ON M-PROJECTIVE AND M-INJECTIVE MODULES

G. AZUMAYYA, F. MBUNTUM AND K. VARADARAJAN

In this paper necessary and sufficient conditions are obtained for a direct sum $\bigoplus_{\alpha \in J} A_{\alpha}$ of *R*-modules to be *M*injective in the sense of Azumaya. Using this result it is shown that if $\{A_{\alpha}\}_{\alpha \in J}$ is a family of *R*-modules with the property that $\bigoplus_{\alpha \in K} A_{\alpha}$ is *M*-injective for every countable subset *K* of *J* then $\bigoplus_{\alpha \in J} A_{\alpha}$ is itself *M*-injective. Also we prove that arbitrary direct sums of *M*-injective modules are *M*-injective if and only if *M* is locally noetherian, in the sense that every cyclic submodule of *M* is noetherian. We also obtain some structure theorems about *Z*-projective modules in the sense of Azumaya, where *Z* denotes the ring of integers. Writing any abelian group *A* as $D \oplus H$ with *D* divisible and *H* reduced, we show that if *A* is *Z*-projective then *H* is torsion free and every pure subgroup of finite rank of *H* is a free direct summand of *H*.

Most of these results were motivated by the results of B. Sarath and K. Varadarajan regarding injectivity of direct sums.

1. *M*-projective and *M*-injective modules. Throughout this paper *R* denotes a ring with $1 \neq 0$ and all the modules considered are left unitary modules over *R*. By an ideal in *R* we mean a left ideal in *R*. *M* denotes a fixed *R*-module. We first recall the notions of *M*-projective and *M*-injective modules originally introduced by one of the authors [1].

DEFINITION 1.1. An R-module H is called M-projective, if given a diagram

$$\begin{array}{c} H \\ \downarrow f \\ M \xrightarrow{\varphi} N \longrightarrow 0 \end{array}$$

of maps of *R*-modules with the horizontal sequence extact, \exists a map $h: H \rightarrow M$ such that $\varphi \circ h = f$.

The notion of an *M*-injective module is defined dually.

REMARK 1.2. Regarding R as a left module over itself in the usual way it turns out that R-injective modules are the same as the injective modules over R. However R-projective modules are not the same as projective modules over R.

LEMMA 1.3. Every divisible abelian group D is Z-projective.

Proof. Trivial consequence of the fact Hom $(D, Z) = 0 = \text{Hom}(D, Z_k)$ whenever D is divisible.

REMARK 1.4. We know that projective modules over Z are free. Hence no divisible abelian group $D \neq 0$ is projective over Z.

LEMMA 1.5. Suppose H is a torsion free abelian group with the property that every pure subgroup of rank 1 of H is a free direct summand of H. Then every pure subgroup of finite rank of H is also a free direct summand of H.

Proof. By induction on the rank of the subgroup. Let S be a pure subgroup of H of rank k with k>1. We can pick a pure subgroup B of S of rank 1. Then B is also pure in H and hence by assumption B is free abelian and $H = C \bigoplus B$ for some C. Since $S \supset B$ we get $S = (S \cap C) \bigoplus B$. Now $S \cap C$ is of rank (k-1) and pure in S and hence pure in H. By the inductive hypothesis $S \cap C$ is free abelian and $H = (S \cap C) \bigoplus L$ for some L. From $C \supset S \cap C$ we now $C = (S \cap C) \bigoplus (L \cap C)$. Thus $S = (S \cap C) \bigoplus B$ is free abelian and

 $H = C \bigoplus B = (S \cap C) \bigoplus (L \cap C) \bigoplus B$ $= (S \cap C) \bigoplus B \bigoplus (L \cap C) = S \bigoplus (L \cap C) .$

DEFINITION 1.6. We say that a torsion free abelian group H has property (P) if every pure subgroup of finite rank of H is free and a direct summand of H.

