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ENDOMORPHISM AND AUTOMORPHISM
STRUCTURE OF DIRECT SQUARES

OF UNIVERSAL ALGEBRAS

MATTHEW GOULD

Necessary and sufficient conditions are obtained for a
given monoid to be representable as the endomorphism monoid
of a universal algebra of the form % X %. These conditions
are utilized to prove that every group having an element of
order two is representable as the automorphism group of such
an algebra.

The direct square of a universal algebra SI is the direct product
% x 2t of 21 with itself. Subalgebra lattices of direct squares were
characterized by Iskander in [6] and later by Gratzer and Lampe [5]
in a simplified proof obviating the axiom of choice. The present
note characterizes the endomorphism monoids and automorphism groups
of direct squares. The main result (Theorem 2.2) is that the non-
trivial automorphism groups of direct squares are (up to isomorphism)
all groups containing an element of order two.

Concepts and notations of universal algebra used here and not
explicitly defined are taken from Gratzer [4], while semigroup termi-
nology comes from Clifford and Preston [2]. The endomorphism
monoid of a universal algebra 2t is denoted End (2t) and its automor-
phism group Aut(Sί). Moreover, the following notations are used
with regard to sets of the form A x A.

Given an element x of A x A its left and right components will
be denoted (unless context demands otherwise) x0 and x1 respectively.
For n a positive integer a function / mapping (A x A)n into A x A
will be called a square function if there exists a function g, termed
the square root of / (notation: / = g2), such that g maps An into A
and f(x°, , xn~% = g{x\, , xΓ1) for all x\ ., xn~ι e A x A and
i — 0, 1. For n = 0, a nullary operation / is said to be square if its
value x belongs to the diagonal, i.e., if x0 = xlm

Functions δQ, δ19 and r, all mapping Ax A into itself, are defined
by stipulating that for all x e A x A, τ sends x to the pair (xl9 xQ)
and δt sends x to (xi} x>>.

Given functions a and β mapping A x A into itself, a third
such function a * β is defined by setting x(a * β) = ((xoz)0, (#/3)i> for
all xe A x A. Note that τ = δλ * δQ. Moreover, if a and β are
endomorphisms of a direct square then so is a*β. In the terminology
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of Chang, Jόnsson, and Tarski [1] the operation * is a decomposition
function. For any universal algebra 2C defined on A the system
<End (2C x 2t); *> is in the terminology of Plonka [7] a two-dimen-
sional diagonal algebra, and is therefore isomorphic to a rectangular
band (see [7]). If τ is regarded as acting on End (21 x SX) by right
multiplication (composition), then the system (End (2t x St); *, τ> is,
in the terminology of Fajtlowicz [3], a two-dimensional die.

A further word on notation: in systems having two binary
operations of which one is denoted *, the other operation will be
assumed to take precedence in formulas, e.g., xy*xz means (xy)*(xz).

1* Endomorphism monoids of direct squares* The following
lemma characterizes direct squares in terms of endomorphisms. (A
different characterization of direct squares was given by Fajtlowicz
[3].) The lemma seems to be well known, but its origin is unclear
to the author, who first heard of it in a lecture given by Professor
A. Pultr at the Mini-conference in Universal Algebra held at the
University of Manitoba in February 1969.

LEMMA 1.1. Let A be a nonvoid set and 33 a universal algebra
defined on A x A. Then 33 is a direct square if and only if δ0 and
(?! are endomorphisms of 33.

Proof. As the converse is evident, suppose End (33) contains δ0

and δlm Note that the diagonal, which consists of those elements of
Ax A on which these two endomorphisms agree, must be a subalgebra
of 33. It follows that every nullary operation of 33 is square (since
every subalgebra must contain the values of the nullary operations), so
let / be an operation having positive rank n. For i = 0,1 define func-
tions /«: An-+ A by setting /,(α0, , an^) = f((a0, αo>, , <α»-i, α»-i»<
for all α0, •• , α B . ι e 4 . Since the diagonal is a subalgebra, f0 and fx

are the same function, g. To see that g is the sequare root of /,
let x\ , xn~ι e A x A and compute:

f(x\ , Xn~% = {f{x\ . . , 3-W< = f{x%, , X*-%)<

•• ,B?~ 1) for i - 0 , 1 ,

whereupon the lemma is proved.

