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INVERSION OF CONDITIONAL WIENER INTEGRALS

Dedicated to Professor Robert H. Cameron

J. YEH

Given two Wiener measurable functionals X and Y on the
Wiener space C[0, t], of which the latter is Wiener integrable,
the conditional Wiener integral of Y given X is defined as
the conditional expectation Ew( Y | X) given as a function on
the value space of X. Several Fourier inversion formulae
for retrieving the conditional Wiener integral EW(Y\X) in
which X[x] = x(t) for xeC[0, t] are derived. Examples of
evaluation of EW(Y\X) are given. It is shown that the
Kac-Feynman formula can be derived by applying an in-
version formula to EW{Y\X) where

ΓM-expi-
0

1* Introduction* We have recently derived an inversion formula
for conditional expectations. (See [4].) In the present paper we
report on some inversion formulae for conditional Wiener integrals.
Here the probability space is the Wiener measure space on the Wiener
space C[0, t] of the real valued continuous functions x on [0, t] with
x(0) = 0 for fixed te(O, oo). By a conditional Wiener integral we
mean the conditional expectation EW(Y\X) of a real or complex valued
Wiener integrable functional Y conditioned by a Wiener measurable
functional X on C[0, t] which is given as a function on the value space
of X. We shall be concerned exclusively with X given by X[x] =
x(t) for xe C[0, ί]. Thus EW(Y\X) will be a real or complex valued
function on R1. A precise definition of conditional Wiener integral
as well as a brief discussion of the Wiener measure space are given
in §2. Three inversion formulae for conditional Wiener integrals are
proved in §3: a (C.I) summability type inversion formula (Theorem
1), a Levy type inversion formula (Theorem 2) and an inversion for-
mula under the assumption of the Lebseque integrability of Ew[eiuXY],
ueR1 (Theorem 3). Examples of evaluation of conditional Wiener
integrals are given in §4. Below we relate conditional Wiener integrals
to the Kac-Feynman formula.

Consider the Wiener integrable functional

exp ί - Γ F[φ)]ώs} for x e C[0, t]

C Jo J

where V is a nonnegative continuous function on Rι. Under the

623



624 J. YEH

additional condition that V is bounded, M. Kac [2], showed that a
real valued function U on R1 x (0, ©o) defined by

U(ξ, t) = ±(-l)kUk(ζ, t) for (ξ, ί) e tf1 x (0, - )
fc=0

where the sequence {Uk, k = 0, 1, 2, } is defined inductively by

for k = 0, 1, 2,

satisfies the integral equation

χ j Γ - - 1 — exp j — ί ( i ~ ?>' tV(W(V, *)d>l\d*

for (f, t)eRι x (0, co) and the boundary condition

(1.2) £ ETfo ί)df = ̂ [ e x p {- ^ F[φ)]ώs}; α < x(t) < δ]

for any (α, b)aRι. The boundedness condition on F was then removed
by the method of truncation. The integral equation (1.1) implies
that U satisfies the differential equation

(1.3) ^ = . 1 ^ - V(ξ)U for (ί, t)e i?1 x (0, oo)

and the boundary condition (1.2) implies that U satisfies the initial
condition

(1.4) lim Γ U(ξ, t)dζ = 1 for every ε > 0 .
ί-0 J-e

This result is summarized by the Kac-Peynman formula

(1.5) U(ζ, t) = ^ [ e x p {- ^V[x{s)ds}δ{x{t) - f)]

for the solution U of the differential system (1.3) and (1.4). Now
let Xt and Yt be two real valued functionals on C[0, t] defined by

Xt[x] = x(t) and Yt[x] = exp | - ί' V[x(s)]ds} for x e C[0, ί] .
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The fact that the function U satisfies (1.2) indicates that it is related
to the conditional Wiener integral Ew{Yt\Xt). Let us define a real
valued function U on B1 x (0, oo) by

(1.6) U(ξ, t) = E™( Yt I Xt)(S)-^= exp j - -
V2πt I

for (ξ9t)eR1 x (0, oo) .