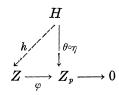
Given any abelian group A we can write A as $D \oplus H$ where D is the maximal divisible subgroup of A and H is reduced. Also $H \cong A/D$ is well-determined up to an isomorphism. We will refer to any group isomorphic to H as the reduced part of A.

THEOREM 1.7. Suppose H is reduced abelian group which is Zprojective. Then H is torsion-free with property (P).

Proof. It is well-known that a reduced abelian group which is not torsion-free admits of a nonzero finite cyclic direct summand [3, Th 9, p. 21]. Clearly the identity map $Z_m \to Z_m$ (for $m \ge 1$) can not be lifted to a map $Z_m \to Z$. This proves that Z_m is not Z-projective. Hence if a reduced abelian group H is Z is Z-projective it has to torsion free.

For any $a \neq 0$ in H let $S_a = \{x \in H | x \text{ and } a \text{ linearly dependent} over Z\}$. Then it is trivial to see that S_a is a pure subgroup of

rank 1 in *H*. Moreover S_a is reduced since *H* is. Hence \exists a prime p such that $S_a \neq pS_a$. Let $c \in S_a$ be such that $c \notin pS_a$. Since S_a is a pure subgroup of *H* we see that $c \notin pH$. Hence $\eta(c) \neq 0$ where $\eta: H \to H/pH$ denotes the canonical quotient map. Regarding H/pH as a vector space over Z_p we can comylete $\eta(c)$ to a basis $\{\eta(c)\} \cup \{u_i\}_{i \in J}$ of H/pH over Z_p . Let $\theta: H/pH \to Z_p$ be the Z_p -linear map determined by $\theta(\eta(c)) = 1 \in Z_p$ and $\theta(u_j) = 0$ for all $j \in J$. The Z-projectivity of H now yields a map $h: H \to Z$ with



commutative, where $\varphi: Z \to Z_p$ is the canonical quotient map. From $\varphi h(c) = \theta \circ \eta(c) = 1 \in Z_p$ it follows that $\varphi h(c) \neq 0$. Hence $g = h \setminus S_a$: $S_a \to Z$ is a non-zero homorphism. It follows that $\operatorname{Im} g = kZ$ for some integer $k \geq 1$. Composing g with the obvious isomorphism $kZ \cong Z$ we get an epimorphism $g': S_a \to Z$. Since Z is free the sequence $S_a \xrightarrow{g'} Z \to 0$ splits. S_a being a torsion-free group of rank 1 it now follows that $S_a \xrightarrow{g'} Z$ is an isomorphism. Thus for $\alpha \neq 0$ in H the subgroup S_a is isomorphic to Z.

Our next step is to show that S_a is a direct summand of H. Let c be a generator for $S_a \cong Z$ and $V = \{\alpha \in \operatorname{Hom}(H, Z) | \alpha(c) \neq 0\}$. From what we have seen already V is a nonempty set. Let $l = \min_{\alpha \in V} |\alpha(c)|$. We will show that l = 1. Suppose on the contrary l > 1. There definitely exists an element $\alpha \in V$ such that $\alpha(c) = l$. Let p be a prime divisor of l and l = kp. Now $c \notin pS_a$. The argument used already yields a map $h: H \to Z$ such that $\varphi h(c) = 1 \in Z_p$. This means h(c) = np + 1 for some $n \in Z$. Writing n = kd + r with $d \in Z$ and r an integer satisfying $0 \leq r < k$ consider the element $h - d\alpha \in \operatorname{Hom}(H, Z)$. Now, $\{h - d\}(c) = np + 1 - dl = np + 1 - dkp = rp + 1$. Clearly, $0 < rp + 1 < rp + p = (r + 1)p \leq kp = l$. Thus $\beta = h - d\alpha$ is in V and $|\beta(c)| = rp + 1 < l$, contradicting the definition of l. This contradiction proves that h = 1. It now follows that \exists an $\alpha: H \to Z$ with $\alpha(c) = 1$, in which case \exists a splitting $\mu: Z \to H$ for α with $\mu(1) = c$. Hence $S_a = \mu(Z)$ is a direct summand of H.

