FINDING A MAXIMAL SUBALGEBRA ON WHICH THE TWO ARENS PRODUCTS AGREE

JULIEN O. HENNEFELD

Arens has given two ways of defining a Banach algebra product on the second dual of a Banach algebra \mathscr{N} . In this paper we give a construction for finding a maximal subalgebra on which the two Arens products agree. Moreover, we give an example which shows that there is not necessarily a unique maximal subalgebra on which the two Arens products agree. This example is a Banach algebra whose second dual has a *nonunique* element I which is simultaneously a right identity under the first Arens product and a left identity under the second Arens product.

1. Preliminaries. The two Arens products are defined according to the following rules. Let \mathscr{A} be a Banach algebra. Let $A, B \in \mathscr{A}$, $f \in \mathscr{A}^*$, $F, G \in \mathscr{A}^{**}$.

DEFINITION 1.1. $(f_{*_1}A)B = f(AB)$ This defines $f_{*_1}A$ as an element of \mathscr{M}^* . $(G_{*_1}f)A = G(f_{*_1}A)$ This defines $G_{*_1}f$ as an element of \mathscr{M}^* . $(F_{*_1}G)f = F(G_{*_1}f)$ This defines $F_{*_1}G$ as an element of \mathscr{M}^{**} . We will call $F_{*_1}G$ the first or the m_1 product.

DEFINITION 1.2. $(f*_2A)B = f(BA)$; $(F*_2f)A = F(f*_2A)$; $(F*_2G)f = G(F*_2f)$. We will call $F*_2G$ the second or the m_2 product.

PROPOSITION 1.3. If \mathscr{A} has an approximate identity, then \mathscr{A}^{**} has an element I which is simultaneously a right m_1 identity and a left m_2 identity. Call such an element I a simultaneous identity.

Proof. \mathscr{A}^{**} has a right m_1 identity by [2, p. 146] the proof that it also has a left m_2 identity is similar.

EXAMPLE 1.4. A simultaneous right m_1 and left m_2 identity, unlike a two-sided identity, is not necessarily unique.

Let $X = c_0 \bigoplus_{sup} \checkmark^1$. Let $\{x_i, x_2, x_3, x_4, \cdots\}$ be the basis $\{d_i, e_i, d_2, e_2, \cdots\}$ where $\{d_i\}$ and $\{e_i\}$ are the canonical bases for c_0 and \checkmark^1 respectively. Let \mathscr{D} be the norm closure of operators in $\mathscr{B}(X)$ which have a finite matrix with respect to $\{x_i\}$. For each $f \in \mathscr{D}^*$ we can associate a matrix (f_{ij}) by defining $f_{ij} = f(E_{ij})$ when

 E_{ij} is the matrix in \mathscr{D} with a 1 in the ij^{th} place and 0's elsewhere. \mathscr{D} has an approximate indentity, namely the operators E_n with 1's down the first n entries on the diagonal and 0's elsewhere.

Let T_n be the matrix with 1's in the j + 1, j^{th} slots for $j = 1, 3, 5, \dots, 2n - 1$ and 0's elsewhere. Clearly ||T|| = n and so by the Hahn Banach theorem there exists an $f_n \in \mathscr{D}^*$ of norm one with $f_n(T_n) = n$. Since f_n has norm one, each of its entries must have modulus ≤ 1 . This can be seen directly or from [7, Prop. 2.6]. Hence the matrix for f_n must have j + 1, j^{th} entries = 1 for $j = 1, 3, \dots, 2n - 1$.

By the weak star compactness of the unit ball of \mathscr{D}^* there exists an f which is a weak star cluster point of the f_n . Note that the j + 1, j^{th} entries of f must all be 1, because if $f_{m+1,m} \neq 1$ for some m, then the weak star neighborhood of f given by $\mathscr{N}(f; E_{m+1,m}; \varepsilon)$ would not contain infinitely many f_n for ε small. It is clear that f is not in the subspace of \mathscr{D}^* spanned by those functionals whose matrices have either a finite number of rows or columns. Hence, there exists and $H \in \mathscr{D}^{**}$ such that H(f) = 1 and H(g) = 0 if the matrix for g has a finite number of rows or a finite number of columns.

