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FINDING A MAXIMAL SUBALGEBRA ON WHICH
THE TWO ARENS PRODUCTS AGREE

JULIEN 0. HENNEFELD

Arens has given two ways of defining a Banach algebra
product on the second dual of a Banach algebra sf. In this
paper we give a construction for finding a maximal subalgebra
on which the two Arens products agree. Moreover, we give
an example which shows that there is not necessarily a unique
maximal subalgebra on which the two Arens products agree.
This example is a Banach algebra whose second dual has a
nonunique element I which is simultaneously a right identity
under the first Arens product and a left identity under the
second Arens product.

l Preliminaries. The two Arens products are defined according

to the following rules. Let sf be a Banach algebra. Let A, Be

/ej/*, F, GGJ/**.

DEFINITION 1.1.

(f^A)B = f(AB) This defines f*tA as an element of
{G*J)A = G(f^A) This defines G*xf as an element of
(F*iG)f = F(G*J) This defines F*,G as an element of

We will call F*XG the first or the mx product.

DEFINITION 1.2. (/*2A)J5 = f(BA); (F*J)A = F(f*2A); (F*2G)f =
G(F*J).
We will call F*2G the second or the m2 product.

PROPOSITION 1.3. If Jzf has an approximate identity, then
** has an element I which is simultaneously a right mt identity

and a left m2 identity. Call such an element I a simultaneous
identity.

Proof, j ^ * * has a right mL identity by [2, p. 146] the proof
that it also has a left m2 identity is similar.

EXAMPLE 1.4. A simultaneous right mγ and left m2 identity,
unlike a two-sided identity, is not necessarily unique.

Let X = cQ φ8up /λ. Let {xu x2, x3, xi9 •} be the basis
{dί9 el9 d2, e2, } where {c£J and {ej are the canonical bases for c0

and s1 respectively. Let £& be the norm closure of operators in
&{X) which have a finite matrix with respect to {xt). For each
fe &* we can associate a matrix (ftj) by defining fti = f(Etj) when
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Eij is the matrix in 3F with a 1 in the ijth place and O's elsewhere.
ΞF has an approximate indentity, namely the operators En with Fs
down the first n entries on the diagonal and O's elsewhere.

Let Tn be the matrix with Γs in the j + 1, j t h slots for j =
1, 3, 5, , 2n — 1 and O's elsewhere. Clearly \\T\\ = n and so by
the Hahn Banach theorem there exists an fn e ^ * of norm one with
/»(T») = n. Since fn has norm one, each of its entries must have
modulus ^ 1. This can be seen directly or from [7, Prop. 2.6].
Hence the matrix for fn must have j + 1, j t h entries = 1 for j —
1.3, . . . , 2 w - 1.

By the weak star compactness of the unit ball of £^* there
exists an / which is a weak star cluster point of the fn. Note that
the j + 1, j t h entries of / must all be 1, because if fm+1,m Φ 1 for
some m, then the weak star neighborhood of / given by ^Γ{f\ Em+1,m] e)
would not contain infinitely many fn for e small. It is clear that /
is not in the subspace of i^* spanned by those functionals whose
matrices have either a finite number of rows or columns. Hence,
there exists and He &** such that H(f) = 1 and H{g) = 0 if the
matrix for g has a finite number of rows or a finite number of
columns.

Note that I^ i ϊ = 0 because for arbitrary ge&*, {I^^g—
limniE^^g by the left weak star continuity of m^ See [1]. This
equals lim% EniH*^) = \iτan {H*xg)En — limΛ Hig*^^). But it is easily
seen that for each n, the matrix for the functional g*tEn has the
same first n rows as that of g and zeroes elsewhere. This can be
computed directly. Hence H{g*xEn) = 0 and so I^H = 0. Similarly it
can be seen that (H*2I)g = lim (H*2En)g = lim En(H*2g) — lim (H*2g)En =
lim H(g*2En) and that the functional g*JEn has as its matrix the first
n columns of g and zeroes elsewhere. Thus H*J = 0.

From the fact that I^H = 0 it follows that G^.H = 0 for all
Ge &** since G*JI = (G^I)^H = G^(I^H). Similarly, H*J = 0
implies i2*2(τ = 0 for all Ge i^**. It is easy to see that H + I is
a simultaneous right m1 and left m2 identity.

2* The main result* Let Jzf be a Banach algebra and suppose
the two Arens products agree on & where s/' cέ%cuzf**. Then
by Zorn's lemma, it follows that there exists an algebra ^ with
& c ^ c j ^ * * such that the two Arens products agree on ^£ and
Λ€ is maximal with respect to this property.

