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A CHARACTERIZATION OF THE SYMPLECTIC
GROUPS PSp(2tn,q) AS RANK 3

PERMUTATION GROUPS

ARTHUR YANUSHKA

In this paper the following characterization of the sym-
plectic groups PSp(2m,q) for m > 2 as rank 3 permutation
groups is obtained:

THEOREM. Let G be a transitive rank 3 group of per-
mutations of a finite set X such that the orbit lengths for
Gύ9 the stabilizer of a point 6 in X are 1, q{qr~z - l)l(q - 1)
and q*"1 for integers q > 1 and r > 4. Let b1 denote the
union of b and the Gh orbit of length q(qr~2 — l)/(g —1) Let
R(bc) denote Π{z±:b>cez1}. Assume R(bc) Φ {6, c}, for all
distinct pairs of points, b and c. Assume that the pointwise
stabilizer of b1 is transitive on the points unequal to b of
R{bc) for c £ b1. Then r is even, q is a prime power and G £*
H, a group of symplectic collίneations of projective r — 1
space over the finite field of q elements and PSp(r,q)<3H.

The rank of a transitive permutation group is the number of
orbits of the stabilizer of a point. The projective classical groups
of symplectic type PSp(2m, q) for m ^ 2 and for a prime power q
are transitive groups of rank 3 when considered as groups of per-
mutations of the absolute points of the corresponding projective space.
Indeed, the pointwise stabilizer of PSp(2mf q) has 3 orbits of lengths
1, q(q*m-2 - ί)l(q - 1) and q2m~\

Let G be any rank 3 group of permutations of a set X such
that the pointwise stabilizer has orbit lengths of 1, q(qr~2 — ϊ)/(q — 1)
and qr~x for any integers r ^ 4 and q ^ 2. The characterization
problem is to impose some restrictions on G and on X to force the
conclusion that X is a projective space and that G is a group of
symplectic collineations. Let &1 denote the union of b and the Gb-
orbit of length q(qr~2 — l)/(q — 1). There are several rank 3 charac-
terizations of the symplectic groups. Assume that q is a prime power
and that r ^ 6. Kantor [5] proved that G can be regarded as an
automorphism group of a symplectic geometry, acting on the set of
singular points. Next assume that q is any integer, that r - 4 and
that the pointwise stabilizer of b1 contains at least q elements. D. G.
Higman [4] proved that G can be regarded as a group of symplectic
collineations of projective 3-space over the finite field of q elements
and that G contains PSp(4:, q). Later Tsuzuku [6] extended Higman's
theorem to r ^ 4 under the additional assumption that q is a prime
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power. This paper essentially generalizes Higman's theorem to all
higher dimensions, without the assumption that q is a prime power.

A brief outline of the proof follows. The assumption that the
pointwise stabilizer in G of δx is transitive on the points unequal to δ
of the "hyperbolic line" B(bc) for eg δ 1 yields that Gab, the stabilizer of
the points a and b of X, is transitive on the points of α1 Π δ 1 — R(ab).
This fact implies that Ga is a rank 3 permutation group on {R(ab):
b G aλ — α}, and the set of "totally singular lines" carry q + 1 points.
We then show that X together with its totally singular lines forms
a nondegenerate Shult space [1] of rank ^ 3. Next we use a theorem
of Buekenhout and Shult [1] to conclude that X is isomorphic to the
set of points of a classical geometry of symplectic type. Therefore
G is a group of symplectic collineations. Finally we show that the
nontrivial elements of the pointwise stabilizer of δ1 correspond to
symplectic elations with center 6 and that G contains PSp(r, q).

In §2 we collect the necessary facts about rank 3 groups from
the basic papers of D. G. Higman [3], [4]. We refer the reader to
a paper of Buekenhout and Shult [1] for the definition of Shult space
and a brief introduction to polar spaces. In § 3 we prove the charac-
terization theorem. Finally the author wishes to thank Donald Higman
for making him aware of the work of Buekenhout and Shult whose
theorem makes the proof of the characterization of PSp(2m, q) given
here considerably shorter than the original version.

2* Rank 3 permutation groups* In this section we collect the
necessary facts about rank 3 permutation groups which will be used
in the proof of the characterization theorem.

Let G be a finite transitive group of permutations of a finite set
X. Then the rank of G is the number of orbits of the stabilizer of
a point. Rank 3 means that for be X the stabilizer of δ, Gb has
exactly 3 orbits on X, denoted δ, D(b) and C(δ). Choose the notation
in such a way that g(D(a)) = D(g(a)) and g(C(a)) = C(g(a)) for all
aeX, ge G. Let | Γ | denote the number of elements in a set Y. Set

= n,\D(b)\ = k and |C(δ)| =

so that n = 1 + k + I. Set

The parameters of G are the triple (n, k, I).