It is clear that every pure subgroup of rank 1 of H is of the form S_{α} for some $\alpha \neq 0$ in H. Now appealing to Lemma 1.5 we immediately see that H has property (P).

COROLLARY 1.8. Let $A = D \bigoplus H$ with D the maximal divisible subgroup of A. If A is Z-projective then H is torsion-free and has property (P).

COROLLARY 1.9. A finitely generated abelian group A is Z-projective \Leftrightarrow A is free of finite rank.

COROLLARY 1.10 Suppose H is a reduced decomposable torsionfree abelian group. (i.e., H is the direct sum of rank 1 torsion-free abelian groups). Then H is Z-projective \Leftrightarrow H is free.

PROPOSITION 1.11. Let p be a prime. An abelian group A is $Z_{p^{\infty}}$ -injective if and only if $A \cong (\bigoplus_{\alpha \in J} Z_{p^{\infty}}) \bigoplus B$, a direct sum of copies of $Z_{p^{\infty}}$ with an abelian group B having no p-torsion.

Proof. Suppose $A \cong (\bigoplus_{\alpha \in J} Z_{p^{\infty}}) \bigoplus B$ with B having no p-torsion. Since $\bigoplus_{\alpha \in J} Z_{p^{\infty}}$ is divisible, it is injective over Z and hence $Z_{p^{\infty}}$ -injective as well. The only subgroups of $Z_{p^{\infty}}$ are $Z_{p^{\infty}}$ and $Z_{p^{k}}$ for some integer $k \ge 1$. When B has no p-torsion Hom $(Z_{p^{k}}, B) = 0 =$ Hom $(Z_{p^{\infty}}, B)$. This proves that B is $Z_{p^{\infty}}$ -injective.

Conversely, assume A to be $Z_{p^{\infty}}$ -injective. Let $\alpha \in A$ be an element in the *p*-primary torsion of A. Suppose the order of α is p^k . Then \exists a homomorphism $Z_{p^k} \xrightarrow{f} A$ carrying the element 1 of Z_{p^k} to a. Since A is $Z_{p^{\infty}}$ -injective \exists an extension $g: Z_{p^{\infty}} \rightarrow A$ of f. Then Im g is divisible, $a \in \text{Im } g$ and Im g is in the p-primary torsion of A. This proves that the p-primary torsion of A is divisible. Since any divisible subgroup of A is a direct summand of A and since any divisible p-primary abelian group is a direct sum of copies of $Z_{p^{\infty}}$ it follows that $A \cong (\bigoplus_{\alpha \in J} Z_{p^{\infty}}) \bigoplus B$ with B having no p-torsion.

We now recall the definitions of an M-epimorphism and an Mmonomorphism due to one of the authors [1], and state two results due to him.

DEFINITION 1.12. (i) Let A, B be R-modules and $\theta: A \to B$ an epimorphism. θ is said to be an M-epimorphism if \exists a map $\psi: A \to M$ such that Ker $\theta \cap$ Ker $\psi = 0$.

(ii) Let $\alpha: A \to B$ be a monomorphism. α is called an *M*-monomorphism if \exists a map $\beta: M \to B$ such that Im α and Im β together generate *B*.

PROPOSITION 1.13 [1], [5]. The following conditions on an R-module H are equivalent.

(1) H is M-projective

(2) Given any M-epimorphism $\theta: A \to B$ and any $f: H \to B \in a$ map $h: H \to A$ such that $\theta \circ h = f$

(3) Every M-epimorphism $\theta: C \to H$ splits.

PROPOSITION 1.14. Dual of Proposition 1.13.

DEFINITION 1.15. For any module H let $C^{p}(H)(\text{respy } C^{i}(H)) =$ the class of all modules M such that H is M-projective (respy Minjective). For any module M let $C_{p}(M)$ (respy $C_{i}(M)$) denote the class of M-projective (respy M-injective) modules.

PROPOSITION 1.16 [1], [5].

