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AMITSUR COHOMOLOGY FOR CERTAIN
EXTENSIONS OF RINGS OF ALGEBRAIC

INTEGERS

KENNETH I. MANDELBERG

The Amitsur cohomology groups H^S/R, Pic) and H2{S/R,
U) are computed in a number of cases where R Si S are rings
of algebraic integers, with most specific results when R is
Z and S is the ring of integers in a quadratic number field.
These results give information about the Brauer group
Br (SIR), which gives a new proof of its vanishing when
R — Z and S is in an infinite class of quadratic extensions.

()• Introduction* Let R be a commutative ring and S a com-
mutative ίί-algebra. We will write Br (R) for the Brauer group of
central separable iϋ-algebras, and Br (S/R) for the subgroup of Br (R)
consisting of those elements split by S [1, §5]. When S is finitely
generated and protective over R, [5, Theorem 7.6] yields an exact
sequence including

(0.1) > H2(S/R, U) > Br (S/R) > H^S/R, Pic)

>H\S/R,U)

where the groups surrounding Br (S/R) are Amitsur cohomology groups
as is defined in [5].

By using class field theory as in [8], it can be shown that Br(Z)
is trivial. In [14], Morris reproves part of this result without the
use of class field theory, by using the exact sequence (0.1). Specifically,
he shows that H\S/Z, U) is trivial where S is the ring of integers
in Q(τ/m), for m e Z , and that Hι(S/Z, Pic) is trivial when m= ±3,
— 1, 2, or 5. In § 3 we extend this result by proving that Hx(SIZy Pic)
vanishes on an infinite class of quadratic extensions, and fails to
vanish on yet another infinite class. This simultaneously proves
Br (S/Z) is trivial for more quadratic extensions S, and demonstrates
the difficulty of using sequence (0.1) for further demonstration of
this fact.

In § 1 we state the Mayer-Vietoris sequence and prove some
related technical lemmas. These are used in § 2 to characterize the
group Hι(S/R, Pic) in terms of the units of certain i?-algebras related
to S. In § 4, by a comparison with Galois cohomology we calculate
H\S/R, U) in a number of cases where R and S are integral domains
and the quotient field of S is a cyclic Galois extension of the quotient
field of R.

All unexplained notation can be found in [5], however we recall
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some frequently used notation. If S is a commutative algebra over
a commutative ring R, Sn denotes the iϋ-algebra S (x) S (x) (x) S
(n factors) where (x) denotes (x) .̂ If 0 <; i ^ n, we will write
6^ Sn—+Sn+L for the i?-algebra homomorphism given by

So (X) S x (X) (X) S , _ 1 1 • So (X) Si (X) . . . (X) S , ^ (X) 1 (X) 8, (X) (X) S ^ .

We will use U and Pic to denote the functors which assign to each
commutative iϋ-algebra its multiplicative group of units, and pro-
jective class group [3, II, §5.4] respectively.

!• The Mayer-Vietoris sequences* Let

be a commutative diagram of commutative rings and ring homomor-
phisms. We say that square (1.1) is cartesian, if for each (blf b2) in
Bx x B2 with /i(6i) = f2(b2), there is a unique element a of A with
(&!, b2) = (^i(α), h2{a)). Put another way, the square is cartesian if

the sequence 0 —> A ——U Bx x B2 -—>2 C of abelian groups is exact.

DEFINITION 1.2. If c is a unit of C, we will write Mc for the
subgroup {(δi, b2) in 2?L x J521 cfx(b^ = /2(δ2)} of JB,. x £ 2 endowed with
the A-module structure: a-{bu b2) = {hjjήb^ Jι2(a)b2). In the case that
(1.1) is cartesian, and either ft of /2 is surjective [13, Theorem 2.1,
p. 20] implies that Mc is a finitely generated projective ^.-module.

In our notation, with the mappings explicitly formulated [2,
Theorem 5.3, p. 481, and Theorem 4.3, p. 464] specializes to:

THEOREM 1.3. Suppose diagram (1.1) is cartesian and either fx

or f2 is surjective. Then there is an exact sequence:

U{B,) x U(B2) -^-> U(C) — Pic (A) -^-> Pic Bx x Pic B2

where the maps are defined as follows:
(1) <?(&!, b2) = fι{b^f2{bτι)f where b^ and b2 are units in B1 and

B2 respectively.
( 2 ) λ (class M) = (class (M (g)Λ BJ, class (M (x)̂  B2)), where M is

a projective A-module of rank one representing a class of Pic A.
(3) μ{c) = class (Me) where c is a unit in G.

The sequence is natural with respect to cartesian squares of rings
satisfying the hypotheses.
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COROLLARY 1.4. Let R be a commutative ring, and suppose
diagram (1.1) is a cartesian square of commutative R-algebras and
R-algebra homomorphisms. Then, if S is a commutative R-algebra
which is flat over R, the square

A ® S U2^_]t B2®S
hi® id

BΊ(g)S >C(g)S

is also cartesian. If in addition fλ or f2 is surjective then the
diagram

U(BX) x U(B2) > U(C) • Pic A > Pic Bx x Pic B2

1 I I 1
x U{B2®S) -> U(C<g)S) — Pic (A<g)S) — Pic (B&S) x Pic (B2®S)

is commutative, where the rows are the exact sequences from Theorem
1.3, and the vertical maps are the natural ones induced by the
canonical R-algebra homomorphisms A—+A$ζ)S,B1—*B1(><)S,B2—+
B2<8)S9 and C—>C(x)S. Here (x) means (x)^.

Proof. The right exactness of the tensor product implies that if
B, £ C-> 0 is exact, so is B, (x) S A ® . ! l C(x) S~> 0. Hence by Theorem
1.3, we shall have proved Corollary 1.4 completely once the first part
is proved.

Thus, by the definition of cartesian, what we must show is that

the exactness of the sequence 0 —> A — ^ B^ x B2 -—I C, implies the
exactness of

(B,® S) x (B2® S) {Λ®id)-(ΛΘ^C(g) S.

But using the natural isomorphism (Bί (g) S) x (B2 (x) S) = {Bx x B2) ® S,
the conclusion follows from the flatness of S.

REMARK 1.6. Suppose B1= B2= B and f = /2 = / in Corollary
1.4. Then, since f{U{B,))-f2{U{B2))-1 = f(U(B)), diagram (1.5) can be
replaced with

U(B) > U(C) > Pic A > Pic B x Pic B

I I I I
U(B(g)S) > U(C®S) > Pic (A®S) > Pic (JB(X)S) X Pic

without destroying exactness (or commutativity).
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Since μ in Theorem 1.3 is a group homomorphism, we can con-
clude that MCι (x)A MC2 ~ MClc2 when c, and c2 are units of C. The
next lemma, however, provides an explicit isomorphism.

LEMMA 1.7. Let

f

 f

be a cartesian square of commutative rings with f a surjection, and
let £, and c2 be units of C. Then σ: MC]L®AMH—>MCιC2, defined by
σ{{x, y) (g) (u, v)) = (xu, yv), on a generator (x, y) (g)A {u, v) of MCl®MC2,
is an A-module isomorphism. The inverse of σ is given by τ: MCl<.2—>
MCl ®A MC2 defined by τ((s, t)) = (bs, t) <g) (6', 1) + (s, b't) (g) (1 - 66', 0),
where b and b' are fixed elements of B with f(b) = c2 and f{bf) = cr1.

Proof. By direct calculation it is easy to check that σ and τ
are well defined, and σoτ is the identity. The proof that τoσ is the
identity is only slightly harder, but does depend on the fact that the
square is cartesian. For suppose (x, y) is in MCl and (u, v) is in MC2.
Then τoσ((x, y) (x) (u, v)) = τ(xu, yv) = (bxu, yv) (g) {V, 1) + {xu, b'yv) (g)
(1 - bb', 0). But f(v) = cj(u) = f(bu), hence from the hypothesis
that the square is cartesian, we obtain v = h2(a) and bu = hΊ(a) for
an element a of A. Therefore, {bxu, yv) (x) (6', 1) = α (cc, #) (g) (6', 1) =
( ,̂ 1/) ® «•(&', 1) = (x, y) (x) (6^6', v). For the same reason {xu, b'yv) (x)
(1 - 66', 0) = (x, y) (x) {u (1 - 66'), 0). Thus τ o σ ((a, y) (g) (u, v)) =
O, 3/) (g) (6w&f, v) + {x, y) (x) (%(1 - 66'), 0) = (x, y) (g) (u, v), completing
the proof.

We conclude the section with one more technical lemma. The
sequence in Theorem 1.3 tells us that if M is a projective rank one
A-module with M®ABi ~ Bt as J5rmodules, i = 1, 2, then M ~ Mc

for some c of C Lemma 1.8 tells us how to actually produce this
unit.

LEMMA 1.8. Let diagram (1.1) be a cartesian square of com-
mutative rings where either f or f2 is surjective. Further suppose
that M is a projective A-module of rank one and φt is an isomorphism
of M^ABi—^Bi, for i — \,2. Then M ~ Mc where c is the unit of
C corresponding to the automorphism:
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where 7: M®A B1 ® S l C^UM ®A B2 ® 5 2 C is the isomorphism provided
by the commutativity of the cartesian square, i.e., Ύ(m ® bλ ® c) =

where m is in M9 bλ is in Blf and c is in C

Proof. By [13, Theorem 2.2, p. 20], M is isomorphic to the
A-submodule,

{(Σ ^ ή Θ bh, Σ mi2 ® δi2) in
(ilf ® ^ ) x (M(x^ £2) I 7 ( Σ m4l ® 6<x ® lc) = ΣΣ

of (ikf®^) x (Λf® J?2) Applying the A-module isomorphisms h1

and h2 to the first and second coordinates respectively, we obtain
M ~ {(^(Σ mCl <8> &H), ^ 2 ( Σ m<2 (x) bh)) \ Σ m iy (x) bt. is in ikf (g)̂  5, for
3 = 1, 2, and 7 ( Σ m€l ® bh ® lc) = Σ ^ 2 ® &̂2 ® h] = ί(6j, W in
Bj x β21 7(^Γ1(δi) ® 1̂ ) = h\~\b2) ® 1G}. Rewriting this we obtain

Af = {(6,, 62) in B,x B2\ (h2 ® id)oΊo(hτι ®

But by definition the unit c corresponds to the automorphism

2. H^S/R, Pic)* Let R be an integral domain whose quotient
field K has characteristic different from 2. Let S be an integral
quadratic extension of R, that is S ~ jβ[#]/(£>(#)) where p(#) = x2 +
αίc + & is a polynominal in ϋJ[£] which is irreducible over K. Since
(39(0;)) is a prime ideal, S is an integral domain. We will fix a root
p of p(x) in S, noting that S = R[p]. Then ^ = — p — a is the other
root of p(x), which clearly lies in S. The only nontrivial i2-auto-
morphism of S is the one that takes p to p. We denote this auto-
morphism either by j , or simply by placing a bar over the appropriate
symbol. We will write G for the group {id, j} of iϋ-automorphisms
of S. The quotient ring S/(p - p)S will be denoted S', with π: S-+S',
the natural projection map.

The unlabeled ® will be understood as ® Λ . We will write
a^ S0S-^S for the contraction mapping α3(s(x)£) = st. a2: S®S—>S
will denote the composition αi°(i ® id). It will not be unusual in
what follows for a ring to be considered an algebra in several
different ways. Therefore, if the ring B is to be considered as an
algebra over a commutative ring A by f:A—>B, we will denote it
by Bf.