LEMMA 1.2. For every universal algebra 2C, End (§1) is isomor-
phic to the centralizer of {δ0, δ j in End (2t x 2C).

Proof. Let C denote the centralizer of {δ0, δ}} in End (SI x SI).
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An embedding of End (2t) into C is given by the correspondence a —• a2

for all a e End (3X). Regarding the members of C as unary operations
and applying Lemma 1.1 to the algebra (A x A; C), we see that C
must consist of square functions, and it is clear that their square
roots are endomorphisms of SI. Thus the embedding is an isomorphism
of End (21) onto C.

The following theorem characterizes the endomorphism monoids
^of direct squares and will be instrumental in the characterization of

the automorphism groups.

THEOREM 1.3. A monoid M is isomorphic to the endomorphism
^monoid of a direct square if and only if there exist elements dQ, dt

of M and a binary operation * on M satisfying the identities

(1.3.1) dtdj = d< for i, j e {0, 1}

(1.3.2) xd0 * xd1 = x for all x e M

(1.3.3) (x * y)d0 = xd0 and (x * y)dί = ydt for all x, y eM.

Moreover, given a monoid M satisfying these conditions, there
exists a multi-unary algebra Sί and an isomorphism φ of M onto
End (SI x 2C) such that dtφ — δt for i e {0,1} and (x * y)φ — xφ * yφ
for all x, y e M.

Proof. For M = End (2t x 3t), dt = δif and * as defined above,
verification of the identities is routine.

Let (M; *, dQ, d,} be given satisfying (1.3.1)-(1.3.3). As (1.3.1)
implies Md0 = Mdl9 set A = Md0 = Mdt. Then (1.3.3) implies 4 x i =
{(md0, mdi) \meM}, and it follows from (1.3.2) that the map m—•
(md0, mdj) gives a bisection of M onto Ax A. Hence a monoid
isomorphic to M is defined on A x A by the multiplication

(mdo, md^)(ndQ, ndx) = (mnd0, mndj)

Consider now the multi-unary algebra of left multiplications of
this new monoid, that is, the algebra

33 = (Ax A;{fx\xeAxA}) ,

where fβ(y) = xy for all y e A x A. As is well known (see, e.g.,
Theorem 12.3 of [4]), End (35) is precisely the monoid of all right
multiplications of A x A, hence is isomorphic to A x A and therefore
to M. Specifically, this isomorphism φ of M onto End (35) takes
each pern to pφ — φP, where (md0, md^ψp = (mpd0, mpd^) for all
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(md0, mdj) e A x A. Routine calculation shows that dtφ = dif from
which it follows by Lemma 1.1 that 23 is a direct square. Likewise
the verification that φ preserves * is routine.

The following corollaries are easy consequences of the above
results and their proofs.

COROLLARY 1.4. Given monoids N and M, there is a universal
algebra SI with End (2t) = N and End (St x St) = M9 if and only if
M satisfies (1.3.1)-(1.3.3) and N is isomorphic to the centralizer of
{d0, dj] in M. Moreover, 21 can be taken to have unary operations
only.

COROLLARY 1.5. The class of all monoids isomorphic to endo-
morphίsm monoids of direct squares is closed under the formation
of direct products.

COROLLARY 1.6. For every direct square S3 the cardinality of
End (33) is square.

As the axiom of choice has not been used, it is of interest to
note that Corollary 1.6 holds even in a set theory in which not every
infinite cardinal is its own square.

2* Automorphism groups of direct squares* This section will
establish the characterization theorem for automorphism groups of
direct squares, and the next section will study the question for finite
algebras. The algebras constructed in the next three theorems are
rigid, i.e., their only endomorphisms are the respective identity
maps. The following easy lemma will be crucial in establishing
rigidity.