(1) $C^{p}(H)$ is closed under submodules, homomorphic images and the formation of finite direct sums.

(2) $C^{i}(H)$ is closed under submodules, homomorphic images and arbitrary direct sums.

(3) $C_p(H)$ (respy $C_i(H)$) is closed under direct sums (respy direct products) and direct summands (respy direct factors)

REMARKS.

1.17. In general $C^{p}(H)$ is not closed under formation of arbitrary direct sums. For instance let R = Z and H = Q the additive group of the rationals. From Lemma 1.3 we see that Q is Z-projective. Thus $Z \in C^{p}(Q)$. Let J be an *infinite* set and for each $\alpha \in J$ let $M_{\alpha} =$ Z. Then each $M_{\alpha} \in C^{p}(Q)$. Clearly Q is a quotient of $\bigoplus_{\alpha \in J} M_{\alpha}$ and the identity map of Q can not be lifted to a map of Q into $\bigoplus_{\alpha \in J} M_{\alpha}$. This means $\bigoplus_{\alpha \in J} M_{\alpha} \notin C^{p}(Q)$.

1.17'. Since $C^{p}(H)$ is closed under submodules from 1.17 it follows that $C^{p}(H)$ in general is not closed under formation of arbitrary direct products.

1.18. In general $C^{i}(H)$ is not closed under formation of arbitrary direct products. Let R = Z and H = Z. From Proposition 1.11 we have $Z_{p^{\infty}} \in C^{i}(Z)$. Let $M = \prod_{p} Z_{p^{\infty}}$, the direct product taken over all primes. It is known and quite easy to see that \exists a subgroup of M which is isomorphic to Q. If $M \in C^{i}(Z)$ from (2) of Proposition 1.16 it would that $Q \in C^{i}(Z)$. Since the identy map of Z can not be extended to a map of Q into Z it follows that Z is not Q-injective. In other words $Q \notin C^{i}(Z)$. This in turn implies $M \notin C^{i}(Z)$.

2. *M*-injectivity of direct sums. For any module A and any $x \in A$ we denote the left annihilator $\{\lambda \in R | \lambda x = 0\}$ of x by L_x .

DEFINITION 2.1. An element $x \in A$ is said to be dominated by M if $L_x \supset L_m$ for some $m \in M$.

Given a family $\{A\}_{\alpha \in J}$ of modules let x be the element of $\prod_{\alpha \in J} A_{\alpha}$ whose α -component is x_{α} . Let $I_x = \{\lambda \in R \mid \lambda x \in \bigoplus_{\alpha \in J} A_{\alpha}\}.$

DEFINITION 2.2. We call $x \in \prod_{\alpha \in J} A_{\alpha}$ a special element if $I_x x_{\alpha} =$

0 for almost all α . In otherwords \exists a finite subset F of J such that $\lambda x_{\alpha} = 0$ for all $\lambda \in I_x$ and for all $\alpha \notin F$.

PROPOSITION 2.3. A is M-injective $\Leftrightarrow A$ is Rm-injective for all $m \in M$.

Proof. This is an easy consequence of 1.16 (2). The implication \Rightarrow follows from the closedness of $C^i(A)$ under submodules. As for \leftarrow , by the closedness of $C^i(A)$ under direct sums it follows that A is $\bigoplus_{m \in M} Rm$ -injective. Since M is a homomorphic image of $\bigoplus_{m \in M} Rm$ and since $C^i(A)$ is closed under homomorphic images, it follows that A is M-injective.

THEOREM 2.4. $\bigoplus_{\alpha \in J} A_{\alpha}$ is *M*-injective \Leftrightarrow each A_{α} is *M*-injective and every element of $\prod_{\alpha \in J} A_{\alpha}$ dominated by *M* is special.