In [14] Morris uses the Mayer-Vietoris sequence to describe Pic (S2)
in terms of U(S) and U(S'). In this section we carry this technique
a step further to describe H^SjR, Pic) in terms of U(S), U(S'),
U(S'(g)S), and U(S(g)S) in the case that Pic S is finite and (PicS)(?=={l}.
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REMARK 2.1. Suppose R is the ring of integers in an algebraic
number field K, with the class number of R equal to 1. As noted
in [14, Remark, p. 625] the ring of integers S in a quadratic extension
L of K is of the form R[p] mentioned above. Since S is a Dedekind
domain, Pic S is isomorphic to the ideal class group of S and is then
finite by [16, Theorem 5-3-11, p. 207]. If I is an ideal of S, then
10s Sj = j(I). Therefore, since every class of PicS is represented
by an ideal of S, j acts on Pic S by merely applying j to a represen-
tative ideal. By [12, Corollary 3, p. 21] for any ideal /of S, I j(I) = PS
for some ideal P of R, hence I j(I) is principal. Thus in PicS,
class (j(I)) = (class (I))"1, and class (I) is of order 2 iff class (J) is in
(Pic S)G. Hence, for this choice of S, the hypothesis (Pic S)G = {1} is
equivalent to the class number of S being odd.

We will use the notation Sn and ε, as defined in §0.

LEMMA 2.2. The square

S-

is cartesian. Tensoring the square on the right with S over R induces
the commutative diagram

U(S) > U(S') > Pic S2 > Pic S x Pic S

j
- Pic S 3 > Pic S2 x Pic S

with exact rows, described in Corollary 1.4 and Remark 1.6. The
vertical maps are the natural ones obtained from tensoring on the
right with S, e.g., PicS 2 -^PicS 3 by Pic(ε2).

Proof. That the square is cartesian is [14, Lemma 4.0, p. 625].
Then since S is a free and hence flat J?-module, the second assertion
follows from Corollary 1.4 and Remark 1.6.

REMARK 2.3. By Definition 1.2, the S(x)S module Af, = {(s, t) in
S x S I π(s) = π(t)}. We will write θ for the S(g)S module homo-
morphism θ:S<g)S-+Mί defined by θ(s ®t) = (st,st). Since the
square in Lemma 2.2 is cartesian, θ is an isomorphism. At times it
will be more convenient to work with M1 than S ® Sf thus we note
that θ induces a ring structure on M19 under which θ becomes a ring
homomorphism. An easy computation shows that this ring multipli-
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cation on M1 is given by componentwise multiplication.

DEFINITION 2.4. Let M be an S(g)S module. We will write
ikf* for the set {ra* \me M} made into an S ® S module by: m* +
n* = (m + %)* for m, w in M, and x-m* — ((j®ίd)(x) m)* for α? in
S(x) S and m in ikf. For later use we note that Sj®id ®S2 M is iso-
morphic to ikf*, where the isomorphism takes 1 (x) m to m*, for m
in M.

If A is a commutative ring and ikf is a protective A-module of
rank one, we will denote its class in Pic A by [ikf]. If the ring A
is not clear from context we will write [M]A.

LEMMA 2.5. If a is a unit of S', then the map T: (ikfα)* —>Ma-i
defined by T((s, ί)*) = (ί, s) is an S(g)S module isomorphism. Conse-
quently [M;] =

Proof. If (8, t) is in Ma, aπ(s) = π(t), hence a~ιπ{t) = π(s) which
implies (ί, s) is in Ma-u Thus the codomain of T is as claimed.
Since T has an obvious set theoretic inverse and is clearly additive,
we only need show it is S (x) S linear. But if x is in S 0 S:

T(x-(8,t)*)=

= T(a,o(j (x) id)(x) s, a2o(j 0 id)(x) t*)

= T((a2(x).s, aJίxyt)*) = (αa(a?) ί, a2(x)-s)
= X-(t,8) = X-T((8,t)*).

The final assertion follows from the first and Lemma 1.7.

If H is an abelian group, we will write (H)2 for the subgroup
of H consisting of those elements whose order divides 2.

REMARK 2.6. Recall that in Lemma 2.1 the maps λ^PicS2—>
Pic S x Pic S and λ2: Pic S5 -+ Pic S2 x Pic S2 are given by \([M]S2) =

M]), (PicαO([Af])) and λ2([iV],3) - ((Pic a,® id)([N]), (Picα2(g)
by Theorem 1.3.

LEMMA 2.7. Let dι = (Pic εo)(Pic e^-^Pic e2): Pic
Amitsur 1-coboundary map for the complex C(S/R, Pic) (defined in
[5]). Then if we compose λ2 with d\ yielding a map Pic S2 —> Pic S2 x
PicS2, it follows that (ft(?7(S')))2 = Ker (λ2o^) n

Proof. Let [M] in PicS2 be in μάUiS')). We must show that
X2odι([M]) = 1 iff [ikf] has order 2 in Pic S2. Now,
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- λ2(Picεo([ikf]) Pic^([ikf]-1).Pice2([M]))

since λ2 is a group homomorphism. But in Lemma 2.2 Pic ε2 is the
vertical map from Pic S2 —> Pic Sz, hence λ2 o Pic ε2 o μι is trivial by
the commutativity and exactness of that diagram. Therefore, by
Remark 2.6,

= λ2oPic ε0([M]).λ2oPic

= (Pic ((α, (X) id)oε0)([Jlf]).Pic ((α, 0

Pic {{a2 (x) ΐd)o

But by direct computation, {aλ 0 id)oε0 = (c^ (guci)^! = (a2 0 ic£)oε0 =
identity, and (a2 0 id) ° ε., = j" 0 id, hence λ2 o ^([Λf]) = ([M] [M]"1,
[MJtM*]"1). Then by Lemma 2.5 λ2od1([M]) = (1, [M]2), which is just
what we were to have proved.

LEMMA 2.8. // Pic S is finite and (Pic S)G = {1} then H\SjRt Pic)
is isomorphic to μj[U(S')) Π Ker d1.

Proof. Let / : μ^UiS')) Π Ker d1 -> Ker dι/d°(Pic S) = H\S/R, Pic)
by the restriction of the natural projection. We will show that / is
bijective.

Consider the composite homomorphism λ/f: PicS—>PicS2—>PicS x
Pic S. If [M] is in Pic S, Xyd°([M]) = (Pic(^1oε0)([M]).Pic(^]oε1)([M]-1),
Pic(α2oε0)([U!ί]) Pic(α2oε1)([lί]~1)) But by direct computation a:oe0 =
a1oβ1= a2oεQ — identity and a2oε1= j , thus λ^flJf]) = ([M] [Λf]"1,
[M] Fic JdM]-1)) = (1, [Afl-Picittilf]-1)). Thus for [Λf] to be in
Ker λ^ 0 it must be in (Pic S)σ. Hence, by the assumption (Pic S)G = {1}
we obtain that λ^ 0 is injective. Furthermore, if we denote by p2

the map Pic S x Pic S —• Pic S obtained by projecting onto the second
factor, then /p2°Xιod*: Pic S—•Pic S is an injection by the explicit
form of λx o d°. Then since Pic S is finite, it follows that p2 o χί o d° is
actually an isomorphism.

To prove that / is injective, we notice that d°(Pic S) c Ker d1

which implies K e r / = μy(U(S')) Π d°(Pic S). But then by Lemma 2.2
we obtain ^(ί7(S')) = Kerλj, hence

Ker / = λ, Π ώ°(Pic S) = d°o (Ker (λ, o d°)) .

Therefore, since we have proved λj o d° is injective, it follows that /
is injective.

Finally, we will show that / is surjective. Let [N]S2 be any
element of Ker d\ That is Pic εo([i\Γ|). Pic εa ([N]'1) Pic ε2([iV]) = 1.
We define E:SZ-+S by E(s(g)t(g)u) = stu. Then since Pic E: Pic S 3 -^
PicS is a group homomorphism and Pic {E°s%) = Pic £ΌPic εz, it
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follows that Pic(£'oε0)([iV']) Pic(£roε3)([iVr]-1) Pic(Eroε2)([iV]) = 1. But
Eoε0 = Eoβi = 2£Όε2 = a19 thus Pic ^([ΛΓ]) = 1. Therefore, since

= ( p i c «i([^Πλ P i c ^([N])) by Remark 2.6, it follows that
— (Xf [Q]) for some [Q] in Pic S. But ^oλ^<Z° is an isomor-

phism, hence [Q] = p2 o λx o d°([M]) for some [M] in PicS, so λ;([iV]) =
\xd°([M]). This implies that [N] (d°([Mft)"1 is in Ker X, - μ^UiS')).
But [JV] and [iSΓKd^Λf]))-1 are in the same class of Hι(SjB9 Pic), thus
the class of [N] is in the image of /. Since [N] was arbitrary, / is
surjective.

COROLLARY 2.9. There is a unique group homomorphίsm (d1)'
which makes the diagram

U(S'®S)
im?7(S(x)S)

commute, where μ'2 is the injection obtained by factoring out the
kernel of μ2.

If Pic S is ./m^e α^ώ (Pic S)G = {1}

Pic^ ^ Kernel, Pic) = Kernel
i m

where μ[ is the restriction to (U(S')/im U(S))2 of the injection obtained
by factoring U(S') by the kernel of μJΛ

Proof. Since X2d
1(μ1(U(Sr))2) = {1} by Lemma 2.7, and im/4 is

the kernel of λ2, the first assertion follows by the universal mapping
property of kernels. By Lemma 2.8 we know that H^S/R, Pic) is
isomorphic to ft(Z7(S')) ΓΊ Ker d\ But certainly

Ker d1 - (ft(t^(S')) Π Ker (λ2 o ώ1)) Π Ker d1 ,

hence μι(U(Sf)) n Ker ώ1 - (pάUίS')))* Π Ker ίZ1 by Lemma 2.7. Thus
HL(S/Rf Pic) is isomorphic to

Kernel ((/*,( CΓ(S')))2 — Pic S3)

The final assertion of the corollary now follows since μ1 induces an
isomorphism of U(S')/imU(S) to

In [14] Morris proves that Pic S2 vanishes iff both Pic S and
U(S')/im U(S) are trivial. Therefore, when S is the ring of integers
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in a quadratic field extension of Q, he can conclude H^S/Z, Pic) is
trivial for the six quadratic extensions S for which Pic S and
U(S')/im U(S) are trivial [14, Theorem 4.5]. By Corollary 2.9 and
Remark 2.1, we can extend the conclusion of the vanishing of
Hι{SIZ, Pic) to the cases where Pic S and U(S')/im U(S) have an odd
number of elements. However, to compute Hι(SjZ, Pic) without this
hypothesis on U(S')/im(U(S)), we will have to describe (d1)'oμ[ more
explicitly.

LEMMA 2.10. Let a be a unit of S' such that π(t) = a and π(s) = a2,
where t is in S and s is a unit in S. Let N be the S3 module
(Ma(g)S2S3)(><)sz(Ma-ι(><)S2S3). Then there exist S2-module isomorphisms
Φi'. N(g)ss S2.®id — S2 for i = 1, 2 such that:

( i ) φτ\l 0 1) = n 0 (1 0 1), where

n = ((s-% 1) 0 (1 0 1 0 1)) 0 ((ί, 1) 0 (1 0 1 0 1))

+ ((1, ί) 0 (1 0 1 0 1)) 0 ((1 - s-ψ, 0) 0 (1 01 0 1)) .

(ii) φ2(n 0 (1 0 1)) = θ~\{t, t(2 - s~lt2))) where θ: S2 -> Mι is the
isomorphism described in Remark 2.3.

Proof. ( i ) Consider the following string of isomorphisms:

((Ma (g)s2 S!o) <8)β. SllWd) ® S 2 ((Λf.-! ® s 2 S y (x)ss S » l β M

k
(Λf. ® s 2 £?„) (8)s. (lf.-i ®

1*
Ma-i

k

where the isomorphisms are described as follows:
(1) Suppose A is a commutative ring and B is a commutative

A-algebra. Then if P and Q are A modules, the map (P(£)A
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(P (g)A B) ®B (Q (g)A B) which takes (p 0 q) 0 b to (p 0 &) 0 (q 0 1) is
an isomorphism. The isomorphism /i is one of this type applicable to
the given situation.