LEMMA 2.1. Let M be a monoid furnished with elements d0 and
dx and an operation * such that (1.3.1)-(1.3.3) hold. If d0 is a left
zero of M, the algebra given by Theorem l.Z is rigid.

Proof. Since d0 is a left zero, so is dλ in view of (1.3.1). By
Lemma 1.2 it suffices to observe that the centralizer in M of {d0, ώj
contains only the identity element 1. But if an element x commutes
with both d0 and dx then by (1.3.2), x = xd0 * xdx = lώ0* ldL = 1 as
desired.

The characterization theorem for automorphism groups of direct
squares can now be proved after only one more definition. Given sets
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A and B, define their symmetric deleted product A (x) B by:

A (x) B = (A x ΰ) U (B x A) - {<&, #> | a? e A U B} .

The theorem deals only with nontrivial groups because the one-
element group is the automorphism group of the direct square of any
one-element algebra, but the direct square of any larger algebra has
an automorphism of order two, namely r.

THEOREM 2.2. A nontrivial group G is isomorphic to the auto-
morphism group of a direct square if and only if G contains an
element of order two. Moreover, given a group G with a specified
element t of order two, there exist a rigid multi-unary algebra SI
and an isomorphism φ of G onto Aut (SI x SI) such that tφ — τ.

Proof. The converse being evident, let G be a group with an
element t of order two. To apply Theorem 1.3 it is necessary to
construct a monoid satisfying (for suitable choice of d0, dlf and *)
the identities (1.3.1)-(1.3.3) and having G as its group of invertibles.
The last sentence in the statement of Theorem 1.3 will make t corre-
spond to τ provided the additional identity d1^ d0 — t is satisfied. The
rigidity of the resulting algebra will follow from Lemma 2.1 if d0 is
a left zero.

To build the required monoid, first choose (using the axiom of
choice for two-element sets) a subset R of G — {1, t] consisting of
precisely one element from each set of the form {α, ta), a e G — {1, t).
The monoid will be defined on the union of the sets given by the
following claim. The map f defined in the claim will become right-
multiplication by t. To avoid unnecessary notational complications,
we shall assume at each stage of the following construction that
Mn n Mk = 0 if k < n.

Claim 2.2.0. There exist pairwise disjoint sets Mn, n < co, and
a function f mapping U (Mn \ n < ω) into itself, such that the
following conditions are satisfied.

( i ) x G Mn implies xf e Mn and xff = x.
(ii) Mo = G and xf = xt for all x e Mo.
(iii) For odd n, Mn — Mn_1 (x) \J (Mk \k <n,k even), and xf —

(xλψ9 xQψ) for all x = (x0, xx) e Mn.
(iv) For positive even n, Mn = Sn^ x R, where S ^ = {x \ x e Mn^

and x Φ xf}. For all (x, r> e Mn,

{(x,rty if rteR,
(x. r)Φ = ]

[(xf, trt) if trteR .
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The claim is proved by a routine induction. The only point
perhaps not immediately evident is the verification of (iv) and the
corresponding case of (i). Given n positive and even, the induction
hypothesis allows the definition of Mn as indicated and ensures that
xψ e JS»_I whenever (x, r> e M%9 thereby permitting the indicated
definition of (x, r)ψ as a member of Mn. Note that reR implies
rt e R or trt e R. If rte R then <#, r)ψψ = <#, rt)ψ ~ (x, r) because
rtt = re R. Finally, if trt e R then (x, r)ff = (xf9 trt)ψ = (xψψ, r>
(because ttrtt = reR), which is just (x, r> be the induction hy-
pothesis.

Set M = U CM I w < ω), set S = U (S. | n odd), and set W=
U (JlfΛ — Sw I n odd). Before defining operations on M some additional
terminology will be convenient.

The rank of an element x of M is denoted rank (x) and defined
to be the unique n such that xeMn. The expression "# is odd (even)"
will often be used as an alternate way of stating that rank (x) is
odd (even). As a notational convenience, the left and right components
of an odd element x are denoted x0 and xx respectively; also this
notation is extended to even elements x by setting χ0 = χt = x. Note
that x0 and x1 are even for all x.