Proof. \Longrightarrow : Let $\mathbf{x} \in \pi A_{\alpha}$ be dominated by M, that is, there is an $m \in M$ such that $L_m \subset L_x$. This implies that the mapping $\lambda m \to \lambda \mathbf{x}(\lambda \in R)$ is well defined and gives a homomorphism $f: Rm \to \pi A_{\alpha}$. The image of the submodule I_xm by f is clearly $I_x\mathbf{x}(\subset \bigoplus A_{\alpha})$. Thus the restriction of f to I_xm is regarded as a homomorphism $I_xm \to \bigoplus A_{\alpha}$. Since $\bigoplus A_{\alpha}$ is Rm-injective, this homomorphism can be extended to a homomorphism $Rm \to \bigoplus A_{\alpha}$ which means that there exists an $u \in \bigoplus A_{\alpha}$ such that $\lambda \mathbf{x} = \lambda u$ for all $\lambda \in I_x$. It follows then that $I_x\mathbf{x}\alpha =$ I_xu_{α} for all $\alpha \in J$. But since $u\alpha = 0$ for almost all α , it follows that $I_xx\alpha = 0$ for almost all α too, i.e., \mathbf{x} is special.

 \leftarrow : Let $m \in M$ and consider the cyclic submodule Rm of M. Let I be a left ideal of R. Then IM is a submodule of Rm. (Conversely every submodule of Rm is of the form Im with a suitable left ideal I). Let there be given a homomorphism $h: Im \rightarrow \bigoplus A_{\alpha}$. Then since $\bigoplus A_{\alpha} \subset \pi A_{\alpha}$ and πA_{α} is *M*-whence *Rm*-injective, *h* can be extended to a homomorphism $Rm \rightarrow \pi A_{\alpha}$. Let $x \in \pi A_{\alpha}$ be the image of *m*. Then the homomorphism is given by $\lambda m \rightarrow \lambda x (\lambda \in R)$. There fore it follows that $Ix = h(Im) \subset \bigoplus A_{\alpha}$ whence $I \subset I_x$. On the other hand, since clearly $L_{m} \subset L_{x}$, x is dominated by M and thus x is special by assumption, i.e., $I_x x_\alpha = 0$ whence $I x_\alpha = 0$ for almost all α . Let **u** be the element of $\bigoplus A_{\alpha}$ whose α -component is x_{α} or 0 according as $Ix_{\alpha} \neq 0$ or $Ix_{\alpha} = 0$. Then it is clear that $\lambda u = \lambda x$ for all $\lambda \in I$. Further, it is also clear that $L_m \subset L_x \subset L_u$ and therefore the mapping $\lambda m \rightarrow \lambda u (\lambda \in R)$ is well defined. This mapping gives a homomorphism $f: Rm \to \bigoplus A_{\alpha}$ which is an extension of h, because $f(\lambda m) = \lambda u = \lambda x$ for all $\lambda \in I$. This implies that $\bigoplus A_{\alpha}$ is Rm-injective and so is M-injective (by Proposition 2.3).

THEOREM 2.5. The direct sum of any family of M-injective modules is M-injective \Leftrightarrow every cyclic submodule of M is noetherian.

Proof. \leftarrow . Let $\{A_{\alpha}\}$ be a family of *M*-injective modules. Let x be an element of πA_{α} dominated by *M*; thus there is an $m \in M$ such that $L_m \subset L_x$. Consider I_xm . Since clearly $L_x \subset I_x$ whence $L_m \subset I_x$, it follows that $I_x/L_m \cong I_xm$. On the other hand, I_xm is a submodule of the Noetherian module Rm. Hence I_x/L_m is finitely generated, i.e., there exist a finite number of elements $\lambda_1, \lambda_2, \dots, \lambda_n$ of I_x such that

$$I_x = R \lambda_1 + R \lambda_2 + \cdots + R \lambda_n + L_m$$
 .

It follows therefore $I_x x_{\alpha} = R \lambda_1 x_{\alpha} + R \lambda_2 x \alpha + \cdots + R \lambda_n x_{\alpha}$ for all components x_{α} . Since, however, for each $i, \lambda_i x_{\alpha} = 0$ for almost all α , it follows that $I_x x_{\alpha} = 0$ for almost all α , that is, x is special. Thus $\bigoplus A_{\alpha}$ is *M*-injective by Theorem 2.4.