LEMMA 2.1. Let G be a rank 3 permutation group. Then
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(i ) μl = k(k - λ - 1).
(ii) G is primitive iff 0 < μ < k. If G is primitive, then

(I, k) > 1 where (I, k) denotes the greatest common divisor of and k.
(iii) IfG is imprimitive, then either (I + l)\k or (k + l)\l where

a I b denotes that a divides.
(iv) If I GI is odd, k = ί.
(t;) 1/ I GI is βt βft, £&ew D(X — μ)2 + 4(& + μ) is a square.
(vi) If \G\ is even, then ae D(b) iff be D(a).

Proof. See [3] and [4].

Assume |G| is even. Define the "lines" of X as follows: for a Φ
b in X define

where z1 = z U D{z). Call R(ab) totally singular (resp. hyperbolic)
if a 6 bL (resp. α g &1).

LEMMA 2.2. Lβί G be a rank 3 group of even order. Then
( i ) 0(i2(α&)) = B(g(a)g(b)) for all a,beX,geG.
(ii) // xeR(ab) and x Φ a, then R(ax) = R(ab) if beD(a) or

if be C(a) and μ>\ + l.
(iii) x e R{ab) - {a} iff aL Π xL = α 1 Π δ 1 .
(iv) |-B(α&)| — 1 divides k if beD{a).

Proof. See [4].

Let Γ(α) denote the pointwise stabilizer of a1. Then T(a) is a
normal subgroup of Ga.

LEMMA 2.3. Let G be a primitive rank 3 group of even order
such that μ > λ + 1. Then

( i ) T(a) fixes all lines through a.
(ii) T(a)x = lfor xeC(a).
(iii) I T(a)\ divides \R(ab)\ - 1, if beC(a).

NOTATION. If Y £ X, let Gγ denote the global stabilizer of Y.
If Y, ZQ X, then Gr,z denotes Gγ Π G .̂

If Y S X, let X - Γ denote the set of elements of X which do
not belong to Y.

For a natural number r, let ι;r denote (gr — ϊ)/(q — 1).

3. The proof of the theorem* We now begin the proof of the
characterization theorem. Assume that G is a rank 3 permutation
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group of a set X which satisfies the hypotheses of the theorem.

LEMMA 3.1. (i) G is primitive of even order.

(ii) μ = λ + 2 = vr^.
(iii) a1 Π δ 1 Φ R(ab) for b e D(a).

Proof, (i) Assume G is imprimitive. By Lemma 2.1 (iii) either
(k + 1) 11 or (I + 1) [ k. The first case does not occur because k + 1 =
vr-l9 I — qr~ι and {vr_u qr~ι) = 1. The second case does not occur
because I + 1 > k. So G is primitive. Since kΦl,\G\ is even by
Lemma 2.1 (iv).

(ii) By Lemma 2.1 (i), μqr~ι = qvr_2(qvr_2 — λ — 1). By Lemma
2.1 (ii), μ > 0. Since ((Γ~2, vr_2) = 1, there is a natural number t
such that vr_2t = μ. So λ + 1 = q(vr_2 — tqr~z) and vr_2 — tqr~z ^ 1.
If ί > 1, then

which implies 2Q'?'~4 Ξ> gr~3 + 1, a contradiction because q ^ 2. So ί =
1, μ = vr_2 and λ — 1 = qvr_z.

(iii) Assume α 1 Π b1 - JS(α6) for beD(a). Let |i2(αδ)| = s + 1.
So λ + 2 = s + l = /ϋ. Since s\k = qμ by Lemma 2.2 (iv) and (q, μ) =
1, there is a natural number t such that st — q. Then μ — 1 =
gvr_3 = s implies tvr^ — 1 and r = 4, a contradiction. This completes
the proof of the lemma.

LEMMA 3.2. (i) \aL Π C(b)\ = gr~2 /or be D(a).

(ii) Gβδ is transitive on the points of a1 Π C(δ) /or beD(a).

Proof, (i) Since α 1 n C(δ) = α 1 - (α1 Π δ1), by Proposition 3.1
( i i i ) \ a L Π C(b)\ = k + l - ( X + 2) = q r ~ \

(ii) Let δ e D(α) and let d e aL Π C(δ). Now

g v r _ 2 I Gab: Gabd \ — \ Gb: Gab \ | Gab. Gabd \ — | Gb: Gbd \ \ Gbd: Gabd \

Let a; - \Gab: Gabd\. Since (vr_2, g
r~2) = 1, it follows that qr~2\x. But

x ^ gr~2 because

ĉ α̂δ Q a- n C(δ) .