(2) Suppose A is a commutative ring, A —* B is a commutative
A-algebra, and B^C is a commutative 5-algebra. Then if P is an
A-module, the map (P0^i^) (x)* Cr ~> P®AC r β which takes (p06) 0 c
to p 0 7(6)c is an isomorphism. The map f2 is induced by two
isomorphisms of this type, one from the observation 7/3 — {oc^id)<=>eQ =
identity when P = Ma, B = S3, and C = S2, the other from the
observation 7/3 = (ax 0 id) o fo) = identity when P = Ma-ι, B = S3, and
C= S2.

(3) If P is a module over the commutative ring A, then the
map P 04 A —• P where p 0 α is taken to a p is an isomorphism. The
map /8 is induced by two isomorphisms of this type.

(4) f4 is the isomorphism σ of Lemma 1.7.
Let φi = 0"1 o /4o jf8o /2o /1# We wish to compute

^(1 Θ 1) - fT^fϊ^fs^f7^0(1 0 1) .

First 0 ( 1 0 1 ) = (αa(l 01), α2(l 0 1)) = (1, 1). Then since Tφ-^) = a'1

and π(ί) = α, by Lemma 1.7, we have fτ\l, 1) = τ(l, 1) = (s~% 1) 0
(i, 1) + (1, ί) 0 (1 - s-1*2, 0). That ^ ( 1 0 1 ) = n 0 1 now follows by
checking that under the composition of the canonical isomorphisms
Λ /„ /., one obtains /8o/ to/1(Λ01) = (8-1ί, l ) 0 ( ί , l) + (l, t)(g)(l-s-ψ, 0).

(ii) Consider the string of isomorphisms:

(CM. ®52 s y ®53

(M α 0 5 a S | ,) (x)52 (ikΓβ-i

Ma (g)S2 (AΓβ-i)*

s2

where the isomorphisms are described as follows:
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(1) #3 corresponds to f in part (i).
( 2 ) g2 corresponds to f2 in part (i), except here the compositions

are (a2 (R) id) o ε0 = identity and (a2 ® id) o g 1 = j ' 0 id.
( 3 ) <73 is induced by the isomorphisms: Ma ®52 S^ —> Λfα described

in part (i), and Ma-i ®S2 iS 0 1 -^ (Mα-i)* described in Definition 2.3.
( 4 ) #4 is induced by the isomorphism T: (ilί"α-i)* —• Λfα defined

in Lemma 2.4.
( 5 ) </5 is the isomorphism σ of Lemma 1.7.
( 6 ) Let g6: Ma2 —> Mλ be defined by g6((u, v)) = (su, v) for (u, v)

in Ma2. This is well defined since, by the definition of Ma2, (u, v) in
Maz implies a2π(u) — π(v)> hence π(su) ~ π(v) or (su, v) is in Mx. That
g6 is an isomorphism follows from the fact that δ is a unit of S,
since we can define an inverse of gβ by sending (x, y) in Mι to (s~ιx, y).

Now define φ2 = ^ ^ o ^ o ^ o ^ ^ 2

o ^ We wish to compute
&(^(S)(l(x)l)). By inspecting gι and g2 we see that 0ao0,(w(g)(l®l)) =
((β-ΐ, l) (g) (l (g) i)) <g> ((t, l) ® (l (x) i)) + ((l, *)<8>(i<8> l)) ® ((i - s-1*2, o) ®
(1 (x) 1)), hence

95og2ogi(n <g) (1 <g) 1)) = (β-^ 1) (x) (ί, 1)* + (1, t) (X) (1 - s-1*2, 0)* .

Now applying g4 we obtain g4°gzog2ogλ(% (x) (1 (x) 1)) = (β"1*, 1) (x)
(1, ί) + (1, ί) (x) (0, 1 - s"^2). Then since gδ is the σ of Lemma 1.1,
g*°9<°g*°g*°gi(n ® (l (x) l)) - (8-% ί) + (0, ί(i - β-V)) = (s~% ί(2 - s"1^)).
Finally, & fa® (1 <g> 1)) = θ'^((s-% t(2 - s"1*2)) - β-^t, (2 - s"1*2))).

COROLLARY 2.11. Lei a be a unit in S' representing a class (a)
in (U(S')/im U(S))2. Then there exist elements s and t of S with
7c(s) = α2, π(t) = α cmώ s α %mί o/ S. In the notation of Corollary 2.9.
id1)'oμ[({a)) = class ((a ® l).(ττ ® id)θ-\(t, t(2 - s"1^)))).

Proof. That elements s and ί exist satisfying the first assertion
follows from the fact that (a) is of order 2 in U(S')/im U(S) and TΓ
is surjective.

Now let N = (ikfα ®S2 iSy ®θ» (ilfβ-i ®5« Sy. Recall that

> Pic S2

by taking the class of a unit u of S' to [Mπ] in PicS2. Then

itιί((α)) - dΌΛfJ) - [iV] Pic ε2([Ma]) .

But then (d1)' ° ^K(^)) = class (b) where b is a unit of S' ® >S with
[MJ^s = [ΛΓ] [Pic ε2([ilfα])] . Therefore, if we can find units b, and b2

of S' ® S with [ikf&1]53 = [iSΓ] and [Mh] = Pic e,([Me]), then by Lemma
1.1 we can choose b — b} b2.

First we find b2. By the definition of μ19 Picε2([Mα]) = Pic e^μfa).
But the map PicS 2—>PicS 3 in Lemma 2.2 is Picε2> while the map
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U(S')->U(S'(g)S) is the one that takes a unit u of S' to u(g) I.
Therefore, by the commutativity of that diagram

Pic s2([Ma]) = μ2(a 0 1) = [Ma^]ss .

Thus we can choose b2 — a (x) 1.
Next we find bλ by using Lemma 1.8 as applied to the square in

Lemma 2.2. Recall, that by 1.8 we can choose bι to be the image
of l(x)l under the composition

S' (x) S — S2 05» (Sf (x) S) {±®^ {N®s* Sl&id) 0S« (S' (x) S) —

(N (x),s SiaΘW) 05» (Si (x) SO - ^ i S2 ®,2 (Si' (x) S) -^-> S' 0 S ,

where 7 is the natural isomorphism obtained from the commutativity of
the cartesian square and D is the obvious contraction of S2 (x)^ (Sf (x) S)
S' (x) S. Now if we choose the φλ and φ2 as in Lemma 2.8 then

> 0 ( i 0 i ) ) ®
(101)) = D(φ2(n 0 (101)) 0 (1 01)) where n is in Lemma 2.10. But
by that lemma, φ2(n 0 (101)) = θ~ι{t, ί(2 — s~Ψ)), hence we may choose
b, = D{θ-\{t, ί(2 - 8-Ψ))) 0 (1 01)) - π 0 idoθ-W, ί(2 - β'V))).

Dealing with the group Z7(S' 0 S)/im U(S 0 S) is inconvenient,
since it is even difficult to tell when two elements of U(Sf 0 S) are
equal. Therefore, we now produce a different description of this
quotient group. By the definition of S' the sequence

is exact. Since S is a free jβ-module, it then follows that the
sequence

0 >(p-p)S®S >S(x)S— S'(g)S

is exact. If we let J = θ((p — p)S 0 S) we get a commutative diagram
with exact rows

0 >(p

(2.12)

0

where the last vertical map θ* is defined by commutativity, and is
necessarily an isomorphism. By Remark 2.3 Λf, can be considered a
ring and θ a ring homomorphism, thus this last square induces an
isomorphism
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£,. U(S' ® S) > U(MJJ)
'im U(S®S) im U(M,)

We will write d* for the composition

ί1)' o ̂ ί: ί !— \

THEOREM 2.13. Suppose Pic S is ./miίe α%d (Pic S)G = {1}.

. Pic) S Ker μ S f U -*. 2MJΏ.
V i im

If α is α unit in S' representing class (α) in (U(S')/im U(S))2, and
π(s) = α2, 7r(ί) = α for t an element in S and s a unit in S, then
d*((a)) = class ((f, «(2 - s"^2))).

Proof. By Corollary 2.9 and Corollary 2.11, the only thing to
show is that

U(S' (x) S) ^ U(MJJ)
im U(S2) *i

takes class ((a<g>l) (7u®id))oθ-1((t, t(2-s~Ψ))) to class ((t2, tt(2~s~Ψ))).
But a (x) 1 = (π ® id)(* (g) 1) = (TΓ ® id)oθ-1((t, ?)), hence class ((α (g) 1) (π (g)
id)oθ-1((t, t(2 - s-1*2))) = class (π(x) id)oθ'W, «(2 - s-^2))). Then con-
clusion now follows from the defining diagram (2.12) of θ*.

We conclude this section with a lemma helpful in detecting the
kernel of c£*.

LEMMA 2.14. Let (s, t) be an element of M19 then (s, t) is in the
zero class of MJJ iff s = t = 0 (mod (p — p)S) and s + t = 0 (mod (p —

Proof. What we must show is that (s, t) is in J iff the two
congruences hold. But J = 0((p - ^)S ® S) = θ(ρ - ^ ® l)Λfi = (p- p,
p — p)Mlf therefore, (s, ί) is in J iff s = α(|0 — ̂  and t = b(ρ — p) for
element α, 6 in S with 7r(α) = ττ(6). This last condition is equivalent
to a = b (mod (p — p)S).

First, suppose (s, t) is in J, hence there are elements a and & as
above. Then, clearly, s = t = 0 (mod (p — p)S). Furthermore, s + t =
(a — b)(ρ — p) which implies s + t = 0 (mod (|O — ^)2S) since α —
6 = 0 (mod (^ - ρ)S).

Finally, suppose s~t = 0(mod(p — ρ)S) and s+t = O (mod (p — pfS).
Then by the first congruence s = a(p — ̂ o) and t — b(p — p) for some
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a and b in S. To conclude the proof we only have to show that
a = b (mod (p — p)S). But s + t = (a — b)(p — p), hence (α - b)(p - p) =
c = (p — pf for some c in S. Then, since S is an integral domain,
it follows that (a — b) = c(p — p), or a = b (mod^o — p)S).

3* H'iS/Z, Pic). Let Q{V~d) be a quadratic extension of Q, and
let S be the ring of integers in Q(l/ώ). By Remark 2.1, S satisfies
the hypothesis in Theorem 2.13 exactly when the class number of
S is odd. In this section, under that hypothesis, we compute
Hl{SjZf Pic) by using Theorem 2.13 and several number theoretic
facts about S.

First we state the number theoretic facts that we will assume
in our computations. We will always assume that d is a square free
integer not equal to 0 or 1.

LEMMA 3.1 [16, Theorem 6-1-1, p. 234]. // S is the ring of
integers in Q(l/ d) then S = Z[p] where:

(1) p = V~d if_d Ξ£ 1 (mod 4).
( 2) p = (l + V~d)/2 if d = 1 (mod 4).

LEMMA 3.2 [16, Proposition 6-3-1, p. 238], Let S be the ring of
integers in Q(i/d), then:

(1) if d > 0, then every unit of S can be written uniquely as
±e\ where ε is the fundamental unit of S, i.e., the smallest unit of
S greater than 1.

(2) if d < 0 but not equal to — 1 or — 3, then ± 1 are the only
units of S.

(3) if d = —1, then ±1, ±i are the only units of S.
(4 ) if d = —3, then ±1, ±af ±a2 are the only units of S, where

a = (±1 + τ/=3)/2.

LEMMA 3.3 [10, p. 432], If S is the ring of integers in Q(Vd)
then the class number of S is odd iff d falls into one of the following
cases:

(1) d — pq where p and q are distinct primes with p, q = 3
(mod 4).

(2) d = —p where p is a prime with p = 3 (mod4).
(3) d = p where p is a prime with p = 3 (mod 4).
(4) d = - 1 , 2 or - 2 .
(5) d = p where p is a prime with p = 1 (mod 4).
(6) d = 2p where p is a prime with p = 3 (mod 4).