In §5 we show that by applying Theorem 1 to an appropriately
chosen version of Ew(Yt\Xt) we obtain the integral equation (1.1) for
the function U defined by (1.6). The fact our function U satisfies
(1.2) is obvious. This gives an alternate way of deriving the Kac-
Feynman formula.1

2* Conditional Wiener integral* For a fixed t e (0, oo) consider
the Wiener measure space (C[0, ί], SB*, mw) where 2S is the algebra
of subsets W of C[0, t] of the type

(2.1) W = {x e C[0, t]; [a**), , Φ J l e 5}

where w is an arbitrary positive integer, 0 = s0 < sx < < sw rg ί,
and J3 is an arbitrary member of the c-algebra S5W of the Borel sets
in the ^-dimensional Euclidean space Rn; mw is a probability measure
on the algebra 28 defined for W as in (2.1) by

mw(W) - j(2τry Π(Si - *;-

< 2 2 )

where £ — (ί l f , ξn) e Rn, ξ0 = 0 and mL is the Lebesque measure on
(Rn, 33W); S5B* is the σ-algebra of Caratheodory measurable subsets of
C[0, t] with respect to the outer measure derived from the probability
measure mw on the algebra SB which in particular contains the σ-
algebra 0 (2δ) generated by 2B.

A real valued functional F on C[0, t] is said to be Wiener meas-
urable if it is 2δ*-measurable, i.e. if it is a measurable transformation
of (C[0, ί], SB*) into (JB1, S31)- For a Wiener measurable functional F
we write

for ( F[x]mw(dx)
JC[0,ί]

1 The idea of deriving the Kac-Feynman formula by inversion goes back to M. D.
Donsker. I wish to thank Professor Donsker for the conversations we had on this
approach.
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whenever the integral, i.e. the Wiener integral, exists. We say that
F is Wiener integrable or mw-integrable when the Wiener integral
of F exists and is finite. The Wiener measurability and Wiener
integrability of a complex valued functional on C[0, t] are defined in
terms of its real and imaginary parts. An immediate consequence
of the definition of the Wiener measure is that if F is a real or
complex valued functional on C[0, t] of the type

(2.3) F[x] = f[x(8l), , x(sn)] for x e C[0, t)

where / is a real of complex valued Baire function on Rn and 0 <
Si < < 8n ^ t then F is Wiener measurable and

(2.4)

f(ξ) exp ) -JL
{ 2 Σ

2 i=i S3 — Sj - i

in the sense that the existence of one side implies that of the other
as well as the equality of the two.

In connection with the Wiener measure space let us remark that
a real valued function X on [0, t] x C[0, t] defined by

X(s, x) = x(s) for (s, x) e [0, t] x C[o, t]

is a Brownian motion process on the probability space (C[0, t], 333*,
mw) and the domain [0, t] in which the space of sample functions
X( , x), xeC[0,t], coincides with the sample space C[0, ί] and thus
every sample function is continuous. This last property implies in
particular that the process is a measurable process. We shall refer
to this realization of the Brownian motion process as the Wiener
process on the domain [0, ί].

DEFINITION. Let X and Z be real valued Wiener measurable
functionals on the Wiener measure space (C[0, t], 25*, mw) and let Z
be Wiener integrable on C[0, t]. Let Px be the probability distribution
of X, i.e. the probability measure on (B\ S31) determined by X by
the definition

Pλ(B) = mw{X-\B)) for Be SB1.

The conditional Wiener integral of Z given X, written EW(Z\X), is
by definition the equivalence class of ^-measurable and Pz-integrable
functions ψ on Rι modulo null functions on (R\ S31, Px) such that
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( Z[x]mw(dx) = ( ψ(ξ)Px(dξ) for

By the Radon-Nikodym theorem such a function ψ exists and
is determined up to a null function on (R\ S31, Px). We shall also
use EW(Z\X) to mean a particular version, i.e. a particular represen-
tative of the equivalence class. Thus

(2.5) ( Z[x]mw(dx) = ( Ew(Z\X)(ξ)Px(dζ) for

3* Inversion formulae of conditional Wiener integrals*

LEMMA 1. Let X and Z be measurable transformations of (C[Q,
t], 233*) into (R\ S31) with EW[\Z\] < °o. Let g be a measurable trans-
formation of (R\ S31) into itself. Then

= \ g{ξ)E™{Z\X){ξ)Px{dξ)

in the sense that the existence of one side implies that of the other
as well as the equality of the two.