Now define a binary operation * on M as follows. Let x, yeM.
If x = yf set x * y = x. If x and y are distinct, even elements, set
x*y = (x,y}. In all other cases, set x*y = a?0*2/i It is easy to
see that * is a diagonal operation (see [7]), i.e.,

# * ( # * £ ) = ( x * y ) * z — x * z

for all x,y9ze M. Note that x = #0 * #1 for all #.

Set eZ0 = <1, ί> and c^ = <fc, 1>. Both belong to W, and clearly
d^do = t as required.

The next task is the inductive definition of multiplication in M.
Let x, ye Mand suppose initially that rank(y) = 0. If a? also belongs
to G, let a?y be the product as given in G. If x is odd there are
two cases to consider, namely xeWand xe S. For xe W set xy = x,
but for xe S define

ΎΊJ — •<

'X

xψ

<%,y>

(xψ, ty)

if

if

if

if

y = l
y = t

yeR,

tyeR
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Finally, if x has positive even rank, say x = (x\ r>, set xy = x'(ry).

Now suppose that 1/ has positive rank and that xu has been
defined for all u of rank less than rank (y). If rank (y) is odd define
xy = &j/0 * a?2/i> but if y = {y\ r> has even rank, set xy = (xy')r.

Easy calculation shows that αtf = α;̂  and x\ — x for & of positive
even rank (and for all other x by definition). Moreover, an easy
induction gives lx = x for all α?.

In our present terminology the set W is simply the set of all
odd elements satisfying the equation x — xt. Obviously no element
of G satisfies this equation, but neither does any even element of
positive rank. For if x = (x\ r) satisfied the equation, it would
follow that x = (x\ rί> or x = (x't, trt). The first case would yield
the contradiction 1 = t, while the second would imply a/e W, which
is impossible because xf e S by the very definition of elements having
positive even rank. Thus W = {xe M \ x = xt}.

The proof that multiplication is associative is somewhat tedious
and will be postponed until after the verification of (1.3.1)-(1.3.3).
This verification (which will not assume associativity of multiplication)
requires three preliminary claims. The first of these immediately
implies both (1.3.1) and the fact that d0 is a left zero.

Claim 2.2.1. Every element of W is a left zero of M.

Fix xe W. For yeM0 we have xy — x by definition, so let y
have positive rank and assume xu — x whenever u has smaller rank
then y. If y is odd it follows that xy — xy0 * xyx = x * x = x, while
if y — (y\ r> is even, xy = (xy')r = xr — x.

The next claim provides a useful left distributive law, and the
claim that follows it states a "skew" right distributivity for the
element t.

Claim 2.2.2. x(y *z) — xy*xz for all x, y, ze M.

If y — z the claim is immediate from the idempotency of *, so
suppose y Φ z. Thus, if y and z are even y * z is the odd element
(y, z), whence the claim is simply the definition of x(y, z). In all
other cases x(y * z) = #0/0 * £i) = #2/o * a î (since ?/0 and ^ are even).
Because * is a diagonal operation the last expression is equal to
(xy0 * xyj * (xz0 * xzL), which is xy * xz.
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Claim 2.2.3. (x*y)t = yt*xt for all x, yeM.

As above, the claim is obvious for x — y. If x and 2/ are dis-
tinct even elements, x * y is the odd element <cc, #> and the claim is
simply the definition of ζx, y)t. The other cases follow as in Claim
2.2.2.

Now we are ready to prove (1.3.2) and (1.3.3).

Proof of (1.3.2). For all xe M, xd0 * xdx = x(d0 * dj) = xl = x.

Proof of (1.3.3). For all x, y e M, (x * y)d0 = (x * y) * (x * 2/)ί =
x*y*yt*xt — x*xt — x(l * ί) = ado. Similarly, (a? * 2/)̂  = ydλ.