Note that $I_{*_1}H = 0$ because for arbitrary $g \in \mathscr{D}^*$, $(I_{*_1}H)g = \lim_n (E_n *_1 H)g$ by the left weak star continuity of m_1 . See [1]. This equals $\lim_n E_n(H*_1g) = \lim_n (H*_1g)E_n = \lim_n H(g*_1E_n)$. But it is easily seen that for each n, the matrix for the functional $g*_1E_n$ has the same first n rows as that of g and zeroes elsewhere. This can be computed directly. Hence $H(g*_1E_n) = 0$ and so $I*_1H = 0$. Similarly it can be seen that $(H*_2I)g = \lim_n (H*_2E_n)g = \lim_n E_n(H*_2g) = \lim_n (H*_2g)E_n = \lim_n H(g*_2E_n)$ and that the functional $g*_2E_n$ has as its matrix the first n columns of g and zeroes elsewhere. Thus $H*_2I = 0$.

From the fact that $I_{*_1}H = 0$ it follows that $G_{*_1}H = 0$ for all $G \in \mathscr{D}^{**}$ since $G_{*_1}H = (G_{*_1}I)_{*_1}H = G_{*_1}(I_{*_1}H)$. Similarly, $H_{*_2}I = 0$ implies $H_{*_2}G = 0$ for all $G \in \mathscr{D}^{**}$. It is easy to see that H + I is a simultaneous right m_1 and left m_2 identity.

2. The main result. Let \mathscr{A} be a Banach algebra and suppose the two Arens products agree on \mathscr{B} where $\mathscr{A} \subset \mathscr{B} \subset \mathscr{A}^{**}$. Then by Zorn's lemma, it follows that there exists an algebra \mathscr{M} with $\mathscr{B} \subset \mathscr{M} \subset \mathscr{A}^{**}$ such that the two Arens products agree on \mathscr{M} and \mathscr{M} is maximal with respect to this property.

EXAMPLE 2.1. Let \mathscr{D} be the same Banach algebra as in Example 1.4. Then there is not a unique maximal subalgebra of \mathscr{D}^{**} on which the Arens products agree. Note that the Arens products agree on the algebra generated by $[\mathscr{D}, I]$. Also they agree on the

algebra generated by $[\mathscr{D}, H]$, since they agree if one factor is in \mathscr{D} , and also $H_{*_1}H = H_{*_2}H = 0$. However the Arens products cannot agree on any algebra containing I and H, since $I_{*_1}(I + H) = I$ but $I_{*_2}(I + H) = I + H$.

DEFINITION 2.2. Let \mathscr{A} be a Banach algebra and E_{α} an approximate identity with weak star limit I in \mathscr{A}^{**} . Then E_{α} is called *projecting* if for each $F \in \mathscr{A}^{**}$, $E_{\alpha}*_{1}F*_{1}E_{\beta}$ is in \mathscr{A} for E_{α} and E_{β} sufficiently far out.

THEOREM 2.3. Let E_{α} be a projecting weak identity for \mathscr{A} and let $I_{*_1}(F_{*_2}I) = F_{*_2}I$ for all $F \in \mathscr{A}^{**}$. Then

(1) $m_1 = m_2$ on \mathcal{N} where $\mathcal{N} = \{F*_2I: F \in \mathcal{A}^{**}\}$

(2) \mathcal{N} is an algebra which is maximal with respect to the property that $m_1 = m_2$.

Proof. One of the difficulties is the fact that mixed Arens products like $(F_{*_1}G)_{*_2}H$ are not necessarily associative. In this proof all limits will be in the weak star topology on \mathscr{H}^{**} . We will make frequent use of the fact that the two Arens products agree if one of the factors is in \mathscr{H} . Also we will make very careful use of the *left* weak star continuity of m_1 and the *right* weak star continuity of m_2 . Furthermore note that by the hypothesis on I, it follows that $I_{*_1}V = V$ for any $V \in \mathscr{N}$.