Proof. This lemma is a particular case of Proposition 3 in [4].

COROLLARY. Let X and Z be as in Lemma 1. Assume that
Px < WL on (R\ S31). For ζeR1 and a > 0 let χζ,a be a function on
R1 defined by

~ for ye[ξ-a, ξ + a]

lθ for 7] e [ξ - a, ξ + a]c .

Then there exists a version of Ew(Z\X)(dPx/dmL) such that

for ξeR1.

Proof. Using χξ>a in the place of g in Lemma 1, we have

= l i m ( 1'

It is well known that if / e L\OC(R\ %>\ mL) then

lim ί χ,Λv)f{V)mL{dη) = /(£) for mL-a.e. ξ 6 B1

α-K) JRί
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Prom this follows our corollary.

LEMMA 2. Let X and Y be measurable transformations of (C[0,
t], 95*) into (R\ S31) with EW[\Y\] < oo. Then

Ew[eiuXY] = \ eiuζEw(Y\X)(ξ)Px(dξ) for ueR1.
JB1

Proof. This lemma is the equality (3.19) in [4] adapted to our
probability space (C[0, t], 2B*mw).

THEOREM 1. Let X and Y be measurable transformations of
(C[0, ί], 2δ*) wίo (B\ 331) wiίfc # W [ | Γ | ] < <*>. Assume that Px < mL

on (JB1, SB1). Γfce^ ίfeerβ exists a version of Ew(Y\X)(dPx/dmL) such
that

= lim - i - ( ( l - MΛe-^Ew[eiuX Y]mL(du) for ξ e R1 .
α-»°° 2TΓ J(-α,α)\ a /

Proof. By Lemma 2

(3.1) £? w [β < t t X F] = ( β < t t f ί ; w ( Γ | X ) ( ί ) 4 ^ ( ς ) m L ( c ί ί ) for w e J ? 1 .

Thus our Ew[eiuXY], ue R\ is the Fourier transform of the mL-
integrable function Ew(Y\X)(ζ)(dPx/dmL(ζ), ζ eR1. According to a
well known (C, 1) summability type inversion formula for Fourier
transforms, if / is a mL-integrable function on R1 and / is its Fourier
transform then

f(ξ) = lim J L f ( l - \^e-iuξf{u)mL(du) for mL-a.e. ζ e R1

(see for instance [1]). From this follows our theorem.

THEOREM 2. Let X and Y be as in Theorem 1. For a.beR1

such that a Kb let %a>h be a function on R1 defined by

(1 for ηe{a,b)

\ for ηe [α, b]c

— for η = a and for η = b .

Then
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= Km — I ± — Ew[eiuX Y]mL(du) .
fc-^oo 2π i(-h,k) —in

Proof. As an immediate consequence of the Levy inversion
formula, if Φ is a finite signed measure on (R\ 351) and if φ is the
characteristic function Φ, i.e.

φ(u) = f eiuζΦ(dζ) for weJί,

then we have

ί = lim -A-
2

ί XaM)(ξ) T
JR1 h->°° 27ϋ J(-h,h) —%U

From this and from (3.1) follows our theorem.

THEOREM 3. Let X and Y be as in Theorem 1. Assume further
that Ew[eiuXY] is a mL-integrάble function of u on Rι. Then a
version of Ew(Y\X)(dPx/dmL) is given by

)^JL{ζ)τ= - M e-
iuζEw[eiuXY]mL(du) for ζeR1.

dmL 2π JR1

Proof. This theorem is a particular case of Theorem 2 in [4].

4* Examples of evaluation of conditional Wiener integrals*

EXAMPLE I.2 For each x e C[0, t] consider the average value of
x(s)ds. Let us find the con-

0

ditional expectation of this average value given the condition that
the final value of x, x(t), is equal to ξeR1. Thus we are to find
E«(Z\X)(ζ),ζeR\ for

Z[x] = —\tχ(s)ds and X[x] = x(t) for xeC[0, t] .
t Jo

According to Corollary to Lemma 1, a version of Ew(Z\X)(dPx/dmL)
is given by

(4.1) E™(Z\X)(ζ)j^(ξ) = limE"[(χξ,aoX)Z] for ξeR1.
dm

2 According to Professor E. 0. Thorp, this problem arises in the probabilistic study
of the fluctuation of the price of a commodity as a Brownian motion process. The
problem was to find the expectation of the time average of the price when the price
at some fixed time point in the future is known for some reason.
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With our Z and X we have

(4.2) JE [(χf>β o X)Z] = #ffc,.[a<t)]l \ x(s)mL(ds)] .

