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STIELTJES DIFFERENTIAL-BOUNDARY OPERATORS III,
MULTIVALUED OPERATORS-LINEAR RELATIONS

ALLAN M. KRALL

This article deals with a multivalued differential-boundary
operator on a nondense domain regarding it as a linear re-
lation. The adjoint relation is derived. It is shown that
these dual relations have the same form as exhibited in
earlier papers where the operators involved were uniquely
defined on dense domains. Self-adjoint relations are con-
sidered on the Hubert space ^ 2 [ 0 , 1 ] . The connection with
self-adjoint operators defined on subspaces of -£^[0,1] is made.

L Introduction* This article is a continuation of [8] and [9].
The notation is the same. We review it briefly. X is the Banach
space ^f%[0, 1], 1 <̂  p < ©o, consisting of all ^-dimensional vectors

under the norm

ΉSfe]d t]
X* is the dual space £fl[0, 1], 1/p + Ijq = 1.

A and B are m x n matrices, m ^ 2n, satisfying rank (A: B) = m.

C and D are (2n — m) x n matrices such that ( r ff) is nonsingular.
fAB\~ι /—-A* — C*\ ~ ^~ '
\C D) * s £ * v e n ^ V R* J3*)> w ^ e r e ^ a n ( i -B a r e m χ / ^ matrices
satisfying rank (A: 5) = m, and C and 5 are (2n — m x ri) matrices.
Hence the large matrices above may be multiplied together in the
usual component-like manner.

K is a regular m x n matrix valued function of bounded varia-
tion satisfying dK(0) = 0, dK(l) = 0. i ξ is a regular r x n matrix
valued function of bounded variation satisfying dK^O) — 0, dK^ΐ) = 0.

H is a regular w x (2m — m) matrix valued function of bounded
variation satisfying dH(0) = 0, ώJΪ(l) = 0. jffx is a regular n x s
matrix valued function of bounded variation satisfying dH^O) = 0,
dffi(l) = 0. P is a continuous ^ x ^ matrix.

Now let 3f denote those elements yeX satisfying

1. For each y there is an s x 1 matrix valued constant f such
that
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y + H[Cy(O) + Dy(l)]

is absolutely continuous.

2. ly = (y + H[Cy(0) + Dy(l)] + Hrf)' + Py exists a.e. and is
in X.

3. Ayφ) + [ dK(t)y(t) + By(ΐ) =0, Γ dK,{t)y{t) = 0 .
Jo Jo

The purpose of this article is to discuss the expression Γon &
as a linear relation L, defined by its graph

L = {(y, ly): y e ̂ } c X x X .

Note that ly may be multivalued. If H± possesses a linear combi-
nation of columns which is absolutely continuous, then ly is unique
only modulo such combinations. Note also that S& may not be
dense in X. If Kx possesses linear combinations of rows which are
absolutely continuous then & is orthogonal to those combinations.

In seaching for the adjoint of L, we encounter the following
problem even if ly is uniquely defined: If £2f is dense in X, y e D,
and feX*, let [y, f] denote f(y). Then ^ * , the domain of L*, in
X* is given by

^ * = {/: [ly, f] = [y, g] for some έreZ* a n d ί / e ^ } .

If I* denotes the form of the adjoint, then l*f = g is uniquely
defined. For if l*f = h as well, then [y, g - h] = 0 for all ye&r.
If y-+yQ, then [y, g — h]—> [y0, g — h] = 0, and 0 - h = 0 in X*

However, if ^ is not dense in X, then ?*/ — g is defined only
modulo 3fL (Kelley and Namioka [7; p. 120]). If dLe^fL and
f£3fL, then

[^, /] = [v,g + d1] = [y, g] .

Hence l*f = g + d1 for all dL e £&L

% The adjoint is not unique.
This is well borne out with the adjoint actually derived in section

IV. The domain of L*, ^ * , consists of those elements z e X *
satisfying

1. for each z there is an r x 1 matrix valued constant φ such
that

z + K*[Az(0) + Bz(l)\ + Kfφ

is absolutely continuous.
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2. l+z = -{z + K*[Άz(0) + #z(l)] + 1^*0)' + P*z exists a.e. and
is in X*.