Given $S = F_{*_2}I$ and $T = G_{*_2}I$ we must show that $S_{*_2}T = S_{*_1}T$. Note that $S_{*_2}T = I_{*_1}(S_{*_2}T)$ since $S_{*_2}T$ is in \mathcal{N} and equals

$$(\lim_{\alpha} E_{\alpha}) *_{1}(S *_{2}T) = \lim_{\alpha} \left[E_{\alpha} *_{1}(S *_{2}T) \right] .$$

Note also that

$$S_{*_1}T = (I_{*_1}S)_{*_1}T = \lim (E_a *_1S)_{*_1}T = \lim [E_a *_1(S *_1T)].$$

Hence it is sufficient to show that $E_{\beta}*_1(S*_2T) = E_{\beta}*_1(S*_1T)$ for all E_{β} far enough out.

But since $E_{\beta} \in \mathscr{A}$, $E_{\beta}*_1(S*_2T) = E_{\beta}*_2(S*_2T)$ $= (E_{\beta}*_2S)*_2T = (E_{\beta}*_2S)*_2(I*_1T)$ $= (E_{\beta}*_2S)*_2\lim_{\alpha} (E_{\alpha}*_2T)$ by the left weak star continuity of m_1 $= \lim_{\alpha} [(E_{\beta}*_2S)*_2(E_{\alpha}*_2T)]$ by the right weak star continuity of m_2 $= \lim_{\alpha} [((E_{\beta}*_2S)*_2E_{\alpha})*_2T]$ $= \lim_{\alpha} [((E_{\beta}*_2S)*_2E_{\alpha})*_1T]$ since $E_{\beta}*S*E_{\alpha}$ is in \mathscr{A} for E_{β} and E_{α}

 $= \lim_{\alpha} \left[\left((E_{\beta} *_{2} S) *_{2} E_{\alpha} \right) *_{1} T \right] \text{ since } E_{\beta} * S * E_{\alpha} \text{ is in } \mathcal{A} \text{ for } E_{\beta} \text{ and } E_{\alpha} \text{ far enough out} \right]$

 $= \lim_{\alpha} [(E_{\beta} *_{2}S) *_{2}E_{\alpha}] *_{1}T = [(E_{\beta} *_{2}S) *_{2}I] *_{1}T \text{ by weak star continuity}$ $= (E_{\beta} *_{2}(S *_{2}I)) *_{1}T = (E_{\beta} *_{2}S) *_{1}T \text{ since } S \in \mathscr{N}$ $= (E_{\beta} *_{1}S) *_{1}T = E_{\beta} *_{1}(S *_{1}T)$

and this concludes the proof of part (1).

For part (2) \mathscr{N} is an algebra because $(F_{*_2}I)_{*_2}(G_{*_2}I) = (F_{*_2}G)_{*_2}I$ by the associativity of m_2 , and is thus in \mathscr{N} . Next suppose that $F \notin \mathscr{N}$. Then $F_{*_2}I \neq F$ and yet $F_{*_1}I = F$ and so \mathscr{N} is maximal.

3. Applications. For an infinite, Abelian group it is well known [3] that the Arens products never agree on all of $L(G)^{**}$.

COROLLARY 3.1. If G is a compact Abelian group, then L(G) satisfies the hypotheses of the above theorem.

Proof. Let E_{α} be an approximate identity for L(G) with weak star limit I. By [3, Thm. 2.4] L(G) is a two-sided ideal in $L(G)^{**}$. So in particular E_{α} will be projecting. It is easily observed that if a Banach algebra \mathscr{A} is commutative, then $F_{*2}A = A_{*2}F$ for all $A \in \mathscr{A}$ and $F \in \mathscr{A}^{**}$. Then

$$egin{aligned} I_{*_1}(F_{*_2}I) &= \lim_lpha \lim_eta & [E_lpha *_2(F *_2 E_eta)] \ &= \lim_lpha & \lim_eta & [(E_lpha *_2 F) *_2 E_eta] &= \lim_lpha & \lim_eta & [(F *_2 E_lpha) *_2 E_eta] \ &= \lim_lpha & \lim_eta & [F *_2(E_lpha *_2 E_eta)] &= \lim_lpha & [F *_2(E_lpha *_2 E_eta)] \ &= \lim_lpha & [F *_2 E_lpha] &= F *_2 I \ . \end{aligned}$$