An interchange of the order of the two integrations on the right
side of (4.2), one with respect to the Lebesque measure and the other
with respect to the Wiener measure, can be justified as follows.
Recall first that the Wiener process is a measurable process, i.e. x(s)
for (s, x) 6 [0, t] x C[0, t] is Lebesque x Wiener measurable. To apply
the Fubini theorem observe that

I χMt)]x{s) I ̂  -1-1 x(s) I for (β, x) e [0, t] x C[0, t]
2α

and by (2.4)

\ tf ΓJπ X(S) IlmL(d8) = A- ί { - i — ( 11? |β
J[o,ί] L2α J 2α J[o,t]^v 2πs JR1

2α v π Jco,ί] 3α

Thus an interchange of the two integrals on the right side of (4.2)
is justified and consequently

E lfa,. o X)Z] - 1 ί E™[x
t J[o,«]

(4.3) =

LjΛ^ts-β.ί+β]
x Γ ( >7 exp {-1--2. - 1

L j Λ ^ t s ί + ] ( 2 s 22 s 2 ί — s

by (2.4). Since

(4.4)
s t - s β(ί - β)

and thus

the integral with respect to mL(d(η, ζ)) over iZ1 x [f — α, f + α] in
(4.3) can be reduced by integrating with respect to mL(dη) over J?1

and using
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1 — f yp

e-
y2/2vmL(dy) = 1, 0, v for p = 0,1, 2

(4.5) ϊ 7 2 7™ J i 2 1

respectively, with v > 0

to

ζexpί-i-^
J[e-o,e+o]

Using this in (4.3) we have

(4 6) = V ^ S F I L ^ ^ H L , ^ ^ {-if Hdζ)

From (4.1) and (4.6) we have

dmL 2 τ/2τrί I 2 £

and thus

EXAMPLE 2. Let us find J E 7 " ( Z | X ) ( | ) , | e R1, when

^[ίc] = ('[a;(s)]2ds and X[x] = x(t) for x e C[0, t] .
Jo

To apply Corollary of Lemma 1 we proceed as in Example 1 to obtain

(4.7) Jt°' i]

v ' I f
= ^-\ {(2πYs(t - s)

2a J c o ]

x Γt ^2 exp j - i - £ - λίLΣLVl\mL(d(v, ζ))]mL(ds)

By means of (4.4) we have

2 β 2 ί - s
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\/ t ) 2 t)2 s(t - s)

Reducing the integral with respect to mL(d{r], ζ)) over R1 x [ξ — a,
ξ + a] by integrating with respect to mL{dη) over R1 using (4.5) we
obtain

Using this in (4.7) we have

Ew[(χξ,aoX)Z]

= ^2a

Thus

x
(4.8) , 2

= (i- + ifjpi^
\6 2, JV2πt

and

It is of interest to note that from (2.5) and (4.8)

E"[Z] = ί Z[x]mw(dx) = \ E"{Z\X){ξ)Px{dξ)

as can be obtained by a direct computation of EW[Z].

As an example of application of an inversion formula in evaluat-
ing a condition Wiener integral, consider the Wiener measure space
(C[0, t], SB*, mw) with fixed t e (0, oo). Let {φu , φn} be an orthogonal
system in the real Hubert space L2([0, £]) with

l l^ ll - A {<PAs)}2mL(ds) > 0 for j = 1.2, , n
V J[0,ί]

such that φά has a representative function which is of bounded variation
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on [0, t] for j = 1, 2, , n. Let F be a functional on C[0, t] defined by

(4.9) F[»]/[\Ws)dx(s\ , JV,(8)ώ(8)] for a; € C[0, ί]

where / is a complex valued function on Rn whose real and imaginary
parts are Baire functions. By a slight extension of a well known
theorem by R. E. A. G. Paley, N. Wiener, and A. Zygmund [3] F is
Wiener measurable and

(4.10) E^F] = {(2πyfl\\φj\ή\ f(V) exp I - Σ \

with 37 = (ηlf , ηn) e Rn, in the sense that the existence of one side
implies that of the other and the equality of the two.