3. Cz(0) + [dH*(t)z(t) + Dz(l) = 0 , Γ dH?(t)z{t) = 0 .
Jo Jo

The relation L* is defined by its graph

L* = {{z, l+z): z 6 jgr*} c X* x X* .

When & is not dense in X because of the absolute continuity
of a linear combination of rows of K19 then l+z is multivalued since
Φ is not unique. Further when ly is multivalued because of the
absolute continuity of linear combination of columns of Hl9 then £^*
is orthogonal to those combinations and is not dense in X*.

Although multivaluedness and nondensity of domains cause pro-
blems when the setting is a standard Banach space such as X, the
setting of linear relation in X x X handles these problems quite
nicely.

Further examples illustrating this phenomenon have been pre-
sented recently by Coddington [5], [6],

IL Linear relation* (See Arens [1] or Brown [12].) A linear
relation T on X is a set valued mapping with domain and range in
X whose graph G(T) is a linear subspace of X x X.

If y is in the domain of T, D(T), and Ty denotes the image of
y under T, then the graph of T in X x X is given by

G(T)={(y, Ty) yeD(T)}.

(It is clear that a linear operator can be identified with its graph,
so that it also can be thought of as a linear relation.) It is easy to
see that T(0) is a subspace of the range of T, R(T); that x,ye
T(γ) if and only if x = y mod Γ(0); that if yτe T(y), then T(y) =
yτ + T(0); and that

G{T) = {(y, yτ + T(0)):yeD(T), yτe T(y)} .

The null space of Γ, N(T), is given by N(T) = {y: {y} O)eG(T)}
and is a subspace of X.

T is closed if G{T) is closed. The closure of T is dermined by
G(T). T is normally solvable if it is both closed and has closed
range. Closure of T implies the closure of both N(T) and T(0).

The purpose of introducing linear relations is to be able to
define an adjoint for T. Let [y, z] — z{y) for yeX, zeX*. This
can be extended to X x X and X* x X* by setting
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when (yuy2)eXx X and (zlfz2)eX* x X*. Then T* is identified
with its graph

G(T*) = {fe, z2): (zx, z2) G X* x X\ [y2, sj - [yl9 z2] = 0

for all (yuy2)eG(T)}.

This, of course, agrees with the standard definition when T is an
operator with dense domain. Γ* has a number of properties similar
to adjoint operators. We refer the reader to [1] or [12] for further
details. We shall use these properties implicitly throughout the
remainder of the article.

l* The adjoint of L. Recall that the expression l+z is given
by

l+z = ~(z + K*[Άz(0) + Bz{l)] + Ktφ)f + P*z .

We introduce in addition the expression l++z, given by

l++z - ~(z + K^φ, + K*φ)' + P*z ,

where φ and φx are appropriate vector valued constants suitably
chosen so the expression within the parentheses is absolutely
continuous.

THEOREM 3.1. (A Green's formula.) Let y,lyeX and let
z,l++zeX*. Then

Γ [z*(ly) ~ (l++z)*y]dt
Jo

- [Άz(0) + Bz(l)]^Ay(0) + By(l)

s(0) + Dz(ΐ) + ^dH*zJ[Cy(0) + Dy{l)\

ft - (Is(0) + &(!))]*[j]

Proof. Note that since H, Hu K, Kx are regular, then so are y
and z. Thus according to [10; Corollary 2.1] the usual integration
by parts formula
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holds. If to the terms z and y on the left the terms K*φγ + KtΦ
and H[Cy(0) + Dy(l)] + H^ are added and elsewhere subtracted,
several integration by parts results in

Γ [z*(ly) - (l++z)*y]dt
Jo

- z*y \l + φΐ Γ dKy + 0* Γ dKλy
Jo Jo

+ [ z*dH[(y(0) + Dy(ΐ)] + Γ z*dH1ψ .
Jo Jo

By using the formulas resulting from multiplying (QT)) a n ( i
its inverse, the term z*y\\ can be written in terms of end point
boundary conditions in z and y. An appropriate regrouping of
terms completes the proof.