LEMMA 3.4 [14, Lemmas 4.3 and 4.4, p. 626]. Let S be the ring
of integers in Q{V d ).
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(1) If d = 1 (mod 4), then S' = S/(ρ — ρ)S is ίsomorphic to Z/dZ
under the isomorphism which takes the class of a + bp in S' to the
class of a — ((d — l)/2)6 in Z/dZ, where a and b are integers.

(2 ) If d Ξ£ 1 (mod 4), then S' = S/(p — ρ)S is isomorphic to
Z/2dZ® Z/2Z(Vd) = {a + bVd \a,b in Z) where ~ and /\ denote
reduction mod 2d and 2 respectively, and the multiplication is given

by: (a + bV~d)(e + ?V~d) = αΓ+Ίi/tf + "α^+Tβl/T. 27&e isomor-
phism of S' to Z/2dZ @ Z/2Z(V~d) is defined by taking the class of
a + bp in S' to a + bVd .

Our first step will be to study the image of U(S) in U(S'). If
s is an element of S we will use the notation N(s) for ss, the norm
of S. Then, since N is multiplicative, an element s in S is a unit
iff N(s) is a unit of Z, that is iff N(s) = ± 1 .

LEMMA 3.5. Lei S be the ring of integers in Q{V~d), where d > 0.
Then the image of the fundamental unit ε of S is not equal to ± 1
in S'.

Proof. Suppose π{έ) = ± 1 . If in addition N(ε) = — 1, then 1 =
(π(ε))2 = π(ε2) = π(εε) = — 1 in S', contradicting Lemma 3.4. Thus we
may assume N(ε) = 1.

We first suppose that d = 1 (mod 4). Then by Lemma 3.1(2) we
can write ε = ((a/2) + (b)/2)V~d = (a — b)/2 + bp where a and b are
integers. By Lemma 3.4(1), our assumption that π(ε) = ± 1 becomes
(a — 6)/2 — ((d — l)/2)6 = ± 1 + da for some integer s, or equivalently:

(1) α - 2c = d(6 + 2s) where c = ± 1 .
We have also assumed that N(ε) = 1, or

(2) α2-δ2<Z = 4.
Let a? = Va + 2c, 7/ = 6/(l/α + 2c) and ef = (x/2) + (τ//2)τ/T. By

direct calculation and equation (2), it is easy to check that (ε')2 = ε.
Thus, once we have checked that ε' is in S, we will have a
contradiction of Lemma 3.2 (1). Note that since S is integrally
closed and (ε')2 = ε, it will suffice to show that x any y are
integers.

Let r — b + 2s, an integer which is positive by (1). From
equation (1) we obtain a — dr + 2c. Substituting this expression for
a into equation (2) and simplifying yields b2 = r(rd + 4c). Now, let
r = r-,2* where rι is an integer prime to 2. Then δ2 = rλ(2n(rd + 4c))
implies that r} and 2n(rd + 4c) are both squares, since they are rela-
tively prime. We now show r is also a square.

If n is even then r = r$? is a square as claimed, hence we
assume that n is odd. But, if n is 3 or greater, 2n+2 and 2n~2r1d + c
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are relatively prime, 2n+2 is not a square, yet the product 2n(rd + 4c)
is a square. Thus, n = 1 is the only remaining possibility. Since
both rx and d are odd we obtain that rxd + 2c is odd, therefore
4r](r1d + 2c) is divisible by 4 but not 8. But

b2 = r(rd + 4c) = 4r,(r,d + 2c) ,

hence 6 is divisible by 2 but not by 4. Then, by equation (2) a is
divisible by 2, in fact (α/2)2 - <Z(δ/2)2 = 1. Since (6/2) is odd it is
congruent to 1 or 3 mod 4, hence (6/2)2 is congruent to 1 mod 4.
Therefore, (α/2)2 = d(b/2)2 + 1 = 2 (mod 4). But this is a contradiction,
since 2 is not a square mod 4. Thus n cannot be odd, and r is a
square.

By equation (2) a2-4 = b2d = a2-4c2, therefore a + 2c = (62ώ)/(α-2c).
But by equation (1) a - 2c = d(b + 2s) = ώr, hence α + 2c = b2d/dr =
62/r. Therefore, since r is a square, a + 2c is a square and a? =
τ/α + 2c is an integer. Furthermore, l/α + 2c = bjV^V which yields
that y = 6(τ/α + 2c) = λ/~r is also an integer. This is the required
contradiction.

Finally, consider the case when ί ί 1 (mod 4). Again, ε = α/2 +
(6/2)l/dT, this time with α and 6 even. From Lemma 3.4(2) we
obtain α/2 = ± 1 (mod2ώ) and 6/2 = 0 (mod 2), which again makes
equation (1) valid, but not s is even. The proof that x and y are
integers now proceeds just as before, with the simplication that
r = 6 + 2s is divisible by at least 4, thus eliminating the n — 1 case
above.

COROLLARY 3.6. Let S be the ring of integers in Qii/ΊΓ). Then
the order of the image of U(S) is U(S') is:

(1) 4, if d > 0.
(2) 2, ifd<0.

Proof. ( 1 ) Suppose d > 0. Since N(ε) = ± 1 , it follows that
τr(ε)2 = ττ(ε2) = ττ(εέ) = ± 1 . But this implies that 7r(ε){ is ±π(ε) if i is
odd, or ± 1 if i is even. Therefore, by Lemma 3.2(1), ±1, ±π(ε)
are the elements in the image of U(S), and by Lemma 3.5 they are
distinct elements.

(2) Suppose d is not equal to —1 or —3. Then by Lemma
3.2(2) the only units of S are ± 1 . But since 1^—1 in S' by
Lemma 3.4, π(U(S)) has 2 elements. The d = — 1 or — 3 cases can
be easily deduced directly from Lemmas 3.2 and 3.4.

We now compute Hι(S/Z, Pic), where S is the ring of integers
in a quadratic extension of Q, with odd class number. The compu-
tation will be broken into the cases of Lemma 3.3.
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LEMMA 3.7. Let S be the ring of integers in Q(l/d), where
d = pq, d= —p, or d — p for distinct primes p, q with p = q = Z (mod 4).
Then (ί7(S')/im U(S))2 is trivial, which implies Hι{SjZ, Pic) is trivial
by Theorem 2.13.

Proof. Let x be an element of U(S') which represents a class
of (U(S')fim U(S))2. Then x2 is in π(U(S)), which by Corollary 3.6
makes the order of x a power of 2. Thus to complete the proof, it
will suffice to show that in each case the number of elements in
U(S') with order a power of 2, is equal to the order of π(U(S)).

Suppose d = pq. Then by Lemma 3.4(1), S' = Z/(pq)Z, hence
U(S') s U(Z/(pq)Z) s U(Z/pZ) x U(Z/qZ). But since ?7(Z/pZ) and
U(Z/qZ) are cyclic groups with p — 1 and g — 1 elements, and
p ΞΞ g ΞΞ 3 (mod 4), each of these groups have only 2 elements with
order a power of 2. Therefore, £/(£') has only 4 elements with order
a power of 2, which by Corollary 3.6 is the number of elements in

Suppose d = -p. Then, by Lemma 3.4(1), U(S') ~ U(Z/pZ), a
cyclic group with p — 1 elements. Then since p = 3 (mod 4), U(S')
has only two elements with order a power of 2. Again by Corollary
3.6 these are precisely the elements of π(U(S)).

Finally, suppose d = p. Then, by Lemma 3.4(2) S' = Z/2pZ(&
Z/2Z\/~p. But if y = a + bVp is in the latter ring, #2 = α2 + 62p.
Therefore, x is a unit iff α2 + δ2p is a unit of ZβpZ. From this it
is not hard to show that U(S') has axactly 2(p — 1) units. But
p = 3 (mod 4), thus £7(S') has only 4 elements whose order is a power
of 2, which by Corollary 3.6 completes the proof.

LEMMA 3.8. Let S be the ring of integers in Q{Vd), where d
is - 1 , 2, or - 2 . Then H'iS/Z, Pic) is trivial.

Proof. The cases d = — 1 and d = 2 are dealt with in [14,
Theorem 4.5, p. 627]. In case d = — 2, it is easy to see by inspection
that (U(S')/im U(S))2 has only one nontrivial class, namely the class
represented by 1 + τ/lΓ. However, by direct calculation it is not
hard to check that this class is not in kernel of d*.

The next lemma provides an example of the nonvanishing of
, Pic).

LEMMA 3.9. Let S be the ring of integers in Q(λ/ d) where d = p,
and p is a prime with p = 1 (mod 4). Then H1(S/Z9 Pic) is trivial
or has 2 elements as p = 5 (mod 8) or p == 1 (mod 8) respectively.
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Proof. By Lemma 3.4(1), U(S') ~ U(Z/pZ), a cyclic group of
order p — 1. Thus, since by Corollary 3.6(2) im (U(S)) has order 4,
the group U(S')/im(U(S)) is a cyclic group of order (p —1)/4. There-
fore, (ί7(S')/im (U(S)))2 is trivial or has 2 elements as p = 5 (mod 8) or
)̂ = 1 (mod 8) respectively. Thus, by Theorem 2.13, iΓ(S/Z, Pic) is

trivial if p = 5 (mod 8), and has at most 2 elements if p = 1 (mod 8).
The J ) Ξ 5 (mod 8) case being resolved, we now assume p = 1

(mod 8). Let n be an integer such that n* = — 1 (mod p). By Lemma
3.4(1) and the congruence defining n, we see that π(ri) is an element
of £/(£>') of order 8, which makes {{τt{n))) the only nontrivial element
of (U(S')/im U(S))2. Thus to complete the proof we must show that
d*((π(n))) — 1, where d* is defined in Theorem 2.13.

In the notation of Theorem 2.13, we pick t = n, and let s be
any unit of S with π(s) = (π(ri)f. By Lemma 3.1(2) we can write
s = a + bp where a and b are integers and p = (1 + Vp)β. Applying
Lemma 3.4(1) to the equation π{s) = π(n)f, yields a — ((p — l)/2)6 Ξ= n2

(mod p). We will write sc for the integer a — ((p — l)/2)δ.
Since π(s) = (π(n)f, it follows that π(s) is of order 4 in U(Sf).

Then if iV(s) = 1, we must have 1 = π(ss) = π{sf which is a contra-
diction. Therefore, N(s) — — 1 which yields s"1 = — s, or s"1 =
-a-bp. Hence, ίί(2 - s"^2) = ^2(2 + (a + bp)n2) = 2^2 + α^4 + δ^4^.
But n4 = — 1 (mod p) and p = (p — pf, thus

ίί(2 - s-^2) Ξ 2^2 + - α - 6,0 (mod (p - pfS) .

Then substituting p = 1 — p, we obtain

if(2 - s"^2) = 2^2 - α - 6 + bp (mod do

Recall though that from the last paragraph a — ((p — l)/2)6 = n2

(mod p), hence 2n2 = 2a + b (mod p). This then yields tt(2 — s~Ψ) Ξ=
(2α + δ) - α - b + fy> = α + bp = s (mod (/> - jό)2S).

By direct computation one easily verifies that s = a + bp = x +
bρ(ρ — p). Therefore sp = x9 + pxp~ιbp{p — ^) + (o — io)2?/, where ?/
is some element of S. But then since

p = (p- pf , s» = ^ (mod Oo - /ό)8S) .

Now, since ^ p = a? (mod p), it follows that sp = x (mod (p — jθ)2S).
Finally, since x == n2 (mod p), sp = ?2,2 (mod (/> — iθ)2S).

In the last two paragraphs we have established that t2 = n2 = sp

(mod (^ - pfS) and if(2 - s~Ψ) = s (mod (/> - ^ S ) . Since by Theorem
2.13, (ί2, if(2 - s"1*2)) is in M19 we must have

t2 = ίf(2 - s"1*2) (mod (|0 -

which by the above congruences yields sp =Ξ S (mod (^ — jθ)S). There-
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fore, (sp, s) is in Mlf and since s is a unit, (sp, s) is actually in
To complete the proof we show that d*(π((n))) is trivial by showing
(tf, ίί(2 - s'Ψ)) = (sp, s) (mod J). But by Lemma 2.14 this will hold iff
f = sp (mod (p - ^0)5), tt(2 - s~Ψ) = s (mod (/> - p)S), and έ2 + tt(2 -
s"^2) = sp + s (mod (|O — pfS). However, these last three congruence
follow immediately from the first two congruences in this paragraph.