In view of the remarks preceding Claim 2.2.1, the remaining
points to be proved are the associativity of multiplication and the
fact that the set of all invertible elements of M is precisely G.
Associativity is verified by an inductive process employing a series
of claims. Note that Claim 2.2.1 implies (xy)z — x{yz) whenever
xe W.

Claim 2.2.4. (xa)b = x(ab) for all xe M and a,beG.

We may assume x $ G U W and a Φ 1 Φ b.

Case 1. Suppose x is odd. If a e R then (xa)b — (x, a)b — x(ab).
If a = t = b, we have (xt)t = xψψ = x = x(tt). It follows that xt e S.
Hence if a = t and be R, we have (xt)b = <a?ί, δ> = α(ίδ). If α = t
and 6 ί JS U {t}, then tδ e R. Thus, using the associativity just proved
with xt in place of x, we have (xt)b = (xt)(ttb) — (xtt)(tb) = x(tb). In
sum, Case 1 is verified for a e R (J {£}.

The remaining possibility is that ta e R, in which case, using the
associativity proved above, we have

(xa)b = [a?(ίία)δ] = [(xt)(ta)b] = (xt)(tab) = x(ttab) = x(ab) .

Case 2. Suppose a? is even, x = (x', r>. Then in light of Case 1,

x(άb) = x\rab) = (x'(ra))b — ((x'f r)a)b — (xa)b .

Claim 2.2.5. (xy)a = x(ya) for all x,yeM and ae G.

Fix xeM and aeG— {1}. For yeG the claim reduces to the

previous, so let y have positive r a n k and assume (xu)b — x(ub) for
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all be G and all u of smaller rank then y.

Case 1. Suppose y is odd. If a = t, then

{xy)t = (xy0 * xy^t = (xyjt * (&2/0)ί = x(Vit) * a

= x(Vit * 2/oί) = a?[(l/o * Vi)t] =

Before considering the other possibilities for a, note t h a t for
y e W the above implies a?]/ e W, since (a?i/)t = x(yt) — xy. Thus yeW
implies (xy)z = xy = x(yz) for all ze M, so we now assume yeS.

lί ae R then #(i/α) = x(y, a) = (a?^)α. The remaining possibility
for α is that ta 6 i2, in which case, by the previous claim and the
associativity just proved (which remains valid with yt in place of y,
since they have the same rank), we have

x(ya) = x[y{tta)\ = x[(yt)(ta)] = [α?

ία) = (xy)(tta) =

2. Suppose # is even, /̂ = (y'y r>. Then, by the previous
claim and the induction hypothesis,

(xy)a = [(^ ')r]α = {xy')(ra) = x[y'(ra)] = x[(y'r)a] = x{ya) .

The next claim concludes the proof of associativity.

C l a i m 2 . 2 . 6 . (xy)z — x(yz) f o r a l l x , y f z e M.

Fix x,yeM. For zeG the claim reduces to the previous, so
let z have positive rank and assume (xy)u = x(yu) for all % having
smaller rank than z.

If z is odd then (xy)z = (a?2/)20 * (»2/)«i = »(3/̂ o) * »(l/«i) = χ(vzo * l/«i) =

If z — <«', r> is even, the induction hypothesis and the previous
claim imply (xy)z = [{xy)zf]r = [a?(i/«')]^ = ^[(2/^)^1 = «(l/«)f whereupon
associativity is established.

All that remains to be proved is that G is the set of invertibles
of M. One preliminary claim is required.

Claim 2.2.7. Let x be a left cancelable odd element of M and
let yeM. If y is odd then α?# is odd or i/G {d0, d j . If 2/ is even then
xy has positive even rank or y e {1, t}.

As the elements of W are left zeroes, we must have xeS.
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For yeG the claim is an immediate consequence of the definition
of xy, so let y have positive rank and assume the claim holds when-
ever the role of y is played by an element of lower rank.