We are now in a position to characterize the adjoint linear
relation L*.

THEOREM 3.2. The domain of the adjoint relation L* is £&*.
Further

Li — \{Z, 0 Z). Z fc ΪZ> ) .

Proof. If ze&, then Green's formula shows that (̂ , i+2) e L*.
Hence

{(z,l+z):ze&r*}c:L* .

To show the reverse inclusion, let ye £& fϊ Co(O, 1), so that

0 = ΓdJKy = -[ K(t)y'(t)dt ,
Jo Jo

0 = ί1 dKty = - Γ Kx{t)y'{t)dt.
Jo Jo

Thus (2/, i/' + Pi/) e L. If 0, J*s) G dom L*, then

[», ̂ *̂ ] - W + Py,z]=o,

or

Γ [(l*z)*y - z*{yf + P?/)]ώί - 0 .
Jo

If the terms involving y are integrated by parts, this is equivalent
to

SI \z+\Ό
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Since y vanishes at 0 and 1, y' is orthogonal constants. From
comments above y' is orthogonal to K(t)*. Thus for appropriate
C, φ, φlf

(l+z) - P*z]dξ = C- K(t)*φ1 -
Jo

Hence

z + K*φ, + K*φ = - [' [(l*z) - P*z]dξ + C
Jo

is absolutely continuous, and

l*z = ~{z + K*ψί + K?φ)' + P*2; = l++z .

Greenes formula now shows for arbitrary y e D

0 = ΪCz(0) + Dz(l) + [dH*zJ[Cy(0)

+ [^ - (Az(0)Cy(0) + Dy(l) varies over C2n~m, for it not, a linear combination of
its rows would vanish, putting an extra constraint on &. Likewise
it is clear from the definition of & that ψ varies over Cs. Finally
if a linear combination of rows of K were constant, so then would

S I

dKy be 0. Its
0

coefficient from φί — (Az(0) + Bz(ΐ)) would be arbitrary. But then
the corresponding product within (z + K*[Άz(0) + Bz(ΐ)] + K^)' would
vanish. So effectively

Cz(0) + Dz(l) + Γ dHfz = 0 , [ dHfz - 0 ,
Jo Jo

and

φ, = Azφ) + 8z(ΐ) .

Hence domL* = ^ , * Z*2; = i"1"̂ , and

This result is identical in form with that derived in [9]. Here,
however, because of greatly relaxed assumptions concerning H, Hlf

K, K^ linear relations prove to be a very convenient setting.

IV* Self-adjoint differential-boundary relations* In this sec-
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tion we restrict our attention to the Hubert space X = ^fn

2[0, 1] and
characterize those linear relations which are self-adjoint. For con-
venience we replace L and L* by M and M*, given by

M = {(y, [l/i][y + H[Cy(0)

and

M* = {(z, [l/i][z + K*[Άz(0) + Bz(l)] + K*z\

where P = iQ.
We say that the linear relation M is self-ad joint if M=M*.

Hence we find

THEOREM 4.1. The linear relation M is self-adjoint if and
only if

1. Q = Q*.
2. m = n, r = s.
3. iΓ= [J3D*- AC*]iί*.
4. AA* = #B*.
5. ii[CC* - DD*] - 0 a.e.
6. Kx = £?i£Γ*, where E1 is a nonsingular r x r matrix.

Proof. It is clear that if all these conditions are satisfied, then

Conversely if M — M*, then

[l/i][» + H[Cy(0) + Dy(l)] + m + Qy

= [l/i][y + K*[Ay(0) + By(l)\ + K?φ\ + Q*y .