We have studied all the cases of Lemma 3.3 except the one
where S is the ring of integers in Q(v/2p)f where p is a prime with
p ΞΞ 3 (mod 4). For the next four lemmas we assume p and S satisfy
these hypotheses, and proceed to establish the vanishing of H^S/Z,
Pic) in this case.

LEMMA 3.10. If m + ni/2p is a unit of S where m and n are
integers, then N(m + nλ/2p) = 1, n is even, and m2 = 1 (mod 8p).
The unit π(m + ni/2p) is of order at most 2 in U(S').

Proof. By [16, Exercise 6-3-4, p. 240] N(ε) = 1, where ε is the
fundamental unit of S. But then since m + nλ/2p = ±ε\ the multipli-
cativity of the norm yields N(m + nV2p) = N(±e*) = JV(± 1)^(6)* = 1.
This immediately implies our last assertion, since (π(m + nλ/2p)f =
π(m + nV2p)-π(j(m + nV2p)) = π(N(m + nV2p)) = 1. Furthermore,
since N(m + nV2p) = m2 — 2pn2

f we obtain m2 — 2pn2 — 1. There-
fore, since p = 3 (mod 4) we obtain, m2 + 2n2 = 1 (mod 4). If n is odd
then n2 = I(mod4), hence m2 = — I(mod4). But —1 is not a square
mod 4, thus n is even. This yields that 1 = m2 — 2pn2 == m (mod 8p).

LEMMA 3.11. Let t = x + y\/2p, where x and y are integers, be
an element of S. Suppose π{t)2 = π(s) for some unit s of S, with
s = a + bV2p. Then:

(1) a ΞΞ χ2 + 2p?/2 (mod 4p).
(2) If y is even then π(t) is in π(U(S)).
(3) If y is odd then π(t)2 Φ ± 1 .

Proof. (1) We have

π(a + bV2p) = ττ(s) = ττ(έ)2 = π(ί2) = π((a? + yV2p)2)

= (ίc2 + 2p?/2 + 2xjn/2p)

Therefore, by Lemma 3.4(2), we obtain the required a = x2 +
(mod 4p).

(2): If y is even, then by (1) we obtain a = x2 (mod 4p). But by
Lemma 3.10 a2 = 1 (mod 8p), hence #4 ΞΞ 1 (mod 4p). The equation
2* ΞΞ 1 (mod 4) has only two solutions. Furthermore, z* = 1 (mod p)
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has only two solutions mod p, since the order p — 1 of U(Z/pZ) is
divisible by 2 but not 4 (p = 3 (mod 4)). Therefore, s* = 1 (mod 4p)
has exactly four solutions. Now if ε = m + nV2p is the fundamental
unit of Sf Lemma 3.10 yields that m2 = 1 = m4 (mod 4p). But by
Lemma 3.5 we know that π(ε) ^ ± 1 , hence Lemma 3.4(2) then implies
that m ^ ± l ( m o d 4 p ) . Therefore, ± 1 , ±m are all the solutions
mod4p to z* = I(mod4p); hence x = ± 1 or ± m ( m o d 4 p ) . Further-
more, we have y = 0 == n (mod 2) by our hypothesis and Lemma 3.10.
Lemma 3.4(2) then implies that π(t) — π(x + yV2p) = ±τr(ε) or ±7r(l).
In any case π(t) is in π(U(S)).

( 3 ) : If ?/ is odd, by (1) we obtain a = χ2 + 2p (mod 4p). There-
fore, a2 ΞΞ (χ2 + 2p)2 = #4 (mod 4p), and by Lemma 3.1 1 = a2 = x*
(mod4p). As in part (2) by counting the solutions to the equation
z4 = 1 (mod 4p), we see that x = ± 1 or ± m (mod Ap) where ε = m +
nλ/2p is the fundamental unit. But, since m2 = 1 (mod 4p) by Lemma
3.10, we obtain x2 = l (mod Ap) in either case. Then a = χ2 + 2p (mod 4^)
implies a ΞΞ 1 + 2p (mod 4p), hence ττ(s) = π(a + bV2p) Φ ± 1 by Lemma
3.4(2).

LEMMMA 3.12. Lei £ = # + yλ/2p be an element of S, where x
is an integer and y is an odd integer. Suppose π(t)2 = π(s) for some
unit s of S, with s = a + bλ/2p. Then:

( 1 ) x2 + 2pi/2 Ξ α + &p (mod 8p), where k is 0 or 4.
( 2 ) If w, = t2 and w2 = tt(2 - s"^2), iAe^

K?! + w2 Ξ 2α + (k — A)p + δτ/2p (mod (p — p)2S).

Proof. ( 1 ) follows immediately from Lemma 3.11(1).
( 2 ) : As pointed out in the proof of Lemma 3.10, the norm of

any unit of S is 1. In particular ss = 1, hence s"1 = s = a — bV2p.
Then by substituting t = x 4- yV2p, t = x — yλ/2p, and s"1 = α —
bV2p into the defining equations of wλ and w2 we obtain wx — r3 +
r2l/2p and w2 = r3 + r4λ/2p where rί = α;2 + 2pι/2, r2 = 2a?3/, r3 = (cc2 —
2py2)-[2 + ibxyp - a(x2 + 2pi/2)], and r4 = (x2 - 2pτ/2)[6(^2 + 2py2) -
2axy]. By part (1) we know that x2 + 2py2 = a + kp (mod 8p) where
& = 0 or 4, hence it follows that x2 — 2py2 = a -h (k + 4)p (mod 8p)
since y is odd. Therefore, r4 Ξ (α + (& + 4)p)[6(α + Λ^) — 2axy] Ξ
(α + (fc + 4)p) [b(a + fep) — 2(α + (fc + 4)p)αα;7/] (mod 8p). But because
& = 0 or 4 we see that 2(k + ί)p = 0 (mod 8p), and since 6 is even
by Lemma 3.10, we also obtain bkp = b(k + 4)p = 0 (mod 8p). This
yields r4 = α2δ — 2α2α?i/ (mod 8p). But by Lemma 3.10, we know that
a2 ΞΞ 1 (mod 8p), hence it follows that r4= b — 2xy (mod 8p). Similar-
ly, r3 = (x2 - 2py2)\2 + 46^2/p - a(x2 + 2pτ/2)] == (x2 - 2py2)[2 - a(x2 +
2py2)] = (a + (k + 4)p).[2 - α(α + A p)] = 2(α + (k + 4)p) - α2(α + jfcp)
— α(α + kp)(k + 4)p == 2a — a\a + kp) — a\k
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2a - (a + kp) - (AH- 4)p = a- 2kp - Ap = a - Ap (mod 8p). Then,
since {p — pf = (V2p - (-V2p)f = 8p, we obtain w, + w2 = (r, + r3) +
(r2 + r4)l/2p Ξ (x2 + 2p?/2) + (α - 4p) + ((2xy) +_(δ - 2xy))Vip = (a +

= 2α + (fc - 4)p + δl/2p (mod

LEMMA 3.13. Let u: and u2 be units of S with (ulf u2) in Λfj.
Suppose ux — ( — l)*s r α ĉZ u 2 = ( — 1)%9 where e = m + πτ/2?> is ίfee

fundamental unit of S, and r and q are nonnegative integers. Then
r = q (mod 2),

Mi + u2 = (-l) ί(2m r + (r + gJm^^V^p) mod((|O - pfS).

Proof. Since (ul9 u2) is in ikf̂  we obtain that π(uj) = 7r(w2) from
the definition of Mx. Thus (-l)*7r(e)r - (-l)%(ε)% or π(ε)r~q = ( - l ) w .
But by Lemma 3.5 we know that π(e) Φ ± 1 , and by Lemma 3.10
we know that π(εf = 1, hence r = g (mod 2) and i = j (mod 2).

By the binomial expansion of εr = (m + nV2p)r, we obtain
er = mr + rmr~1/^v/2p + 2t̂ 2pg where # is some element of S. But,
by Lemma 3.10 n is even, thus er ~ mr -h rmr~1nv/2p (mod (8pS)).
Similarly, eq = m9 + gm 9 " 1 ^!/^ (mod 8pS)). By Lemma 3.10 we have
that m2 = 1 (mod 8p), therefore, since r Ξ g (mod 2), it follows that
εq = rar + g m r - ^ l / ^ (mod 8pS). Then w, + ̂ 2 = (- l )V + (-l)V,
and since i = j (mod 2) this is

+ εq) = (~iy(2mr + (r + q)mr-1nv/2p) (mod (8pS)).

Since (p — ̂ )2 = 8p, the required congruence follows.

LEMMA 3.14. Let S be the ring of integers in Q0/d), where
d = 2p and p is a prime with p = 3 (mod 4). Then Hι{SjZf Pic) is
trivial.

Proof. Let 2 be a unit of U(S') which represents a class of
(U(S')lπ(U(S))2). By Theorem 2.13, we must show that if d*((z)) is
trivial, then z actually lies in π(U(S)). Since z is in S' we can write
z = π(t) where t = a? + yλ/2p is in S, and since z2 is in ττ( U(S)) we
can write z2 = π(s) where s — a + 6α/2p is a unit of S. Then if
we let wι = ί2 and w2 = ίf(2 — s~Ψ), by Theorem 2.13, we have
d*((z)) = class ((^i, w2)) where we mean the class of (wu w2) in
U(MJJ)/im U{M^). Therefore, what we must show is that if (uif u2)
is in Mi9 where uiy u2 are units of S9 and (ulf u2) = (wu w2)(moάJ)
then « = π(t) is in π(U(S)). Thus we now assume the hypotheses of
the last sentence.

By Lemma 3.11(2), we see that we are done if y is even, hence
we assume y is odd. Since s is a unit of S, Lemma 3.2(1) yields
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that s — cει where c = ± 1 and I is an integer. Then π(s) = c(π(e))1

which by Lemma 3.11(3) yields that π(ε)1 Φ ± 1 . But by Lemma 3.10
τr(ε)2 — 1, hence I is odd. Therefore, π(s) = c(π(e))1 = cττ(s) = ττ(cε).
Thus, since s was chosen to be any unit of S with π(s) — z = π(t)2,
we may assume s — cε without loss of generality.

Since S/(ρ - pfS = S/8pS is isomorphic to Z/8pZQ) Z/8pZ(V2p),
we know that S/(p — ρ)2S is a finite ring. Therefore,

εn
 ΞΞ 1 (mod (p - p)2S)

for some positive integer n. But then by Lemma 2.14 (εnf, εnf) ==
(1, 1) (mod J) for any integer/. It then follows that (wlf w2) = (uif U2)Ξ=

(uiε
nf

f n2ε
nf) (mod J) . Therefore, since / can be taken to be a large

positive integer, we can assume without loss of generality that
ut = (—iyεr and u2 — ( — l)jεq where r and q sue positive integers.

Since (uif u2) = (wu w2) (mod J), Lemma 2.14 at least implies
u1 = Wi (mod (p — ρ)S). But wι — t2 = s (mod (p — p)S), hence

( — iyεr = Ui Ξ s = cε (mod (p — ρ)S) ,

or since c = ± 1 , we have ( — iycεr~ι = 1 (mod (p — p)S). Then since
π(ε)2 = 1 and 7r(ε) Φ ± 1 by Lemma 3.5, we must have that r is odd
and (-l) 'c - 1.

