χ e G ami let σ be a component of
χ \κ. Then σ may be extended to a character ψ of J1 and I(σ) 3 Jt(χ)
where I(σ) denotes the inertial group of σ.

Proof. Let ψ be a component of χ\κ. By Theorem 3.1 f\κ — τ
is an irreducible component of χ \κ. For some g e G, σ — τ9 (by
Theorem A in the preliminary remarks) and ψ9 is an extension of σ
to Jx. For simplicity of notation we may assume henceforth that
ψ \κ — σ. Thus if heJ1 then ψh — ψ so σh = σ and hence h e I(σ).

The following notation which was used in [7] will be helpful in
proving Theorem 3.3. If p, χe G then ρ*χ is the set of irreducible
components of pχ. If Γ g G then ρ*T = U {p*Ύ | T G ϊ7} = T*^.
Associativity holds: (|0*7)*τ = ̂ o*(7*r) = the irreducible components of
pΎτ. In this notation, S(χ) = χ*χ since^<λχ, χ> = <λ, χχ>. Theorem
2.5 of [7] states that if K<\ G. χeG and ψ an irreducible com-
ponent of χ I* then the set of irreducible components of fσ equals

THEOREM 3.3. eκ(χ) = e^χ).

Proof. Let ψ be an irreducible component of χ \Jt and ψ \κ = σ.
then

9i m = [G:

and

by Clifford's theorem ("Theorem A"). Since ψ \κ = σ it is clear that
/('f) s I(σ). It suffices to prove that I(ψ) = I(σ) for then m - n and
since deg σ = deg ̂  the above equations show that eκ(χ) — βj^y).
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Hence let g e I(σ). We must show that ψ9 = ψ. Clearly ψff \κ =

ψ \κ = σ hence by Theorem B, ψ9 = Xψ for some X e J^ϋΓ. And
(λα/rĵ  = (ψr*)σ = ψ*. Let 7 be an irreducible component of Xσ. Then
71Jχ = ejjfΐ) Σ λflΓ and if £ Ker 7. Thus any irreducible component
of o/r*7 = (X^r)0 must be included among the irreducible components
of ΎψG = (7 | Λ ψ) β . In particular, <χ, ̂  *> > 0 and hence <χ, 7^G> > 0.

By Theorem 2.5 of [7], cited earlier, there exists τeGjJΊ such that
χe7*(τ*χ) = (7*r)*χ. Hence there exists <?e7*r such that χeδ*χ.
Hence deS(χ).

Now ΎeG/K, τeG/J^G/K so δeΎ*τQG/K; i.e., <5eS(χ)n

G/^ - iϊ.ίχ). Thus JSl) S Ker 5; i.e., 8 e G/J,. But <δ, 7r> > 0 means

that <<5F, 7> > 0 so 7 e <5*r s G/J, so that JΊ S Ker 7 and hence λ is

trivial. Thus ψ9 = Xψ = ψ.

COROLLARY 3.4. j(ψ) = I(σ).

THEOREM 3.5. Let G, K, χ, σ be as in the previous theorems.
Let N be a normal subgroup of G containing K such that

(1) eN(χ) = eκ(χ) and
( 2 ) σ extends to an irreducible character θ of N. Then iVS

Jίiχ). Hence J^χ) is the unique normal subgroup which is maximal
with respect to having properties (1) and (2).

Proof. Since θ \κ = σ is irreducible, θh \κ = σh is irreducible for
each h e G. Using Theorem A and writing e = eκ(χ) — eN(χ) we have:

%κ — e^Σiσh {σh} = set of distinct conjugates of σ ,

X \N = e Σ θ9 {θ9} = set of distinct conjugates of θ .

Since χ \κ = (χ |^) 1̂  we see that different conjugates θh of θ must
restrict to different conjugates of σ. Hence if θ Φ θh then σ =
θ \κ Φ θh \κ = σh.

Now let 7ei?1(χ). We will show that i\ΓSKer7 and hence

7 e ̂ ( χ ) means χ e 7*χ and hence 71^ χ |^ contains θ as a com-
ponent. Hence there exists X an irreducible component of y\N9 and
017 a conjugate of θ such that 0 e X*θ9. So (λtf*7) |^ contains σ as a
component and yet (Xθ9) | ̂  = (deg λ ) ^ . Thus o — G9 and by the
initial discussion this means that θ = θ9 and that θ 6 X*θ. By Theorem
B, λ must be trivial. Since any component of 71^ is a conjugate of
λ, we have that N § Ker 7.
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