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GENERALIZED AXISYMMETRIC ELLIPTIC FUNCTIONS

PETER A. MCCOY

A generalized axisymmetric elliptic function (GASE)
Ψv: Ω c En->C of order v ̂  0 solving the partial differential
equation

(1) ^ ^ ^ ^

with analytic coefficients is subject to Cauchy data: Ψ»{%, 0) =
f(x), (WpWΛx, 0)) = 0 along the singular line. These GASE
may be generated from associated analytic functions of one
complex variable or associated solutions to the corresponding
nonsingular equation by certain integral operators. Con-
vexity arguments geometrically characterize the values of
GASE from those of the associates and kernel functions of
the respective operators.

An extensive theory based on integral operators which charac-
terizes the distribution of singularities of various classes of GASE
from the distribution of singularities of their associates was developed
by S. Bergman [2], R. P. Gilbert [3,4], P. Henrici [6] and their
colleagues [5]. Our aim is to apply convexity arguments from the
analytic theory of polynomials of one complex variable to develop a
geometric theory of the value distribution of GASE from the known
value distribution of the associates. These results are based on two
operators developed by Henrici [3, p. 199]; one which utilizes a kernel
function to generate GASE from associated analytic functions of one
complex variable and one which generates GASE of positive order
from the associated GASE of order zero.

A theory connecting the values of axisymmetric harmonic poly-
nomials (AHP) in En with those of associated polynomials of one
complex variable was developed by M. Harden [8]. Gegenbauer's
integral for ultraspherical polynomials was used to map polynomials
of one complex variable onto AHP and then convexity arguments
were used to relate their values. Using geometrical methods and
R. P. Gilbert's operater Aμ [3, p. 168], the auther [10-12] utilized
the conformal mapping properties of the associates to characterize
sets of excluded values for generalized axisymmetric potentials (GASP)
corresponding to solutions of (1) with a(x) = c(x) = 0.

Convexity arguments used in studying GASP were essentially
independent of the kernel of the operator Aμ which is non-negative
and dependent only on the variable of integration. In general, oper-
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ators transforming associated analytic functions of one complex vari-
able into GASE have kernels which also depend on the circle in E*
on which the GASE is evaluated. By modifying previous convexity
arguments, the influence of this additional dependence is geometrically
characterized from the kernels and associates of the respective oper-
ators. Methods of refinement of certain types of bounds found in
previous results [10-12] are also introduced.

1* Preliminaries• We shall be dealing with the cylindrical co-
ordinates (x, p, Φ),

x = χL , p2 = χ\ + . . . + χl , o ^ φ ^ 2π

and spherical coordinates (r, φ, Θ) where

x — T cos θ , p = r sin θ .

We shall be considering analytic functions / of one complex vari-
able whose natural domains are taken as open simply connected
axίconvex sets ωaC. That is, ζ e ω if and only if ζt + ζ(l — t) e ω,
0 ^ t ^ 1, and GASE Ψu whose natural domains are axisymmetric
sets ΩczE% generated by rotating axiconvex sets about the #-axis.

As is well known, Henrici [6, p. 21] has shown that a family of
GASE OΓJpfco on Ω may be generated from the associate ¥0 via the
operator

(2) Wu(x, p)=aΛ' Ψ0(x, p cos ί)(sin tf^dt
Jo

with normalization

Γ sin ty-Wt = VΈΓ(v)IΓ(v + 1/2)a~' = Γ (si
Jo

where Ψv is extended as an even function in p.
In our study it will be convenient to refer to the circles

X = {(x, p,φ)\0^φ

and

X* = {(&*, ρ*> φ) I 0 ^ φ ^ 2π}

where

X < X* <=~ x = x* and p ^p*'

Whenever X* is in β, ¥0({X | X < X*}) is a curve in C and <g>{Ψ0(X,)}
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is its closed convex hull. A refinement of Γ = W{Φ\(X^} is provided
by

} = Γ- do[Γ]

where

30[Γ] - {ζe dΓ [ 3ί, η e 3 Γ B ζ - ξt + (1 - ίft, 0 < ί < 1}

is the set of extreme points on the boundary of Γ. We now turn to

2* Distribution of values of GASE*

THEOREM 1. Let {Ψ,}^Q be a family of GASE ivith domain Ω.
Then for each circle X* in Ω

( 3) WAX) e S^{Ψo(X*)}

for all circles X < X* and for all orders v ^ 0. In particular, the
only possible zeros of Ψv occur on those circles X* for which S^{ψQ(X%)
contains the origin.