Since ε = es = c(α + δi/2p), Lemma 3.13 implies

u2 = (-l) ί(2(cα) r + (r + g)(ca)r~1

= (-l)V(2α r + (r + gjα'-'δl/δp) (mod (p -

But, since r is odd, a2 = 1 (mod 8^) by Lemma 3.10, and (^ — ̂ )2 = 8p,
it follows that u, + u2 = (-l)V(2α + (r + g)δτ/2^) (mod (^ - ρ)2S).
Finally, since c — ± 1 and r is odd, we have ( —1)V = ( — lfc = 1,
thus u, + u2 Ξ (2α + (r + q)bV2p) (mod (ί> - £)2S).

By Lemma 2.14, (%j, u2) = (wx, w2) (mod J) implies ^ + ^2 = W\ +
^(modί/O — p)2S). Putting the congruence of the last paragraph
together with Lemma 3.12(2), we obtain 2α + (r + q)bV2p = (2a +
(k — A)p) + δi/2p (mod (p — ρ)2S), where k = 0 or 4. But, since
(p — /9)2 = 8p, the last congruence is equivalent to the two congru-
ences: 2a ΞΞ 2α + (k — 4)p (mod 8p), and (r + g)δ Ξ= 6 (mod 8p). The
first of these latter congruences implies k = 4. By the second
b(r + q — 1) ΞΞ 0 (mod 8p), which yields δ == 0 (mod 8) since Lemma 3.13
forces r + ζf — 1 to be odd.

By Lemma 3.13(1), we obtain x2 + 2py2 = a + kp ΞΞ a + 4p (mod8£>).
Then p Ξ 3 (mod 4) implies 2p = 6 (mod 8) and Ap = 4 (mod 8), hence
a2 + 6τ/2 = α + 4 (mod 8). But we have assumed y is odd, therefore
t = 1 (mod 8). Thus x2 + 6 = a + 4 (mod 8), or x2 = a - 2 (mod 8).
Now, Lemma 3.10 yields that ΛΓ(α + b\/2p) = a2 — 2&p2 = 1, and since
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we now know that 6 = 0 (mod 8), this implies a2 = 1 (mod 16). But
then since 32 =έ 1 (mod 16) and 52 ξέ 1 (mod 16) we have a = ± 1 (mod 8).
Therefore, x2 = a — 2 = —1 or —3 (mod 8). This is a contradiction
since neither —1 nor —3 is a square mod 8.

Since the assumption that y was odd led to contradiction, the
proof is complete.

THEOREM 3.15. Let S be the ring of integers in QV d). Further
suppose that the class number of S is odd. Then H^S/Z, Pic) is
trivial unless d is prime and congruent to 1 mod 8. In this latter
case H\S\Z, Pic) has two elements.

Proof. This is just Lemma 3.3 together with Lemmas 3.7, 3.8,
3.9, and 3.14.

4* H2(S/R, U) for some cyclic extensions* Let R be an inte-
grally closed integral domain with quotient field K, and let L be a
Galois field extension of K with group G. Now suppose S is an
integral extension of R in L which is mapped to itself by G. In this
section we show that H2(SjR, U) vanishes in a number of special
cases in which G is cyclic, by considering a homomorphism H2(S/R, U) —>
H\Gy U(S)). The result is applied to the case where R is the ring
of rational integers, and S is the ring of integers in certain quadratic,
cubic, and cyclotomic number fields. A similar result for cubic fields
can already be found in [6], and several of the quadratic cases can
be found in [7] and [14].

The homomorphism H2(S/R, U)-+H\G, U(S)) that we use to
compare the cohomology groups is described in [4, Theorem 5.4 and
Lemma 5.1]. Of course, in that paper, S is a Galois extension of
R with group G and the homomorphism is an isomorphism. However,
the map is always defined and we now recall the definition.

If H is a group and X is a set, we will write En(Hf X) for the
set of functions of n variables defined on H with values in X. Now
suppose B is a commutative algebra over a commutative ring A, H
is a group of A-algebra automorphisms of B, and F is an additive
functor from the category of A-algebras to the category of groups.
Then it is easily verified that the map hn: Bn+1 -> E*(H, B) defined
on the generators b0 (x) . 0 bn of Bn+1 by

is an A-algebra homomorphism. Applying the functor F we obtain
a group homomorphism F(hn): F(Bn+1)-+F(En(H, B)), which when
composed with the natural isomorphism φ: F(En(R, B)) -+ En(H, F(B))
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[4, 5.3, p. 16] yields a group homomorphism φoF(hn): F(Bn+1)-+
En(H, F(B)). By the same computation as in [4], we find that the
maps {φ o F(hn)} commute with the coboundary maps of Amitsur and
group cohomology, i.e., the diagram

F(Bn+1) > F(Bn+2)

(4.1) j j
En{H, F(B)) > En+1(H, F{B))

commutes for each n, where the horizontal maps are the coboundary
homomorphisms. Thus φoF(hn) induces a group mapping

hty. Hn(B/A, F) ~* Hn{H, F(B)) .

REMARK 4.2. By [4, Lemma 5.1], the mapping hn: Ln+1-*En(G, L)
is an isomorphism since L is Galois over K. Therefore, if S is flat
over R we at least know that hn: Sn+1 -• En(G, S) is injective. Then
if F is a left exact functor, as the functor U is, it follows that
hny F(Sn+1) -+ En(G, F(S)) is also injective. We also note explicitly
that the map hfy. H2(S/R, U)-+H\G, U(S)) takes the class of a unit
Σ ^ ® ^ ® ^ of S3 which represents an Amitsur 2-cocycle, to the
class of the 2-cocycle f:G x G-+ U(S) defined by

f(?if σ ^ = Σ βi^i(ίi)^Λ(^i)

We will write J for the ideal of S generated by the set {σ(x) —
τ{x) I σ, τ in G, x in S}.

LEMMA 4.3. Suppose that R is integrally closed and the Galois
group G of L/K is cyclic. Then the homomorphism A?: H2(S/R, U) —>
H2{G, U(S)) is trivial if either:

(1) U(R) = N(U(S)) where N is the norm mapping from L
to K.

(2) The natural mapping U(S) —• U(S/I) is injective when
restricted to U(R).

Proof. Suppose H is any finite cyclic group with generator σ,
and of order m. Then if M is an if-module, it is well known that
Hn(H, M) is isomorphic to MH/N(M) when n is even and where N is
the norm mapping. In fact when n is 2 it is easy to write down
an isomorphism defined explicitly on 2-cocycles represented by func-
tions mapping Hx H->M. We define g: H\H, M)-+MHjN(M) by
g(class(/)) = class(ΠΓ=i/(#*, <?))> where f:K x K—+M is a cocycle
(cf. [11, Theorem 4.3]).

Now, to show that the image of ht:H2(S/R, U)-+H\G, U(S)) is
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trivial it will suffice to show that the image of the composite
H2(S/R, U)-+H\G, U(S))->U(S)G/N(U(S)) is trivial. Of course if
hypothesis (1) holds this is immediate, since R integrally closed implies
U(S)G = U(R). Therefore, suppose hypothesis (2) holds. Let w =
Σ sι ® ί< ® ui be a unit in S3 which is an Amitsur 2-cocycle. Then
we see that the composition

U) >H\G, U(S))
N(U(S))

takes the class of w to class (ΠΓ=i f(σ\ σ)) where h2(w) = /, σ is a
generator of G, and m is the order of G. But by the definition of
h2, we have f(σ\ σ) = Σ* Siβ^Qσ^Ui), hence the class of w is taken
to the class ziV( £/(£)) in U(R)/N(U(S)), where x = UT=iΣsiσ

j(ti)σ^1(ui).
But clearly from the definition of the ideal /, we see that s^it^a^^Ut) ==
SitiUi = σ^SitiUi) (mod /). Thus if we write 7/ for the unit Σ S ^ Λ oί
S obtained by contracting w, we obtain

Σ β<^(ί<)^+ιK) = ^5* ( Σ «A^) = <7'(y) (mod I) .

Therefore, x = ΐ[T^σ3\y) = N(y) (mod JΓ). But both x and iV(?/) are
units in R, hence hypothesis (2) implies x = N(y) making the image
of w trivial.

The next proposition at least partially fills in the connection
between Amitsur and Galois cohomology provided by hf.

For any Dedekind domain A, we let D(A) donote its group of
fractional ideals.

PROPOSITION 4.4. Let Rbe a Dedekind domain with quotient field
K, and L be a Galois extension of K with group G. Further,
suppose that S is the integral closure of R in L. Then S is also
Dedekind [18, Theorem 19, p. 281], and there is a commutative
diagram

0

i
(4.5) 0 > H°(S/R, Pic)/im Pic R - ^ H%S/R, U) - ^ Br(S/R)

[h'° \m

D(S)°/im D(R) > (Pic S)7im Pic R - ^ H\G, U(S)) > H\G, U(L))

with exact rows.

Proof. The top row is obtained from part of the seven term
exact sequence [5, Theorem 7.6], and the bottom exact sequence is
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from [15, Theorem, p. 873]. The vertical map h'o is induced by

Ao*piβ: H°(S/R, Pic) > H°(G, Pic S) = (Pic S)σ .

Actually, since there are no coboundaries in dimension 0, H°(S/R, Pic)
is a subgroup of Pic S (in fact (Pic S)G), and h[ can be identified with
the natural injection.

The only thing left to prove is the commutativity of the diagram.
We recall from [15] that the map 7' is induced by a composition
(Pic S)β = H°(G, U(S)) — Hι(G, U(L)/U(S))~+ H2(G, U(S))9 where the
first map is the connecting homomorphism in degree 0 obtained from
0—- U{L)IU(S) ~> D(S)-+ Pic (S)->0, and the second is the connecting
homomorphism in degree 1 obtained from

0 > U(S) > U(L) > U{L)I U(S) > 0 .

From this it is not difficult to write down an explicit formula for
7'. Furthermore, an explicit formula for 7 is given in [9, (A. 18-3),
p. 155]. Thus the commutativity of the diagram can be verified by
direct computation, a computation we omit.

LEMMA 4.6. Let R be a Dedekind domain with quotient field K,
and let S be the integral closure of R in a Galois field extension L
of K with group G, so that S is also Dedekind. If both of the maps
h?: H2(S/R, U) — H\G, U(S)) and D(S)G -> (Pic S)G/im Pic R are trivial,
then H2(S/R, U) = 0.

Proof. Consider diagram (4.5). By the triviality of D(S)G-+
(PicSy/imVicR, 7' is injective. Thus 7'°&ί = A2*°7 is injective, and
since hf is trivial the conclusion will follow if 7 is surjective, or
equivalently a is trivial.

Let a'\ H2(L/K, U) —* Br (L/K) be the map corresponding to a
obtained when [5, Theorem 7.6] is applied to L/K. By [7, Theorem
1.3, p. 241] we know that the sequence of [5, Theorem 7.6] is
natural in both variables. Therefore, the inclusion mapping R—>K
induces a commutative diagram

H\SIR, U)-^B

(4.7) I
H2(L/K, U) — Br (L/K) .

But since R is Dedekind Br (R) —* Br (K) is injective by [1, Theorem
7.2], which makes Br (S/R) —* Br (L/K) injective. Thus to show a is
trivial it will suffice to show that the map H2(S/R, U)~+H2(L/K, U)
is trivial.
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Let hξ: U —* E2(G, L) be the map of the same form as h2: S
3 —>

E\G, S), but here applied to L/K. By [4, Theorem 5.4, p. 17],
since L is Galois over K, hξ induces an isomorphism

Γ, 10 > H\G, U(L)) .

Therefore, we will have a is trivial once we have shown that

H2(S/R, U) > H2(L/K, U) K H\G, U{L))

is trivial. However, this composition also factors as H2(S/R, 27)—•
H\G, U(S)) -»H2(G, U(L)), which is trivial since hf is.

LEMMA 4.8. Let p be a primitive pn root of unity, where p is
any prime number. Suppose L = Q(p) and K is a subfield of L.
Then since L is Galois over Q, it follows that L is Galois over K,
say with group G.

If R and S are the ring of integers in K and L respectively,
then the image of D(S)G —* (Pic S)G/im Pic R is trivial.