DEFINITION. A shrinking basis $\{e_i\}$ for a Banach space is called boundedly growing if there exists an $\varepsilon > 0$ and a positive integer *n* such that $||x_1 + \cdots + x_n|| < n - \varepsilon$ whenever the x_i 's have norm 1 and are distinct block basic vectors.

COROLLARY 3.2. If X has an unconditionally monotone, boundedly growing bases $\{e_i\}$ then \mathscr{C} the algebra of compact linear operators satisfies the hypotheses of the theorem, and \mathscr{N} will consist of those $F \in \mathscr{C}^{**}$ for which each of the "rows" of F are elements of X^* (as opposed to X^{**}).

Proof. The operators E_n , with ones down the first n slots of the diagonal and zeroes elsewhere, form an approximate identity for \mathscr{C} . For any $F \in \mathscr{C}^{**}$ and integers n, m we claim that $E_n *_1 F *_1 E_m$ is in \mathscr{C} . To see this first note that for $f \in \mathscr{C}^{*}$ $(E_n *_1 F *_1 E_m)f =$ $E_n[(F *_1 E_m) *_1 f] = [(F *_1 E_m) *_1 f] E_n = (F *_1 E_m)(f *_1 E_n) = F[E_m *_1(f *_1 E_n)]$. But $E_m *_1(f *_1 E_n)$ which is an element of \mathscr{C}^{*} has as its matrix, the matrix obtained from f by replacing by zeroes all rows after the n^{th} row and all columns after the m^{th} column. This can be observed directly. Thus $(E_n * F * E_m)f = \check{C}(f)$ where C is the compact operator with matrix (C_{ij}) where $C_{ij} = F(g_{ij})$ and g_{ij} has matrix with a one in the ij^{th} place and zeroes elsewhere. Hence $E_n * F * E_m = C$. From the proof of [7, Prop. 3.3 and Cor. 4.2] it follows that if X has an unconditionally monotone, boundedly growing basis then the matrices with a finite number of rows are dense in \mathscr{C}^* . See the correction at the end of this paper for details. Thus $I_{*1}F = F$ for any $F \in \mathscr{C}^{**}$ since $(I_{*1}F)f = \lim (E_n *_1 F)f = \lim F(f *_1 E_n)$ and the matrix for $f *_1 E_n$ can be obtained from that of f by replacing with zeroes all rows after then n^{th} .

To identify \mathcal{N} , first note that each $F \in \mathscr{C}^{**}$ can be regarded as having "rows" which are elements of X^{***} and "columns" which are elements of X^{**} . The n^{th} "row" of F is the restriction of F to the elements of \mathscr{C}^{*} whose matrices have zeros outside the n^{th} row; "columns" are similarly defined. (Of course, a "row" of F in this sense does not have a sequence of numbers associated with it.)

Then note that $(F_{*_2}I)f = \lim F(f_{*_2}E_n)$ and recall that $f_{*_2}E_n$ has as its matrix the first *n* columns of *f*. Recall also that the hypotheses imply that the matrices with a finite number of rows are norm dense in \mathscr{C}^* . Thus $\lim F(f_{*_2}E_n) = F(f)$ for all *f* in \mathscr{C}^* if and only if each row of *F* is in X^* , since by hypothesis the basis for *X* is shrinking.

EXAMPLE 3.3. For $X = c_0$ or $X = c_0 \oplus \ell^p$ with $1 the natural basis is boundedly growing. Moreover, <math>\mathscr{N}$ is strictly contained between $\mathscr{B}(X)$ and \mathscr{C}^{**} , because it will have some elements (with "columns" in X^{**}) which won't be in $\mathscr{B}(X)$.