Case 1. Suppose y is odd. Then xy = xy0 * xyγ. If xyt is even
for some i e {0, 1}, then xy0 * xy1 is odd unless xy = xyt. But xy — xyt

would imply y = yif a contradiction. Thus xy is odd if either xyQ

or xyι is even.

Hence we now assume that both xy0 and xyx are odd. By the
induction hypothesis it follows that y0 and y1 are distinct elements
of {1, t}, whence y e {d0, cZJ.

Case 2. Suppose y is even, y = (y', r>. First note that xy' is
not a left zero, since otherwise xy — {xyr)r = xyf would imply y = y',
a contradiction. Next, observe that xy' is odd, for the induction
hypothesis would otherwise imply yr e {d0, cZJ, making xy' a left zero.
Finally, as an odd element that is not a left zero, xy' must belong
to S, whereupon xy = (xy')r = <#?/', r>, an element of positive even
rank.

Since the elements of G are obviously invertible in My the follow-
ing claim completes the proof of the theorem.

Claim 2.2.8. No element of positive rank is invertible in M.

If M contains an odd invertible x, let y be its inverse. Clearly
y ί {1, £}, so the previous claim implies xy is either odd or a left zero
or of positive even rank, contradicting xy = 1.

Suppose x = (x't r) is an even invertible of positive rank. Then
xr~ι = ^(rr'1) = x', whence x' is invertible, a contradiction because x'
is odd. The claim and the theorem are now proved.

COROLLARY 2.3. For every universal algebra % there is a rigid
multi-unary algebra S3 such that Aut (31 x 21) ~ Aut (35 x 35).

3* Automorphism groups of finite direct squares* The con-
struction employed in the proof of Theorem 2.2 is not adequate to
characterize the automorphism groups of finite direct squares, since
the algebra resulting from that construction is infinite whenever the
group has more than two elements. An obvious first guess in that
every finite group with an element of order two is the automorphism
group of a finite direct square. The next theorem substantiates this
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guess in a special case, and the theorem that follows it shows that
every such group is embeddable in the automorphism group of a
finite direct square in such a way that a prescribed element of order
two corresponds to τ.

As infinite groups beget algebras of the same cardinality in
Theorem 2.2, the infinite case of this next theorem is of interest only
as a simpler alternative in a special case.

THEOREM 3.1. Let Gbe a group containing an element t of order
two, and suppose there is a retraction ψ of G onto {1, i). Then there
exist a rigid multi-unary algebra %, having the same cardinality
as G, and an isomorphism φ of G onto Aut (SI x 21) such that tφ — τ.

Proof. To apply Theorem 1.3 we construct a monoid M satisfying
(1.3.1)-(1.3.3) and having its group of invertibles isomorphic to G in
such a way that t corresponds to dx * d0. Moreover, the cardinality
of G will be shared by MdQ, which is the set on which the multi-
unary algebra of Theorem 1.3 is constructed. Every element of MdQ

will be a left zero, whereupon Lemma 2.1 will gurantee the rigidity
of the resulting algebra.

First define a homomorphism g—+gf of G onto the symmetric
group S2 by setting g' equal to the identity permutation of {0, 1} if
gψ = 1, and g' equal to the transposition (01) if gψ = t. Next, set
M = G x G, let © denote the usual component-wise multiplication on
M, and let ψ denote the endomorphism of (M; °> defined by applying
ψ component-wise.

To obviate the need for multiple-level subscripts, we adopt the
notation x[i] as an alternative to xi in denoting the ith. component
of an element x of M. For x, yeM define an element xy of M by
setting xy[i] equal to x[iy'λ for i = 0, 1. Finally, for each ge G let
g denote the diagonal element (g, g) and set G = [g \ g e G}. Note
that xeG implies xy = x for all y.

A new multiplication is now defined on M by setting

o y if x e G ,

Xy o (yψ) if χ£ G .

Clearly G is a submonoid of M and is isomorphic to G under the
map g—>g.