Proof. Transposing terms in (2) leads to

(4 ) Γ Wlx^ p* cos t) - ΨAX)](sm t)2v'ιdt = 0 X < X* .
Jo

Let us assume that for some order v > 0, WAX) £ £f{Ψo(X*)}. Under
these conditions, the following inequality is satisfied for t e (0, π) = I,

( 3 ) arg [Ψ0(x*, P* cos t) - WAX)] < π -

In addition, the integrand of (2) contains (sin t)2u"1

f a positive
factor for t e J, which when combined with (3) produces

( 6 ) arg {[?PO(«*, p* cos t) - ?Γv(X)](sin t)2-1} < π

for te I. In view of this inequality, we may follow the reasoning
found in [9] to conclude that the integrand of (2) considered as the
limit of a sum of vectors which terminate in a convex sector with
vertex at f^X), cannot vanish, a contradiction to (2). Observing
that the inclusion £*{¥0(X)} c <9*{Ψ0(X*)} holds for all circles X < X*
completes the proof.

As consequences of Theorem 1, let us now derive the following
corollaries.

COROLLARY 1.1. For each a, {Ψa

v}v^0 is a family of GASE with
domain Ω. If the associates of these families assume values on Ω which
lie in mutually exclusive closed convex sets, then for all circles X and
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X' in Ω and all orders μ and v,

( 7 ) Ψ*(X) Φ Ψί{X')

for all distinct a and β.

Proof. This follows from the fact that for X in Ω

c

and that from Theorem 1

<2f{Ψζ(X)} ίΊ rtf{Ψβo(X')} = 0

when a and β are distinct.
In the special case in which the associate of a family of GASE

reduces to a finite linear combination of GASE of order zero, a result
analogous to those of Mar den and Walsh [7, p. 74] which consider
the null sets of linear combinations of polynomials of one complex
variable is found in

COROLLARY 1.2. If the associate of a family of GASE {¥v}^0

with domain Ω is represented as Ψo — ΣJ= 1 at¥o where Ψ\ are GASE
on Ω for 1 ̂  i <: n, then

(8) Wy(X)=±ai¥l(X)9 XeΩ

where Ψ[{X) e ̂ {Ψi(Ω0), 1 ̂  i <; n, for all orders v and circles X in
compact axiconvex subsets ΩQ of Ω.

Proof. We identify each GASE Ψ\ with its associate Ψ\ and

These results may be recast to provide an analytical description of
the Ί-circles of a GASE, that is, of circles X on which Wv assumes
the value 7. Let us consider

COROLLARY 1.3. Let the family of GASE {Ψ,}^0 be defined on
Ω. Then the only possible Ί-circles of Ψv on Ω are circles X* which
are Ί-circles of Ψo or which include circles X •< X* on the locus

Proof. If there exists a circle X* in Ω for which Ψ0(X*) = 7,
then 7 is in ^{Ψ0(X*)} and consequently X* is a possible zero of
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Ψv — 7. On the other hand, if there exists a circle X < X* on the
locus

arg (Ψ0(X*) - 7) = ±τr + arg (ΨQ(X) - 7) ,

then the image of the disk {X\X<X*} under Wo — 7 is a curve
whose closed convex hull includes the origin. As this exhausts the
cases for which ^{Ψ0(X)} meets the origin, the only possible zeros
of Ψv — 7 satisfy the above locus.

We next establish that locally the distribution of values of GASE
can be made independent of the associate.

COROLLARY 1.4. Let {Ψa

μ}μ^ and {Ψi}^0 be families of GASE which
are generated from distinct associates on Ω. If for some orders μ
and vf the values assumed by Ψ% and by Ψ{ on a segment J of the
axis of symmetry are separated by a line, there exists an axiconvex
set ΩjCiΩ on which

Ψ%Ωj) Π Ψί(Ωj) = 0

for all orders μ and v.

Proof. From (2) we find that Ψ%X) = Ψ%(X) and Wt(X) = Ψξ(X)
for all positive orders whenever X is a point of J. Since a line £f
separates the curves Ψ%J) and Ψt(J), there are axiconvex sets Ωa

and Ωβ in Ω for which ^{Ψa

Q(X)} f] S^Wl(X!)\ = 0 Jfor all circles
X in Ωa and Xf in Ωβ. Defining Ωj = Ωa Π Ωβ completes the proof.

Results having more immediate application can be deduced from
a second operator introduced by Henrici [3, p. 201] which generates
a family {Fv}u^0 of GASE from an associated analytic function / and
the Riemann function kv for (1). This operator takes the form

(10) FΛX) = cAπ K(X, t)f(σ)dt
Jo

where cv is a normalizing constant and σ = x + ip cos ί, 0 <; t <; 2ττ.
An extension of the previous method allows a characterization of

the values of Fv in terms of the product of the integral of the
Riemann function and a function depending on /. The advantage of
this approach lies in the fact that since the integral of kv is inde-
pendent of /, the qualitative properties of Fv may be determined from
the conformal mapping properties of / .