If y e ^ vanishes near 0 and 1, is absolutely continuous (so ψ and
^ may be chosen 0), but is otherwise free to vary, then Q*y = Qy
and Q = Q*. From inspection m = n and r = s. Otherwise either
^ r o r ^r* would have more boundary constraints than the other.
Further

Ayφ) + By(l) + Γ dJEy - 0 , Γ dίΓ^ = 0
Jo Jo

A/(0) + -02/(1) + Γ dHfy = 0, [ dH?y = 0
Jo Jo

and

must represent the same boundary conditions. This can only happen
if A = EC, B = ED, K = EH*, for some nonsingular matrix E and
Kx = J&ijBi* for some notsingular matrix Eλ. The equations which
result from multiplying ( r n ) and
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A By1 _ I-A -C
C D) " [-B -D

show that E = [BD* - AC*], as well as AA* = BB* and
H[CC* - DD*] =0.

V* Self-adjoint operators on subspaces of Jzfn

2[0, 1]* Let the
columns of Ht be suitably arranged such that the first st of them
form a maximal independent absolutely continuous collection. Then
ίZi can be partitioned into fli. = (Hc: H8), where Hc denotes the
absolutely continuous columns, and Hs denotes those singular with
respect to Lebesgue measure. In X let Sίfx denote the subspace
spanned by the columns of ΈL'C.

Likewise, let the rows of Kx be suitably arranged so that the
first 7Ί form a maximal independent absolutely continuous collection.

( K \jjjf where Kc denotes the

absolutely continuous rows, and K8 denotes those singular with
respect to Lebesgue measure. In X* let J%~f denote the subspace
spanned by the columns of K?'.

Now I can be rewritten as follows: Let l8 be defined by

l8y = (y + H[Cy(0) + Dy(l)] + H.φ.)' + Py .

Then

ly = hy + Hϊψc

where ψ = (y\ The boundary conditions determining 3f can also

be more accurately written as

Ay(0) + By(l) + Γ dKy = 0 , Γ dK8y = 0 , [ K'cydt = 0 .
Jo Jo Jo

Similarly l+ can be written by first defining lι

s by

Itz = -(z + K*[Άz(0) + Sz(l)] + K8*φ8y + P*z .

Then

l+z = Itz + Kt'Φc ,

where Φ = (te\ The boundary conditions determining «£̂ * can be
\ψaj

written as

Cz(0) + Dz(ΐ) + Γ dH*z = 0 , Γ dHtz = 0 , Γ Hί'zdt = 0 .
Jo Jo Jo

We now face a rather odd situation. £%r is orthogonal to
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while I is defined on D modulo Sίfχm That is, for the subspace
is uniquely defined only when set in i^* 1 /*^?.

Likewise ^ * is orthogonal to Sίf^ while l+ is defined on ^ *
modulo J ^ * . That is, for the subspace ^fί1, l+ is uniquely defined
only when set in ^ 7 ^ 7 * .

This can be considerably simplified when X = ^fn

2[0, 1], βέ% =
J?£l*, and the linear relation M is self-ad joint. The spaces above
are all reduced to 3(fϊ or its isomorphic copy =S^2[0, l]/<%t. We
assume without loss of generality that the columns of H'e are
mutually orthonormal.

The restriction of M, denoted by M19 which defines an operator
from 3ί?ϊ to Si?? is uniquely defined by

MlV = (l/i)lsy + (l/i)H:ψc ,

where, with < > denoting the inner product in =Sf̂ 2[0, 1],

Hence

MίV = (l/i)lsy - (lli)HW.y, Hf

c} .

The relationships between M and Mx can be best illustrated by
the following diagram:

Operator: M1 Linear Space Homomorphism Mλ

Space: <%? ' l ^ ϋ e t ^ ' j^[0, l]/^t

Linear Space Isomorphism M Linear Relation M* (-M)

Linear Space Isomorphism M* ( = i»ί1

Linear Space Homomorphism M* ( —

Isometry £%f£

It is readily apparent from the diagram that:

THEOREM 6.1. Mx is a self-adjoint operator on the subspace
if and only if M is a self-adjoint linear on Jίfn

2[0, 1],

We note that the description of M1 is equivalent to that derived
by Coddington [4], [5], [6] when Coddington's n — 1 and Hs = 0, H
is absolutely continuous. There certainly exists an extension of the
present work to higher order differential-boundary relations which
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will duplicate Coddington's results in full generality, although at
the present time such work has not been done.
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