Proof. Let M be any fractional ideal of D(S)G. Since we are
mapping into (Pic S)G, we can assume M is integral without loss of
generality. Let M = Π*,i Qψ be the prime factorization of M indexed
so that QtS Π R = QiS, Π R is the same prime Qt of R. Now let
^ = IL Qljjy and let σ be in G. Since a must map one prime lying
over Qi to another prime lying over ζ^ and σ(M) = M, it follows that
σ(Mi) = Mt by the uniqueness of factorization into prime ideals.
Therefore, each Mt is in D(S)G, and without loss of generality we
may assume the primes of M all lie over a given prime of R.

With this reduction we now write the prime factorization of M
as M = Π Q? with each Qό Π R equal to the prime ideal Q of i?.
Since G acts transitively on the primes of S, ([18, Theorem 22,
p. 289]) ilί in D(S)G implies that all rύ must equal a given nonnegative
integer r, and each prime lying over Q must be a Qy. Now since L
is Galois over Q and consequently over K, by [12, Corollary 2, p. 21]
QS = Π Qj where e is the ramification index of Q in S. If e = 1
then If = (Π Qi)r = QrS, so that the image of M is trivial in

(Pic S)G/im Pic R .

Thus we may assume Q ramifies in S.
Since Q Π Z is a prime ideal in Z, we must have Q f) Z = (q) for

some prime number q. But since Q ramifies in S, certainly q will
ramify in S. Then by [16, 7-4-1, p. 262] q = p and the only prime
in S lying over p is the principal prime ideal (1 — p)S. Therefore,
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M = (1 — ρ)rS and its image is again trivial in (Pic S)β/im Pic R.

THEOREM 4.9. Let p be a primitive pn root of unity, where p
is an odd prime number. Suppose L = Q(p), K is a sub field of L,
and R and S are the rings of integers in K and L respectively. If
the only units of R are ± 1 , then H2(S/R, U) is trivial.

Proof. By Lemmas 4.6 and 4.8, it will suffice to show that the

image of H\S/R, U)H H\G, U(S)) is trivial, where G is the Galois
group L over K. By [16, 7-1-2, p. 257] the Galois group of L/Q
is cyclic, thus certainly G is cyclic. Therefore, by Lemma 4.3 it will
suffice to verify that the composite U{R) —+ U(S) —• U(S/I) is an
injection where I is the ideal of S generated by {σ(x) — τ(x) | σ, τ are
in G, and x is in S}. Since by hypothesis U(R) = {±1}, we need only
show that 2 is not in I.

By [16, p. 264], S = Z[p], thus I is generated by {σ(pk) - τ(pk)\k
is a positive integer, and σf τ are in G}. But σ(p)k and τ(pk) are
also pn roots of 1, thus σ(pk) — τ(pk) = pι — pm where I and m are
positive integers. Then since pι — om = ρm(pι-m — 1) = —pι(pm~ι - 1),
we see that pι — pm is divisible by (p — 1) no matter which of I and
m is the greatest. Thus / is contained in the prime ideal (p — 1)S.
Therefore, if 2 is in / then 2 is in (p — 1)SΠ Z — pZ. But we assumed
p was an odd prime. Hence 2 is not in J, completing the proof.

REMARK 4.10. One reason for calculating H2(S/R, U) is that
knowledge of that group together with [5, Theorem 7.6] should reveal
information about Bi(S/R). Theorem 4.9 applied to the case K—Q
immediately implies that H2(S/Z, U) vanishes. Therefore, by [5,
Theorem 7.6] there is an exact sequence 0 — Br (S/Z) -> H\S/Z, Pic) ->
H3(S/Z, U). However, Hι{SIZ, Pic) has proved difficult to compute,
and we have no result corresponding to Theorem 3.15 in the cyclotomic
case.

The number rings R that satisfy Theorem 4.9 can be found
explicitly. By the Dirichlet Units Theorem, for U(R) to be finite,
r + s — 1 = 0 where r is the number of real embeddings of K and s
is the number of conjugate pairs of complex embeddings. Thus,
either r = 1 and s = 0, or r = 0 and s = 1. But if n is the dimen-
sion of K over Q, then n — r + 2s, thus K is either Q or an imaginary
quadratic number field. But if K — Q(V^d) for d a positive square
free integer, then by [16, 7-4-4, p. 263] K will be contained in L
iff d divides pn and satisfies d = 3 (mod 4). Therefore, the only choices
for K are Q and QiV^p), with p = 3 (mod 4). But for the units of R
to be exactly ± 1 , [16, 6-3-1, p. 238] leaves exactly Q and
with p = 3 (mod 4) and p Φ 3.
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Although Lemma 4.8 was applicable to the pn roots of unity
for any prime p, Theorem 4.9 required that p be odd. There were
two reasons for this. First, the 2n roots of unity are not a cyclic
extension of Q when n > 2. Second, the map U(Z)-*U(S)-+U(S/I)
is not an injection since 2 = (1 — pfn~\

However, the vanishing of H2(S/Z, U) for S the ring of integers
in the field of 2n roots of unity can be deduced from the fact that
Br (Z) = 0 ([8]). For by Lemmas 4.6 and 4.8, it will suffice to show
that H2(S/Z, U) S H2(G, U(S)) is trivial. But by diagram (4.5) the
kernel of H2(G, U(S)) ->H2(G, U(L)) is just the image of

7': (Pic S)G/im Pic Z > H\G, U(S)) .

By [16, Satz C, p. 244] the class number of S is odd, yet H2(G, U(S))
has exponent 2n~1 since this is the order of G. Therefore, the image
of 7' is trivial and H2(G, U(S)) — H2(G, U(L)) is an injection. Thus
it will suffice to show that H2(S/Z, U)^H*(G, U(S))~+H2(G, U(L))
is trivial. But this composite is the same as

H%S/Z, U) >H2(L/Q, U)^>H\G, U(L)) ,

and since {hf}* is an isomorphism it will suffice to show

H2(S/Z, U) >H2(L/Q, U)

is trivial. This, however, follows from diagram (4.7) since a' is an
isomorphism ([4, Corollary 5.5, p. 17]) and Br (S/Z) = 0.

We now prepare to establish the vanishing of H2(S/R, U) for
some extensions of degree 3. Our method requires some explicit
calculations with 2-cocycles over groups of order 3. The next
lemma rewrites the coboundary equations in dimension 2 in a form
more convenient for our purposes. The proof is by reversible sub-
stitution which we omit.

LEMMA 4.11. Let G = [id, σ, σ2} be a group of order 3 and M a
G-module. Let h: G x G—+M be a function with h(id, id) = 0. Then
h is a coboundary iff there is a function f: G —> M such that'.

( 1 ) o = /(0) = fc(0, 0) = Λ(0, 1) = λ(0, 2) = h(l, 0) - Λ(2, 0)
( 2 ) /(I) = Ml, 2) - *(/(2))
( 3 ) Λ(l, 1) = -N(f(2)) + λ(l, 2) + σ(h(l, 2))
( 4 ) h{2, 1) - σ2(h(l, 2))
( 5 ) λ(2, 2) = N(f(2)) - λ(l, 2)

where N is the norm mapping and we have written h(i, j) for h(σ\ σj)
and f(i) for f(σ*).

LEMMA 4.12. Let R be an integral domain with quotient field
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K, and suppose U(R) is a torsion group with no 3 torsion. Suppose
further that L is a Galois extension of K of degree 3 with Galois
group G, and S9 the integral closure of R in L, is flat over R. Then
the map h?: H2(S/R, U)-+H\G, U(S)) is an injection.

Proof. Let w = Σ a^ίS)^,®^ be an Amitsur 2-cocycle in Z7(S3).
We must show that if h2(w) in E2(G, U(S)) is a 2-coboundary, then
w is an Amitsur 2-coboundary. Recall, that by the definition of h2,
if (r, μ) is in G2 then h2(w)(τ, μ) = Σ ^Mv^K^i)- Now, let

s = Σ ViViZi = h(w)(id, id) ,

a unit of S. Then s (x) 1 is in U(S2), and

® 1 ® I)" 1 .(8®

is a coboundary in i7(S3). Then if we let w' = w/( l®s®l) , w' is
in the same class as w in H2(S/R, U), but h2(wf)(id9 id) — s/s = 1.
Therefore., without loss of generality we may assume h2(w)(id, id) = 1.

Let σ be a generator of the Galois group G, so that G = {ίd, tf, ίJ2}.
To simplify notation we will write h(i, j) instead of h2(w)(σ\ σj), where
ί, j = 0, 1, 2. Now assume Λ2(w) is a coboundary. Then by Lemma
4.11 there is a function / : G —+ U(S) satisfying equations (l)-(5) of
that lemma with h replaced by h2(w).

Consider diagram (4.1), specialized to the functor U with n = 1.
The horizontal maps are the Amitsur and group cohomology co-
boundaries, while the vertical maps are just the restrictions of hx

and h2. Since h2 is injective by Remark 4.2, to show that w is an
Amitsur coboundary, it will suffice to find a unit t of S2 such that
hj{t) is taken to h2(w) by the group coboundary operator. Specifically
then, we must find a unit t of S2 such that the equations (l)-(5) of
Lemma 4.11 hold with hx{t) in place of /. But since those equations
do hold for /, we see that it is sufficient to find t such that:

(4 13) h l ( m lf k m ) Hlf 2MW4X2)> ' a n d

where we have written hx{t){i) for h^fyiσ1).
If we apply the norm N to equation (3) of Lemma 4.11, we

obtain

, 1)) = N(N(f(2)))-> N(h(l, 2))N(σ(h(l, 2))

= N(f(2)ΓN(σ2(h(lf 2))2 .

If we let a = σ2(h(l, 2))2 Λ(l, I)"1, then we can rewrite the last equa-
tion as iV(/(2))3 = N(a). But N(a) is in U(R), hence it must have order
n which is prime to 3. Thus we can write
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(4.14) 1 = 3A; + nm for some integers k and m.

Then N(a) = iV(α)s*+!"» - N(a)sk = N(ak)5. But then iV(/(2))3 = N(a) =
N(ak)\ therefore i\Γ(/(2)) = N(a") since U(R) has no 3 torsion. But
then to satisfy equations (4.13) it will suffice to find a unit t of S2

such that:

= 1, A1(ί)(2) = a" , and

= h(l, 2)σ(ak)-1 .
(4.15)

Now recall that w = Σs<®l/i<8)ί< and let ίx = Σ l i ^
ί = Σ σ\xt)σ(*i) <8> σ2(yi), is = Σ ^(2/*) <g) <72(z4), ί4 = Σ ****
ί5 = Σ G\%i)Vi ® %i> and ί, = Σ ^ί^iί^ί ® <?(Vi)- Each of the ί4 is a unit
of S2 since each is the image of w under an obvious algebra homo-
morphism of Ss to S2. Using the definitions of \ and the tt together
with Lemma 4.11(1) (where applicable), it is not difficult to explicitly
compute the fci(*t)(i). For example, A-i(ί2)(2) = Σ ^(^i)σ(zi)σ(.yΐ) =
σ2(Σ x0\z*WVi)) = <**(H2, 0)) = l and ^(40(2) = Σ ϊ Λ M ϊ J = Ml, 1).
Systematically computing all the hfaXJ) we obtain

(4.16)
, 1)) = ^

Mi, 2) = M

<τ2(^(l, 2)) = K

\σ(h(l, 1)) =

Now let ί = tΓ**Γ2*ts~2*+1> ίί2*~ι> ί|* ί|, where k is the integer chosen
in equation (4.14). Then using the above table, we obtain:

(4.17)

But substituting the definition a = σ\h(l, 2))%(1, I)"1 into equa-
tions (4.15) we obtain:

Ax(t)(O) = 1 1 Ml, l)(-2*+1) Ml, I) ' 1 *" 1 1 -!- ! = 1

*,(«)(!) = 1 σ\h(l, I))"2* Ml, 2)-24+1 1 σ\h(l, I))2* σ(h(l, l))k

= Ml, 2)-"+1<r<Ml, 1))*
= Ml, l Γ ' i i i tfW, 2)") i = Ml, l Γ M W , 2))2*.