EXAMPLE 2.1. Let 3r be the same Banach algebra as in Example
1.4. Then there is not a unique maximal subalgebra of ^ * * on
which the Arens products agree. Note that the Arens products
agree on the algebra generated by [£^, I] . Also they agree on the
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algebra generated by \3f, H], since they agree if one factor is in &,
and also H*^ = H*2H = 0. However the Arens products cannot
agree on any algebra containing I and H, since I*i(I + H) — I but
I*2{I +H)=I+H.

DEFINITION 2.2. Let Sf be a Banach algebra and i?α an approxi-
mate identity with weak star limit / in j ^ * * . Then Ea is called
projecting if for each F € J / * * , Ea*iF*χEβ is in J ^ for 2?α and Eβ

suίBciently far out.

THEOREM 2.3. Let Ea be a projecting weak identity for S%f and
let I*ι(F*J) = F*2I for all Fe J^** . Then

(1) m1 = m2 on ^Γ where ^ T = {F*2I: Fe sf**}
(2) Λ" is an algebra which is maximal with respect to the

property that mx — m2.

Proof. One of the difficulties is the fact that mixed Arens pro-
ducts like {F*XG)*2H are not necessarily associative. In this proof all
limits will be in the weak star topology on j ^ * * . We will make
frequent use of the fact that the two Arens products agree if one
of the factors is in Jzf. Also we will make very careful use of the
left weak star continuity of mx and the right weak star continuity
of m2. Furthermore note that by the hypothesis on /, it follows
that I^V= V for any Ve^Vl

Given S = F*J and T = G*J we must show that S*2T = S*tT.
Note that £>*2T = I*1(S*aT) since S*2T is in ^/K and equals

QimEaMS^T) = lim [EMS^T)] .
a a

Note also that

S^T = (I^Sh.T = lim (E^Sh.T = lim [^^(S^Γ)] .

Hence it is sufficient to show that £r

i8*1(S*2Γ) = Eβ^iS^T) for all JE1^
far enough out.

But since Eβej^9 E^S^T) = Eβ*2(S*2T)
= (Eβ*JS)*tT = (J&,*,S)*,(I*iΓ)
= (jE'i8*2S)*2limα(J5α*2T) by the left weak star continuity of mx

= limα [(JEr

/5*2S)*2(j&α*2Γ)] by the right weak star continuity of m3

= lim, [((J^*2S)*2#α)*2T]
= lim, [((^*2S)*2JE

r

α)*1Γ] since Eβ*S*Ea is in J ^ for ^ and J£β

far enough out
= limα [(E^2S)^2Ea]^T = [(j&^aS)*.,/]*!^ by weak star continuity
= (EfyiS*,!))*^ = (^•1S)*1Γ since Se

and this concludes the proof of part (1).
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For part (2) <y\r is an algebra because (F*J)*2(G*2I) = (F*2G)*J
by the associativity of m2f and is thus in ^ 7 Next suppose that
Fί^K Then F*2I Φ F and yet F*J = F and so ^Γ is maximal.

3* Applications. For an infinite, Abelian group it is well
known [3] that the Arens products never agree on all of L(G)**.

COROLLARY 3.1. If G is a compact Abelian group, then L(G)
satisfies the hypotheses of the above theorem.

Proof. Let Ea be an approximate identity for L(G) with weak
star limit I. By [3, Thm. 2.4] L(G) is a two-sided ideal in L(G)**.
So in particular Ea will be projecting. It is easily observed that if
a Banach algebra Jtf is commutative, then F*2A = A*2F for all

. Then

I*!(F*2I) = lim lim [EMF^2Eβ)]
oc β

= lim lim [(Ea*2F)*2Eβ] = lim lim [(F*2Ea)*2Eβ]
oc β oc β

= lim lim [F*2{Ea*JEβ)\ = lim [F*,(Ea*J)]
a β a

= lim [F*2Ea] = F*J.
a

DEFINITION. A shrinking basis {es} for a Banach space is called
boundedly growing if there exists an ε > 0 and a positive integer
n such that || x± + -xn || < n — ε whenever the a?/s have norm 1
and are distinct block basic vectors.

COROLLARY 3.2. If X has an unconditionally monotone, bound-
edly growing bases {e5} then <& the algebra of compact linear operators
satisfies the hypotheses of the theorem, and ^V will consist of those
Fe ^ * * for which each of the "rows" of F are elements of X*
(as opposed to X**).