To accomplish this, let us restrict our attention to axisymmetric
sets ΩuaΩ on which the Riemann function satisfies
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(11) a r g {kXX9 t)}^π- 7 y

for Xe Ωu and te I. Whenever (7) holds and the associate / is analytic
on the corresponding ωvaC> the family {Fu}v^0 is said to be 7^-convex
on Ωv. The angle 7V and the set Ωu may be independent of the order
v as is the case for GASP where ku(X, t) reduces to (sin t)2u~u.

The point set for which f(cou) subtends an angle of at least 7> is
designated by

), 7j .

We now turn to

THEOREM 2. Let {Fv}v^0 be a family of GASE which is Ί^-convex
on Ωu. Then on Ωv, each Fv may be represented as

(12) FAX) = cjη(X) Γ IcAX, t)dt
Jo

where 7)(X) e S^[f(o)u), 7 j . If *9*[f(o)»), 7V] does not meet the origin,
Fv has no zeros on Ωv.

Proof. For each circle X in Ωv, (7) holds. Hence,ί kAX, t)dt Φ 0
Jo

which permits the function η to be defined by (8). As in Theorem 1,
a contradiction is reached if (8) is rewritten as

(13) Γ h(X, t)[f(σ) - V(X)]dt = 0
Jo

and we assume that rj{X) $ S^[f((ov), 7 j since then

(14) arg {kAX, t)[f(σ) - η(X)]} < π

for tel.
Null circles of GASE with polynomial associates are connected

with the zeros of their associates through

COROLLARY 2.1. Let {Fu}u^0 be a family of GASE which is Ύu

convex on Ωv have /, a polynomial of degree n, as associate. If the
circle X is a zero of Fv, f has at least one zero in the circle

(15) | C - α | £pcot(Ύjn), ζ e C .

Proof. Let us factor the integrand of (9) as

(16) f(σ) - η{X) = « 0 Π ( ^ - «y)

Assuming that | a5 — x | > p cot (Ύjri), l^j<*n, leads us to the inequality
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(17) arg {a^(f(σ) — η(X))} < (Ύjn)n

for t e I. Since kv is 7^-convex on Ωv, we arrive at (14) which leads
to a contradiction of (12) by the usual argument.

We next find that a partial analog of the Riemann mapping
theorem is included in

COROLLARY 2.2. Let Ω be an axisymmetric subset of En with
axis of symmetry J. Then for any point Xo on J, there is a GASE
Fn with domain Ω such that Fn(J) is a simple curve thru the origin,
(d/dx)(Fn(X0)) > 0 and

I Fn(X) I < 1

for all X in Ω.

Proof. Let ω c C be the axiconvex set associated with Ω and I
be its axis of symmetry. The Riemann mapping theorem assets the
existence of a one-one analytic function / with domain o) such that
if (x0, 0) e I, f(x0, 0) = 0, fx(x0, 0) > 0 and |/(Q | < 1 for all ζ in ω.

GASP are generated by (10) from kn{X, t) = (sin t)2%-\ Since the
values attained by Fn on J and f on I agree and Fn has no singulari-
ties on β [3, p. 179], we establish from (12) that for X in Ω,

I Fn(X) I ̂  a-1 \'\f(σ) \ (sin t)2n~ιdt
Jo

Jo — .

These results are applied to

3* Generalized axisymmetric Helmholtz functions* The gen-
eralized axisymmetric Helmholtz functions (GASH) arise as solutions
to

—— + - — + + k2u = 0, k, v > 0 .
ox2 op2 p op

It is well known [6, p. 26] that GASH are generated thru the operator

(18) F,{X) = cΛ* J,-i(kp sin t)f(kσ)(sin tYdt
Jo

where

This operator establishes a correspondence between the Neumann
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series expansion of analytic functions / regular about the origin
[3, p. 214]

(18) f(kσ) =

and the GASH represented by the Bessel-Gegenbauer series

(19) F,(x, p) = Pχr, θ)=dv± »»n I J>+Λ(kr)C:(cQB θ)

*=o Γ(2v + n)

where dv = Γ(2v)(kr)~\
If £„_! denotes the smallest positive zero of the Bessel function

/„_! of order v — 1, arg {/^(λ)} is constant for 0 < λ < ξ^. Hence,
Theorem 2 permits us to deduce.