The required operation * is defined as the rectangular band
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operation (see [1]) on M, i.e., x*y = (x0, y^ for all x,yeM. The
elements d0 and dx a re respectively defined as <1, t) and (t, 1>; it is
clear t h a t t = dx * eZ0. Note t h a t for all g ε ilf, #cJ0 = (%o, &o*> a n ( i

As the identities (1.3.1)-(1.3.3) are very easily demonstrated,
their verifications are omitted. Also, the fact that Mhas no invertibles
outside of G is immediate upon the observation that whenever xe
M — G and yeM,

x if # = ϊ,
(Xyt, xot) if yψ =t ,

J <& xQt) if yψ = d0,
, «!> if yψ = d,.

Indeed it is clear that a product of two elements lies in G only if
both factors do. It is also clear from this description that _the
elements of Md0 are left zeroes, as desired. Moreover, Md0 = Gd0,
which is in one-to-one correspondence with G under the mapping
g—+gdo(ge G). Thus Md0 has the same cardinality as G, so all that
remains to be proved is the associativity of multiplication. This is
done with the aid of the following claim.

Claim. For all x, y, zeM the following hold:
( i ) (x o y)z = χz o yz;
( i i ) (xyy = x*°y*;
(iii) (xyy = a* ;
(iv) {xψ)y = xyψ.
As (i) is immediate we begin with (ii). Let u denote the ex-

pression on the left side of (ii) and v the expression on the right.
Then, for i e {0, 1},

ut = xy[iz'il = x[iZi(y[izfi\y] = #[ΐ(z © y*)g = vtf so u = v .

To prove (iii) first note that commutativity of S2 implies the
identity xyoz — xzoy; then consider two cases.

Case 1. Suppose yeG. Then y' = y, so (ii) implies (xy)z = α;Z02/ =

Case 2. Suppose ι/ίG. Observe that ψ2 ~ ψ implies the identity
wz = wz^. Taking % = ίuy and v = yz = #2^, we have by (ii):

as desired.
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To prove (iv), let u denote the expression on the left side and
v the expression on the right. Then, for i e {0, 1},

Ut = (χφ)[iy'i] = (%[iy[] = % ,

so u = v and the claim is proved.
Associativity of multiplication can now be proved. Let x,y,ze M.

If both x and y belong to G, the associativity of ° gives (xy)z = x(yz),
so three cases remain to be considered.

Case 1. Suppose xeG and y$G. Then xygG and xz = #, where-
upon

(o?|/)« = (x o # ) β o ( 2 ^ ) = ^ o 2/? o (#ψ>) = x o ( ^ ) = a?(2/«) .

Case 2. Suppose a?ί G and yeG. Then xy&G and (yf)z = yf>
whereupon

yψ)z o («^) = (&*)*

a?*β © (yz)f — x(yz) .

Case 3. Suppose neither a? nor y belongs to G. Then
and

= (xy)z o (zψ) = (xy

ίcyz ° {yz)f = α

completing the proof of the theorem.

COROLLARY 3.2. Let Gbe a finite group containing an element
t of order two, and suppose the order of G is not divisible by four.
Then there is an algebra satisfying the conclusion of Theorem 3.1.

Proof. Consider the right-regular representation, as given by
Cayley's Theorem, of G as a subgroup R{G) of the symmetric group
S(G) on the set G. Specifically, G = R(G) = {B(g) \geG}> where R{g)
denotes right-multiplication by g. It follows that for each aeG, R(t)
interchanges the elements a and at. Thus R(t) is the product of
(1/2) I GI disjoint transpositions. Since (1/2) | G | is odd, R(t) does not
belong to the alternating group A(G). Define a map of S(G) into
itself by sending A(G) to the identity permutation and S(G) — A{G)
to R(t). This map, when restricted to R(G), is the retraction that
permits the application of Theorem 3.1.

We conclude this section with a theorem showing that while a
finite analogue of Theorem 2.2 may be very difficult to prove, the
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corresponding embedding question is rather easily settled. (The infinite
analogue of the following theorem is also easily proved, but represents
no advance over Theorem 2.2.)