(4.18)
= Ml, 2)<7(<72(M1, 2)'M1,

= Ml, 2 ) - t t +

= Ml,
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Since equations (4.17) and (4.18) agree, we have found a unit t
in S2 meeting the necessary requirements.

THEOREM 4.19 (cf. [6, Theorem 4.1]). Let R be an integrally
closed integral domain with quotient field K, and suppose U(R) is
a torsion group with no 3 torsion. Suppose further that L is a
Galois extension of K of degree 3, and S, the integral closure of R
in L, is flat over R. Then H2(S/R, U) = 0.

Proof. By Lemma 4.12, it will suffice to show that the image

of H2(S/R, U) H. H2(G, U(S)) is trivial. This, however, follows from
Lemma 4.3 once we show that N(U(S)) — U(R). But every element
of U(R)/U(Ry simultaneously has order 3 and order prime to 3,
therefore, U(R) = U{Rf. This establishes N(U(R)) = U(R), hence
certainly N(U(S)) = U(R).

REMARK 4.20. Again it is easy to determine the number rings
R whose units satisfy the hypotheses of Theorem 4.19. For U(R)
to be torsion, as in Remark 4.10, the Dirichlet Unit Theorem implies
that K— Q or (?(]/—d) for d a square free positive integer. By
[16, 6-3-1, p. 238] the requirement that U(R) has no 3 torsion
further eliminates exactly Q(τ/—3). Thus, if we require that R be
a number ring, Theorem 4.19 coincides with [6, Theorem 4.1].

Actually, Dobbs has noted that [6, Theorem 3.2] which establishes
the vanishing of H^S/R, UKjU), with a little work implies our
Theorem 4.1. It is interesting thai this apparently different approach
also requires the normality of L over K. Of course when L is not
normal over K, the group G of if-automorphisms of L is trivial, and
our approach of considering H2(S/R, U)—>H2(G, U(S)) is hopeless.
However, in [6], Dobbs has been able to show that H2(S/R, U)
vanishes in several specific cubic nonnormal cases, by using inflation
to the normal closure together with known information about class
numbers.

We now compute H2(S/R, U) in the following setting. Let R
be an integrally closed integral domain whose quotient field K has
characteristic different from 2. Let L be a quadratic field extension
of K with Galois group G = {σ, id}. We further suppose that p is
an element of L which is integral over R, and S is the subring of
L for whieh {1, p} is a basis over R.

In the following lemma we revive the notation Ml9 θ, alf a2, π, S'
of §2.

LEMMA 4.21. Let r be an element of R. S3 contains an element
w satisfying:
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h
2
(w)(ίd, id) = h

2
(w)(id, σ) = h

2
(w)(σ, id) = 1 and

h
2
(w)(σ, σ) = r ,

iff 1 — r is m (<o — ̂ o)2i2, where for any element s of S we write
σ(s) — s.

Proof. Recall that by Corollary 1.4 and Lemma 2.2 the square

® id \π ® id

is cartesian. Furthermore, by Remark 2.3, θ: S(g)S—*ikΓi defined by
θ(s (x)£) = (st, st) is an isomorphism.

Now, let w = Σu^i^Vi® %i be an element of S3. Then

0 o (<*i ® ίώ)(w) = θ ( Σ αWi (8) *<) = Σ (XiVitif Σ »i»

= (h2(w)(id, id), σ(h2(w)(id, σ))) ,

and

^ (x) ̂ ) - ( Σ «i»A, Σ
)(σ, id)), h2{w)(σ, σ)) .

Therefore, S3 has an element w satisfying (4.22) iff it has an element
w with θ o ( ^ (g) id)(ίi;) = (1,1) and ί o (a2 (g) id)(w) = (1, r). That is
iff there are elements zlf z2 of S2 with ^(^0 = (1, 1), θ(z2) = (1, r), (α^ (x)
ΐώ)(^) = «!, and (a2 (x) id)(^) = z2. But then since the diagram above
is cartesian, an element w in S 3 satisfying (4.22) will exist iff there
are elements zl9 z2 of S2 with θ(z) = (1, 1), 0(s2) = (1, r) and {π®id){z) =
(ττ(g)iώ)(^2).

We now refer to diagram (2.12) of §2. By that diagram
(TΓ (x) id)(^) = (7Γ (g) i(2)(^8) iff β(«j) Ξ ^(^2) (mod J ) . Thus an element
w satisfying (4.22) exists iff (1, 1) and (1, r) are in Mλ and (1, 1) =
(1, r) (mod J ) . Then by Lemma 2.14 this is equivalent to 1 — r being
an element of (p — pfS. But 1 — r and (p — pf are in R and R is
integrally closed, thus 1 — r is in (p — ρ)2S iff it is in (p — p)2R,
completing the proof.

LEMMA 4.23. Let r be in U(R), and w be an element of U(S3)
satisfying (4.22). Then w is Amitsur coboundary iff there is an
element a of U(S) with N(a) — r and a = 1 (mod (p — p)S).

Proof. As mentioned in the proof of Lemma 4.12, we know that
w is a coboundary iff there is an element / of fej(ί7(S2)) which is
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taken to h2(w) by the group coboundary operator. But by equation
(4.22) and the formula for the group coboundary operator, this occurs
iff W ( ^ 0 ) /(^))//(^<+0 = l if i or 3 is not 1, and (σ(f(σ))-f(σ))/f(id) = r.
Simplifying, this is the same as f(id) = 1 and N(f(σ)) = r.

We now know that w is a coboundary iff there is an element z
of U(S2) with hfcXid) = 1 and N(h£z)(σ)) = r. But since

θ(z) = (λ^Xid), tffoOOW)) ,

and θ: S(g) S—^Mi is an isomorphism, this is the same as the existence
of a unit (1, a) of Mί with i\Γ(α) = r. That is, 10 is a coboundary iff
there exists a unit a oί S with α = 1 (mod (̂  — p)S) and iV(α) = r.

THEOREM 4.24. Suppose R is an integrally closed integral domain
whose quotient field K has characteristic different from 2, and L is
a quadratic field extension of K. If p is an element of L which is
integral over R, and S is the subring of R with R-basis {1, p], then
H2(S/R, U) ~ A/N(B), where A = {ae U(R) \a = l (mod (p - ρ)2R)}
and B={be U(S) \b = l (mod (p - p)S)}.

Proof. If a is in A we will write fa:G x G-+S for the map
defined by fa(id, id) = fa{id, σ) = fa(σ, id) - 1 and fa(σ, σ) = α. By
Lemma 4.21 there is a w in S3 with h2(w) = fa. Since h2 is injective
(Eemark 4.2), w is unique and we write g: A —> S3 for the mapping
which takes α to w. Since fa fa, = faa> and Λ2 is multiplicative, it
follows that g is a group homomorphism with g(A) contained in
U(S*). Furthermore, by an easy computation, fa is a 2-cocycle, which
by the injectivity of hz, forces g(a) to be an Amitsur 2-cocycle. Thus
g induces a homomorphism g*: A-+H2(S/R, U), which by Lemma 4.23
has kernel N(B).

To complete the proof we must show that g* is surjective, so let
w be an arbitrary Amitsur 2-cocycle in U(SZ). As demonstrated in
Lemma 4.13, we can without loss of generality assume h2(w)(ίdfid) = l.

Since h2(w) must be a cocycle of E2(G, U(S)), we obtain

σk)) h2(w)(σ\ σ^) „ 1
1

h(w)(σi+\ σk) h2(w)(σ\ σj)

for i, j9 k = 0, 1. When i = 0, i = 0, ft = 1 we obtain h2(w)(idf σ) =
h$d9 id) = 1. When i = 1, i = 1, k = 0 we obtain σ(h2(w)(σ, id)) =
h2(w)(idf σ) = 1. Finally, when i = i = & = 1, we obtain σ(h2(w)(σ, σ)) =
h2(w)(σ, σ). Therefore, h2(w)(σ, σ) is in U(S) Π -δΓ = U7(i2). Thus we
have h2(w)(id, σ) — h2(w)(σ, id) = h2(w)(idy id) = 1 and h2{w){σy σ) = α,
for some α in Z7(i2). But then Lemma 4.21 yields that α is in A,
hence class (w) = #*(α), completing the proof.
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COROLLARY 4.25. Let R be an integrally closed domain whose
quotient field K has characteristic different from 2, and suppose 2
is not in U(R). Let S = R(i/~d) where d is an element of R.

(1) If U{R) is a torsion group, then H2(S/R, U) is trivial.
(2) // U(R) is a finitely generated group of rank n, then

H2(S/R, U) S (Z/2Z)\

Proof. (1): In the notation of Theorem 4.24, H2(S/R, U) ~
A/N(B). Let x be an element of A of order pr, where p is a prime
and r > 0. If p is odd then N(xa~pr)I2) = x, making x trivial in
A/N(B). On the other hand, suppose p = 2. Since x is in A, x =1
(mod (p — pfR) or 1 — x = 4dy for some y in R. But, letting
£ = l + £ + ^ + . . . + a.**-1-!), W e obtain (1 - a2'""1) = (1 - α?)ί = Uyt.
Then, since α27"""1 = — 1, 2 = 4dt/£ or 1 = 2ώ^ This is a contradiction,
since we assumed 2 was not a unit. Thus A/N(B) contains no non-
trivial elements of prime order. Since A was torsion, this implies
A/N(B) = 0.

(2): Since AS U(R) we can decompose A as Tx F where Γ
is a torsion group and F is free abelian group of rank ^ n. The
proof of (1) shows that Γ S iV(£), hence H2(S/R, U) = F N(B)/N(B).
Thus H2(S/R, U) is generated by n or fewer elements. But F2 g
A2 £ NOB) implies 2H2(S/R, U) = 0, yielding the conclusion.

REMARK 4.26. If ϋJ is the ring of integers in an algebraic number
field K, which has r real embeddings and s conjugate pairs of com-
plex embeddings, then the last corollary implies

H2(S/R, U) S (Z/2Z)r+-1 .

In particular, H2(S/R, U) vanishes if R is Z or the ring of integers
in an imaginary quadratic number field.

We note that if U{R) — {±1} and K has characteristic different
from 3, 4.25(1) applies. In that case this result compares closely to
[7, Proposition 1.9].

THEOREM 4.27. // S is the ring of integers in Qiλ/ΊΓ), then
H2(S/Z, U) is trivial (cf. [14] Theorems 3.0 and 3.2, [7] Remark

Suppose in addition the class number of S is odd. Then if
dΞ£l (mod 8), Br (S/Z) = 0. Ifd^l (mod 8), Br (S/Z) has at most
2 elements.

Proof. The second assertion follows from the first, Theorem 3.15
and [5, Theorem 7.6].

If d ^ l ( m o d 4 ) , by Lemma 3.1 S = R(Vd) and H2(S/Z, U)
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vanishes by Corollary 4.25. If (ί Ξ 1 (mod 4), then by Lemma 3.1,
S = R[p] where p = (1 + τ/"<Γ)/2. By Theorem 4.24, H2(S/R, U) s
A/N(B), and A £ {±1}. However, for - 1 to be in L̂, 2 = 1 - (-1)
must be in (p — p)2R = c£i2. This implies d = 2, —2 or —1, none of
which is congruent to 1 (mod 4).

REMARK 4.28. The last theorem and [5, Theorem 7.6] yields that
the sequence 0 -> Br (S/Z) -> H'iS/Z, Pic) — H3(S/Z, U) is exact where
S is the ring of integers in any quadratic extension field of Q.
However, by Theorem 3.15, H^S/Z, Pic) does not always vanish even
when the class number of S is odd. Therefore, any further attempt
along these lines to prove Br (S/Z) is trivial must show that

H\SIZ, Pic) -> H3(S/Z, U)

is injective, and the simple calculation of the groups themselves will
not suffice.
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