 \Rightarrow . Let $Rm, m \in M$ be any cyclic submodule of M. Then $R/L_m \cong$ Rm, and there is a (1-1) correspondence between the left ideals of R containing L_m and submodules of Rm. Thus in order to show that Rm is noetherian it is sufficient to prove that there is no properly ascending infinite sequence of ideals of R containing L_m . Suppose there exists an infinite sequence $L_m \subset I_1 \subset I_2 \subset I_3 \subset \cdots$ of ideals I_j with $I_j \neq I_{j+1}$ for every $j \ge 1$. Let $B_j = R/I_j$, $\eta_j \colon R \to B_j$ the canonical projection. Let A_j be the injective hull of B_j . Then each A_j is Minjective also. By assumption \exists an $m \in M$ s.t. $I_1 \supset L_m$. The element $x = (x_j)_{j \ge 1}$ of $\prod_{j \ge 1} A_j$ where $x_j = \eta_j$ (1) is clearly dominated by M. For any $\lambda \in I_j$ we have $\lambda x_k = 0$ for $k \ge j$. Hence $I_j \subset I_x$ for all $j \ge j$ 1. Let λ_j be any element of I_{j+1} which is not in I_j . Then $\lambda_j x_j \neq 0$ and $\lambda_j \in I_x$. This proves that $I_x x_j \neq 0$ for every $j \geq 1$. This means x is not a special element and hence by theorem 2.4, $\bigoplus_{j\geq 1} A_j$ is not *M*-injective. This proves the implication \Rightarrow .

REMARK 2.6. A result of H. Bass [2] asserts that arbitrary direct sums of injective modules over R are injective $\Leftrightarrow R$ is noetherian. Theorem 2.5 is a generalization of this result of H. Bass. When M = R we get the result of Bass.

THEOREM 2.7. Suppose $\{A_{\alpha}\}_{\alpha \in J}$ is a family of *R*-modules such that for every countable subset *K* of *J*, $\bigoplus_{\alpha \in K} A_{\alpha}$ is *M*-injective. Then $\bigoplus_{\alpha \in J} A_{\alpha}$ is itself *M*-injective.

Proof. Assume that $\bigoplus_{\alpha \in J} A_{\alpha}$ is not *M*-injective. Then, by Theorem 2.4, there exists an $x \in \prod_{\alpha \in J} A_{\alpha}$ which is dominated by *M* but is not special, i.e., $I_x x_{\alpha} \neq 0$ for infinitely many $\alpha \in J$. Let *K* be

an infinite countable subset of the infinite set $\{\alpha \in J | I_x x_\alpha \neq 0\}$. Let y be element of $\prod_{\alpha \in K} A_\alpha$ whose α -component y_α is equal to x_α for all $\alpha \in K$. Then clearly $I_x \subset I_y$, so that it follows that y is dominated by M and $I_y y_\alpha = I_y x_\alpha \neq 0$ for all $\alpha \in K$. This implies again by Theorem 2.4 that $\bigoplus_{\alpha \in K} A_\alpha$ is not M-injective (because each A_α is M-injective by the assumption of our theorem). This is a contradiction, and so the proof is completed.

References

1. G. Azumaya, M-projective and M-injective modules (unpublished).

2. H. Bass, Injective dimension in Noetherian rings, Trans. Amer. Math. Soc., 102 (1962), 18-29.

3. I. Kaplansky, Infinite Abelian Groups, University of Michigan Press (1969).

4. B. Sarath and K. Varadarajan, *Injectivity of direct sums*; Communications in Algebra, 1 (6), (1974), 517-530.

5. M. S. Shrikhande, On hereditary and cohereditary modules, Canad. J. Math., XXV (1973), 892-896.

Received June 19, 1974. Research done while the last mentioned author was partially supported by NRC grant A 8225.

INDIANA UNIVERSITY AND THE UNIVERSITY OF CALGARY