THEOREM 3.3. Let G be a finite group containing an element t
of order two. Then there exist a rigid multi-unary algebra 21, having
the same cardinality as G, and an embedding φ of G into Aut (2t x 21)
such that tφ — τ.

Proof. Express G as the disjoint union of sets H and K having
the property that for all g e G, g is a member of H if and only if
gt is a member of K. Then let n be the cardinality of G and regard
n as the set of all its predecessors, n = {0, 1, ••, n — 1}. Let Δ
denote the diagonal in n x n, i.e., Δ = {xenxn\xo = xλ}. Decom-
pose (n x n) — Δ into two sets U and V, defined as U = {xen x
n I x0 < Xj} and V={xenxn\xo> xt}. Then U and V have the

same number of elements, namely (n/2)(n — 1), which is n — 1 times
the cardinality of H.

Thus we can express U as the disjoint union of sets Ut, i =
0,1, , n — 2, such that each Ut has the same cardinality as H.
For each i choose a bijection ψt of H onto Ut9 then extend ψt to a
one-to-one map of G into U U V by setting kψt = (kt)ψiT for all k e K.
It follows that (n x n) — Δ is the disjoint union of the sets Gψif

i = 0,l,...,n-2.

For each g e G define a permutation φg of n x n by setting

[x if xe Δ ,

[{ag)ψi \ί x = aψt for some α e G and % = 0, , w — 2 .

It is routine to check that φt = T and that the correspondence
g—*φg defines an embedding of (?into the symmetric group on n x n.
If for each j e n a unary operation /} is defined on w by specifying
that fj takes the constant value j , then the multi-unary algebra
2t = <w; {fό I i G %}> has the required properties.

4* Endomorphism monoids of Ith direct powers* Let ί be a
nonvoid set. Any set of the form A1 is mapped into itself by func-
tions δif iel, defined analogously to the δ0 and dt of § 1. That is,
for any x e A1, xdt is that member of A1 whose jth. co-ordinate, for
every j e I, is xt. Moreover, if ai9 iel, are mappings of A1 into
itself, another such map a = p(at \iel) is defined by stipulating that
for all xe A1 and all iel, the ΐth co-ordinate of xa is the ith co-
ordinate of xat.
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All of the results of § 1, and the first result of §2, have analogues
for /th powers. These analogues are formulated and proved in such
precise analogy to their counterparts that only one will be stated
here (without proof), namely the analogue of Theorem 1.3.

THEOREM 4.1. Let I be a nonvoid set. A monoid M is ίsomorphic
to the endomorphism monoid of an Ith direct power if and only if
there exist elements (dt\ie I) of M and a mapping p: M1 —> M satis-
fying the identities

(4.1.1) didj^dt for i, j e I

(4.1.2) p(xdt | i e / ) = x for all x e M

(4.1.3) p(xt I i e I)dό = xsdj whenever j e I and (xt\ie I)eMz.

Moreover, given a monoid M satisfying these conditions, there
exist a multi-unary algebra SI and an isomorphism φ of M onto
End (SI7) such that δ,& = δt f or i e / and p(xt \ i e I)φ = p(xtφ | i e /)
whenever (xt\ίel)eM1.

The existence of these analogues suggests the problem of charac-
terizing the automorphism groups of /th powers. Given a set A of
more than one element, for each member φ of the symmetric group
Sx there is a permutation φf of A1 defined by setting φf = p(8iΨ | i e /).
The map φ—*φf is a one-to-one anti-homomorphism of Sx into the
symmetric group on A1. Clearly, if A is the carrier-set of a universal
algebra SI, then each φ\ia an automorphism of the direct power SlJ.
This suggests that a nontrivial group G is isomorphic to the auto-
morphism group of an /th direct power if and only if G contains
a copy of Sz. Although this conjecture fails when / is infinite (in
which case Aut (SI7) must contain copies of its own direct square),
perhaps it can be verified for finite / by altering the techniques of
this paper to reflect the ̂ -dimensional die (see [3]) aspect of End (SI**).
In any case it appears that no straightforward generalization of the
present methods will suffice.
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