Proof. The operators En, with ones down the first n slots of
the diagonal and zeroes elsewhere, form an approximate identity for
^ For any Fe &*** and integers n, m we claim that £r

w*1F*1£
r

m is
in <gf. To see this first note that for fe <if* (E^F^EJf =
En[(F^Em)^f] = [(F^EmhJ]En = (F^Em)(f^En) = F[Em^{f^En)\. But
Emi*i(f*iEi) which is an element of ^ * has as its matrix, the matrix
obtained from / by replacing by zeroes all rows after the nth row
and all columns after the mth column. This can be observed directly.
Thus (En*F*Em)f = C(f) where C is the compact operator with matrix
(Ca) where Ctί = F(gtί) and gtύ has matrix with a one in the ijth place
and zeroes elsewhere. Hence En*F*Em = C.
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From the proof of [7, Prop. 3.3 and Cor. 4.2] it follows that if
X has an unconditionally monotone, boundedly growing basis then
the matrices with a finite number of rows are dense in ^ * . See
the correction at the end of this paper for details. Thus I*XF — F
for any Fe <ίf ** since (I^F)f = lim {En^F)f = lim F(f^En) and the
matrix for f*JSn can be obtained from that of / by replacing with
zeroes all rows after then nth.

To identify Λ^, first note that each Fe &*** can be regarded as
having "rows" which are elements of X*** and "columns" which are
elements of X**. The nth "row" of F is the restriction of F to the
elements of ^ * whose matrices have zeros outside the nth row;
"columns" are similarly defined. (Of course, a "row" of F in this
sense does not have a sequence of numbers associated with it.)

Then note that (F*J)f = lim F(f*2En) and recall that f*J2Λ has
as its matrix the first n columns of /. Recall also that the hypotheses
imply that the matrices with a finite number of rows are norm dense
in if*. Thus lim F{f*2En) = F(f) for all / in £f* if and only if
each row of F is in X*, since by hypothesis the basis for X is
shrinking.

EXAMPLE 3.3. For X = c0 or X = c0 0 /* with 1 < p < oo the
natural basis is boundedly growing. Moreover, ^V is strictly con-
tained between &{X) and ί̂ **, because it will have some elements
(with "columns" in X**) which won't be in &{X).

Correction. In [7, Props. 3.2 and 3.3] the assumption that X is
reflexive was mistakenly omitted. Of course, the main Theorem 3.2
is not affected, since there X was uniformly convex. Also, in the
proof of [7, Cor. 4.2] it was stated that: If X has a boundedly
growing, unconditionally monotone basis then the matrices with a
finite number of rows are dense in <&*. Here is a proof of that
fact: Suppose the matrices with a finite number of rows are not
dense in ^ * . We will show that this implies that the basis is not
boundedly growing.

First note that there exists and fe ^* such that fN does not
approach 0, where fN is the matrix formed from / by deleting the
first N rows and columns. To see this observe that for # e ^ * , if
gN -> 0 then g - gN approaches g. Thus for λ > 0, IK: \| g - (g - gκ) \\ <
λ/2. Then since each column of g can be regarded as an element of
X* and the basis for X is shrinking, there exists an M such that
the matrix consisting of the first M rows of g — gκ will be within
λ/2 of g — gκ. Therefore, since the matrices with a finite number
of rows are assumed to be non dense in ^ * , there must exist an /
for which fN does not approach 0. Without loss of generality [7,
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Prop. 2.6] we can assume that | | / * | | j 1.
Given ε and n, let δ > 0. Pick N,: \\fNί\\ < 1 + δ. Since the

basis is shrinking, the finite operators are dense in <g*. Thus there
exists an integer Ni > Nλ and a finite operator 2\ of norm 1 such
that ϊ7! is concentrated on the manifold XL = [eNl, , eNl] and
/^(Γi) > 1. Let N2 = N[ + 1. There exists an operator T2 of norm
1, concentrated on the manifold X2 = [eN2, , eN'2] such that fNz(T2) > 1.
Repeating this process n times, we can find Tu •••, Tn such that
fNk(Tk) > 1, and the Tk are concentrated on disjoint basic blocks.
Hence

thus w/(l + δ) < || ϊ\ + + Γn || and there exists an x of norm 1,
wsere x = xt + + xn and each a?< in Xt such that ^/(l + δ) <
|| (Tί + — 4- Γ»)x || = || ΓiXi + — + Γwa?» ||. However, S < 0 was
arbitrary. By picking δ small enough we can assure that
\\TiXi + ••• + Tnxn\\ is as close to n as we wish. By unconditional
monotonicity, each Hâ H ^ 1. Thus each HΓ^H ^ 1 and since the
Ttxt are from disjoint blocks the basis won't be boundedly growing.
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