Correction. In [7, Props. 3.2 and 3.3] the assumption that X is reflexive was mistakenly omitted. Of course, the main Theorem 3.2 is not affected, since there X was uniformly convex. Also, in the proof of [7, Cor. 4.2] it was stated that: If X has a boundedly growing, unconditionally monotone basis then the matrices with a finite number of rows are dense in \mathscr{C}^* . Here is a proof of that fact: Suppose the matrices with a finite number of rows are not dense in \mathscr{C}^* . We will show that this implies that the basis is not boundedly growing.

First note that there exists and $f \in \mathscr{C}^*$ such that f^N does not approach 0, where f^N is the matrix formed from f by deleting the first N rows and columns. To see this observe that for $g \in \mathscr{C}^*$, if $g^N \to 0$ then $g - g^N$ approaches g. Thus for $\lambda > 0$, $\exists K: || g - (g - g^K) || < \lambda/2$. Then since each column of g can be regarded as an element of X^* and the basis for X is shrinking, there exists an M such that the matrix consisting of the first M rows of $g - g^K$ will be within $\lambda/2$ of $g - g^K$. Therefore, since the matrices with a finite number of rows are assumed to be non dense in \mathscr{C}^* , there must exist an ffor which f^N does not approach 0. Without loss of generality [7, Prop. 2.6] we can assume that $||f^{N}|| \downarrow 1$.

Given ε and n, let $\delta > 0$. Pick $N_1: ||f^{N_1}|| < 1 + \delta$. Since the basis is shrinking, the finite operators are dense in \mathscr{C} . Thus there exists an integer $N'_1 > N_1$ and a finite operator T_1 of norm 1 such that T_1 is concentrated on the manifold $X_1 = [e_{N_1}, \dots, e_{N'_1}]$ and $f^{N_1}(T_1) > 1$. Let $N_2 = N'_1 + 1$. There exists an operator T_2 of norm 1, concentrated on the manifold $X_2 = [e_{N_2}, \dots, e_{N'_2}]$ such that $f^{N_2}(T_2) > 1$. Repeating this process n times, we can find T_1, \dots, T_n such that $f^{N_k}(T_k) > 1$, and the T_k are concentrated on disjoint basic blocks. Hence

$$n < f^{N_1}(T_1) + \cdots + f^{N_n}(T_n) = f^{N_1}(T_1 + \cdots + T_n)$$

$$\leq ||f^{N_1}|| ||T_1 + \cdots + T_n||$$

thus $n/(1 + \delta) < ||T_1 + \cdots + T_n||$ and there exists an x of norm 1, where $x = x_1 + \cdots + x_n$ and each x_i in X_i such that $n/(1 + \delta) < ||(T_1 + \cdots + T_n)x|| = ||T_1x_1 + \cdots + T_nx_n||$. However, $\delta < 0$ was arbitrary. By picking δ small enough we can assure that $||T_1x_1 + \cdots + T_nx_n||$ is as close to n as we wish. By unconditional monotonicity, each $||x_i|| \leq 1$. Thus each $||T_ix_i|| \leq 1$ and since the T_ix_i are from disjoint blocks the basis won't be boundedly growing.

References

1. R. F. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc., 2 (1951), 839-848.

F. F. Bongall, J. Duncan, Complete Normed Algebras, Springer-Verlag, N. Y., 1973.
 P. Civin, Ideals in the second conjugate of a group algebra, Math. Scand., 11 (1962), 161-174.

4. P. Civin and B. Yood, The second conjugate of a Banach algebra as an algebra, Pacific J. Math., **11** (1961), 847-870.

5. S.L. Gulick, Commutativity and ideals in the biduals of topological algebras, Pacific J. Math., 16 (1966).

6. J. Hennefeld, A note on the Arens products, Pacific J. Math., 26 (1968), 115-119.

7. _____, The Arens products and an imbedding theorem, Pacific J. Math., 29 (1969), 551-563.

Received September 10, 1974

BOSTON COLLEGE

98