THEOREM 4. Let X and Y be two functionals on C[0, t] for fixed
te(O, oo) defined by

X[x] = x(t)

and

(4.11) Y[x] = flr[j Wβ^ίβ), , j Wβ)da?(8)] /or α; e C[0, ί]

where {φu , <p%, 1} is α^ orthogonal system in the real Hilbert
space L2([0, t]), \\φ3-\\ > 0, φ3- has a representative function which is
of bounded variation on [0, t] for j = 1, 2, , n and g is a Baire
function on Rn such that

(4.12) A = {(&)• Π Itoll pj^fo)exp {-gi-^Jm^) < ̂

with η = (ηu ••-, ηn)eRn. Then Y is Wiener integrable on C[0, t]
and

(4.13) EW[Y] = A.

Also there exists a version of EW(Y\X) such that

(4.14) EW(Y\X)(ξ) - A for ξeR1.

Proof. By applying (4.10) to (4.11) we have (4.13). To prove
(4.14) note that

[iu ̂

Applying (4.10) to the function
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f(Vu •-;V«,ξ) = eiuζg(7}u -*-,yn) for (ft, . . . , η%, ξ) e R«+1

we have

Ew[eiuXY] - A - i — ( eiuζe~ζ2/2tmL(dt) = Aβ- 2" 2

since

f e-w2+^mL(dζ) = J—eh2/ia for α > 0 and real or
(4.15) J*1 α

imaginary b .

We have just shown that Ew[eiuXY] is a m^-integrable function of %
on JB1. Thus by Theorem 3 there exists a version of EW(Y\ X)dPx/dmL

such that

JR1
{ξ) β β m ^ d w ) e

dmL 2π JR1 ϊπt
and

Ew(Y\X)(ξ) = A for ξeR1.

5* The conditional Wiener integral of exp | — \ F[α;(s)]c

given x(t).

THEOREM 5. For ίe(0, ©o) ieί

(5.1) JSΓt[α?] = a?(ί) α^d Γt[αj] = exp j - JV[φ)]<teJ for xeC[0, t]

where V is a nonnegative continuous function on Rι satisfying the
condition

(5.2) ( V(ξ)e-ζ2/2tmL(dξ) < oo for every t e (0, oo) .

There exists a version of Ew(Yt\Xt) such that the function U on
R1 x (0, oo) defined by

(5.3) U(ξ, t) - E\YtIXt)

satisfies the integral equation

if 1 )
j \ V{η) . } e-w-V'-'mr}, s)mL(dy)\mL(ds)

to.ίilJjϊi i/2π(ί — s) >
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for (ζ ήeR1 x (0, oo).

REMARK. From the continuity of V on R1 and the continuity of x

S t
V[x(s)]ds can be given as the limit of a sequence of Riemann

0

sums corresponding to a sequence of partitions on [0, t] which does
not depend on x. From this follows the Wiener measurability of Yt

on C[0, ί]. Its Wiener integrability is obvious since it is bounded
by 1.

The condition (5.2) on V is satisfied if for instance V satisfies the
order of growth condition

V(ξ) = O(eζ2~δ) as ξ > ± oo

for some de(0, 2). Note also that under (5.2), if we define

(5.5) 9>(ί) = _ l ί V{ξ)e~^mL{dζ) for te(O, - )
V2πt JR1

then φ is a nonnegative continuous function on (0, oo) and furthermore
lim^o φ{t) = V(0). Let us define

φ(0) = lim φ{t)

so that φ is continuous on [0, oo).

Proof of Theorem 5. According to Theorem 1, there exists a
version of Ew(Yt\Xt) such that our U defined by (5.3) can be given as

(5.6) U(ξ, t) = K m - M ( l ~ ^\-iuζEw[e~iuχtYt]mL{du)
α-*00 27Γ J ( - α , α ) \ a '

for (ξ, t)eR' x (0, oo) .