THEOREM 3. Let {Fv}v^0 be a family of GASE with domain Ω
and associate f. Then on all circles common to Ω and the cylinder
p ^ L-Jt~\ Fu may be represented as

(20) FAx, p) = 2*

where μ = v - 1/2 and η(x, p) e 9f {/(fcω)}. // ^{f(kω)} does not
contain the origin, Fv has no zeros on Ω for p ^ fv-iλΓ1.

Proof. Sonine's first integral allows the evaluation

(21) Γ Jv-ikp sin ί)(sin tydt = Γ(l/2)(2/kpy]2J^ίl2(kp) .
Jo

By (12), we are permitted to define the function ΎJ in the cylinder

P ^ ί.-ifc""1 by

(22) λv [f(kσ)Jv^(kP sin t)(sin tydt - cjq(x,
Jo

where

since

arg {J.-^kp sin t)(sin t)v) = 0 , t e I

implies that (21) is nonvanishing. By rearranging terms in (22), we
find that if cv = 2"-1]2Γ(v + 1/2), (21) becomes

(23) [* [f(kσ) - η(x, ρ)\J^{kρ sin ί)(sin tydt = 0 .
Jo
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The previous argument applies and the proof is complete.

As a further application of this method, let us consider the
following

EXAMPLE. For v > 0, let the GASH Fu be defined on En by

(24) FV{X) =ev± ίίL + I t ^

where

By (18), the associate of Fv has the expansion

(25) f(ikσ) = 2vΓ(v)(kσ)-» ± i\v +
0

which by [1, p. 64] we identify as the Neumann series f(ikσ) =
exp (ikσ). Since f(ikσ) = f(ik(σ + 2τriλr1)) for i = 0, ± 1 , ±2, , the
image of the union ω(k) of the rectangles

<oM - {ξ + iη i I η \< L-ik-\ \ξ*\< πkr\ £ = £*

under / lies in the annular region

- {ζ I I arg ζ | < πk~\ exp {-ξu-Jt~ι) < | ζ | < exp

provided k > 1. In the event that k <ΞJ 1, ω(&) reduces to the infinite
strip I η \ < ξ^Jίr1 and J^(fc) the annulus exp (—ίv-i^"1) < I CI <
exp (ξ^Jc'1). It is easily seen from (18) and the periodicity of / that

(26) Fv{x, p) = Fv{x + 2πjk~\ p) , i = 0, ± 1 , ±2, .

Theorem 3 permits us to conclude that on Ω(k)9 the union of the
truncated cylinders Ω3{k) generated by rotating ω5{k) into En, the
GASH (24) reduces to

x, p) - 2^Γ(μ + l)y(x, ρ)Jμ(kp)/(kpy

where η assumes its values in

A natural question arising from Corollary 2.1 is that of recover-
ing the distribution of values of the associate from that of the GASH.
Such a connection is revealed thru the inverse operator [3, p. 216]

(27) f(kσ) = ly J+ | k'(σ, r, ξ)FArξ, r(l - ξj]2)dξ

with lv = Γ(2v)(kr)~1 where the kernel kf is modified so as to avoid
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singularities. The GASH Fv and consequently / are entire functions.
Since arg (dζ) is constant for ξ e (1, 1) it follows that

THEOREM 4. Let f and Fv be entire functions. If for σ eC,
r e (0, B] and ζ e ( —1, +1), arg {k'(σ, r, ζ)} ^ π - 7, then f may be
represented by

(28) f{kσ) = luV(r) j ^ /b(<7, r, £)d*

where rj{r) e^[\J Fv(rζ, r\ξ\),7].

4. Analytic continuation of solutions* Gilbert [4] discusses
methods of analytic continuation of his operators by allowing the
coordinates (x, p> φ) to attain complex values thru deformation of the
contour of integration so as to avoid singularities of the integrand.
The methods used here may be adopted to that approach provided
that the deformed contour £?* is sufficiently smooth so that the
variation if arg(df) over =S%, T"{arg (dξ)}^, is small or there are
factors in the integrand which compensate for 3Harg (dζ)}j?m.

This situation arises in the case of GASP uu on Ω generated by
Gilbert's operator [3, p. 168]

(29) uv{x, p) = <C ί

with τ = x + (ip/2)(ζ - ζ"1) and £f = {ζ = exp (iθ) \ 0 ^ θ ^ π}. On
^f, Tfaΐg (ζ-'dζ}^ and ^{arg (ζ - ζ"1)}^ are constant. If % is con-
tinued beyond Ω by fixing the endpoints of £? and continuously
deformed into £?*, an ellipse with eccentricity ε < 1, continuity
guarantees that ^{arg (ζr1dζ)}sfm and ^{arg (ζ — ζ"1)}^* are small so
that previous reasoning can be applied to obtain a result analogous
to Theorem 2 on the continued domain Ω*. See [11].
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