Since

A exp {- (* V[x(s)]dr | - - exp {- j ' F[α;(r)]drJ F[φ)]

we have by integrating with respect to s on [0, t]

(5.7) exp j - JV[a(β)]<Zβi - 1 - - ίV[^(s)] exp {- Γ F[α?(r)]d

Applying (5.7) to Yt[x] as defined by (5.1) we have

(5.8) Yt[x] = 1 - Γ V[x(s)] exp f - Γ V[x(r)]dr\ds .
Jo ( J o /

Substituting (5.8) in (5.6) we have
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U(ξ, t) = Iβ, t) - I2(ξ, t)

636

(5.9)

where

(5.10) /,(£, t) = lim - i- ί f 1 - ^)e-iuζEw[eiux{t)]mL(du)

and

(5.11)

with

(5.12)

J2(f, ί) = lim JL ( (ι _ N.V'
α-»oo 27Γ J ( - o , o ) \ α /

Um{t) \ o ̂  V[x(s)] exp j - ('

To evaluate Ilf note that by (2.4) and (4.15) we have

! _ f e^e-

and thus

, ί) = lim { i ( β-' '
α-°° ( 27Γ J(-o,β)

f \*U-Mβ-tt

J(-a,a) a(5.13)
= JL. f β-«VΛX(itt) - ^-flim + lim Yl^-'^β-^

To interchange the order of the Wiener integral and the integral
with respect to mL(ds) on [0, t] in (5.12), note that

β«..c«> V[x(s)] exp {- J

for (s, α) 6 [0, ί] x C[0, ί]

and that by (2.4), (4.15), (5.5) and the continuity of φ on [0, <χ>)

( E"[V[x(8)]]mL(d8) = \ -±= \\ V(ζ)e-^s

J[o,i] J[o,ί]V2τΓS Uiί1

= \ φ(s)mL(ds) < <χ>
J[0,ί]

so that the Fubini theorem is applicable and thus
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(5.14) J(t) = \ Ew[eiwt) V[x(s)] exp \ - Γ V[x(r)]dr\]mL(ds) .
J[o,t] L I Jo JJ

Let us write

By the fact that {#(£) — #(s), x(r)} is an independent system of random
variables on (C[0, t], SB*, mw) for every r e (0, s] and by

which follows from (2.4) and (4.15), we have from (5.14)

(5.15) J(t) = j e-^<znt-s)EJeiuX{s) v[χ(s)] exp {- Γ V[x(r)]drY\mL(ds) .

Applying Lemma 1 to the Wiener integral in (5.15) and recalling
(5.1) and (5.3) we have

(5.16) J(t)=\ β-^' x'

= f β-( «/ )(*-.)Γf e

ζ"iV(η)U(V, s)mL{dη)\mL{ds) .
J[0,ί] LJR1 J

Let us use (5.16) in (5.11). To interchange the order of the three
integrals with respect to mL(dη) over B\ mL(ds) over [0, t] and mL(du)
over (—a, a) in the resulting expression for /2, observe that

(?)fy, ) ^ V(η)U(η, s)e-
(ίί2/2)(ί-β)

for (̂ , s, ^) e JS1 x [0, ί] x (-α, α) .

Recalling (5.3) and Lemma 1 we have by (2.4) and (5.5)

\RV(y)U(y, s)mL(dy) - E"[

^ S [ y[a?(β)]] = - T J I — t
l/2τrs J

Now

exp {-

J[0,ί]

where

A = \ φ(s)eu2*/2mL(ds) <
J[o,«]

by the continuity of <£> on [0, oo) and thus
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f Ae-uh/2mL(du) < oo .
JJ21

This verifies the applicability of the Fubini theorem in interchanging
the order of the three integrals. Thus we have

(5.17) J2(f,*) = l i m J - t if V(y)U(v,s)\\ χ(_α,α)(i
a

x β-< ( ί - ' ) β- ( 2/2}(t- ) m L ( d ) Ί ( d ) l ( d )

For all α > 0 the integrand in (5.17) is bounded by

V(η)U{η, 8)e-*1'™-" for (η, s, ̂ eR'x [0, t] x R1

which is integrable with respect to (mL x mL x mL)(d(η, s, u)) on iϊ1 x
[0, t] x JS1 as we saw above. Thus by the Dominated Convergence
Theorem

(5.18) x Γί iβ-* ι ί -' ) β- < I/1>"- )m i(dit)"]m i(ίϊy)lί»£(ίiβ)

Using (5.13) and (5.18) in (5.9) we have (5.4).
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