So x = gr~2 and the proof is complete.

PROPOSITION 3.3. Gab is transitive on the points of aL ΓΊ δ1^—
R(ab) for b e D(a).

Proof. Let c and β be distinct points of α 1 Π δ 1 — R(ab). Since
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c $ R(ab), by Lemma 2.2 (iii) c1 =£ a1 Π δ 1. There is u e a1 Π δ1 Π C(c).
Since egR(ab), there is v e α 1 Πδ1 ΠC(e). There are 4 possible cases
to consider: (1) ue C(e), (2) ve C(c), (3) ̂  = e or v = c and (4) ue
D(e) and v e D{c).

(1) weα 1 Π δ1 ΓΊ C(c) Π C(e). Since \R(uc)\ > 2, there is ye
R(uc) — {%, e}. By Proposition 3.1 (ii) and Lemma 2.2 (ii) it follows
that R(yc) = i?(wc) Q a1 Π δ 1. Because iϋ(wc) is a hyperbolic line and
T(y) is transitive on the points unequal to y of R(yc), there exists £
in T(y) such that t(c) = u. Since a, bey1, it follows that£e<?αδ.
Similarly there is 2 6 jB(ue) — {u, e} and then R(ze) = ϋ!(i6e) £ α 1 Πδ1,
Because ϋ?(we) is a hyperbolic line and T(z) is transitive on the points
unequal to of z R(ze), there exists s in T(z) ̂  Gα6 such that s(u) = e.
Thus st(c) — e and st e Gab.

(2) v e α 1 n δ 1 Π C(c) Π C(β). This case has a proof similar to
that of case (1).

(3) If u = β or v = c, then iϋ(ce) is a hyperbolic line in a1 Π δ 1.
Pick 2 e iϋ(c, β) — {c, e}. There exists t in T(z) ^ Gαδ such that t(c) = ^.

(4) % G α1 Π δ1 Π C(c) ΓΊ i)(e) and t; e α 1 Π δ 1 n -D(e) Π C(β). Since
I R(ce) I > 2, there is w e R(ce) — {c, β}. Note that w e C(u), for if w e u1,
then c 6 R(ce) — R(we) £ w1, a contradiction. Now w e jB(cβ) S α1 Π δ 1.
But w ί R{ab) because ^ e α 1 n δ 1 n C(w)ΠC(c). By case (1) there exists
geGab such that g(c) — w. Note that weC(v) for if wev 1, then
e 6 i2(ce) = i2(we) £ v1, a contradiction. Now v 6 α 1 Π δ1 Π C(w) Π C(β).
By case (1) there exists h e Gab such that h(w) = β. So Λ (̂c) = e and
^0 e Ga6. This completes the proof of the proposition.

PROPOSITION 3.4. The group Ga is a rank 3 permutation group
on the set of totally singular lines through a.

Proof. Clearly Ga is transitive on the set of totally singular
lines through a since D(a) is an orbit of Ga. For δ e D(a) define the
sets D(R(ab)) and C(R(ab)) as follows:

D(R(ab)) = {R(ac): c e aL n δ 1 - i2(αδ)}

C(R(ab)) = {Λ(αc): c e α 1 Π C(δ)} .

We claim that these sets are well-defined, form a partition of
the set of totally singular lines through a unequal to R(ab) and are
nontrivial orbits of GaR{ab).

These sets are well-defined. Indeed suppose R(ab) = R(ad) for
δ, d 6 D(α). By Lemma 2.2 (iii), a1 Π δ 1 = α 1 Π cίx and so α1 Π C(b) =
α1 ΓΊ C(<2). Thus 2?((α6)) = D(R(ad)) and C(R(μb)) = C(R(ad)).

Let i2(α^) be a totally singular line. Either z e C(δ) in which
case JK(αz) e C(R(ab)) oτ ze b1. If 2; e δ1, then either z e R(ab) in which
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case R(az) = B(ab) or z$ R(ab) in which case R(az) e D(R(ab)). Thus

R(ab) U D(R(ab)) U C(R(ab))

is a partition of the set of totally singular lines through a.
If R(ac) and R(ae) belong to D(R(ab)), then c and e are elements

of aL Π bL — R(ab). By Proposition 3.3 there is #e(τ α δ such that
g(c) = β. So g(R(ab)) = i?(αδ) and flr(Λ(αβ)) = Λ(αβ). Thus D(R(ab))
is an orbit of GaR{ah).

If i2(αc) and ϋJ(αe) belong to C(R(ab)), then c and β are elements
of α 1 Π C(b). By Lemma 3.2 (ii) there is g e Gab such that g(c) = e.
Thus C(R(ab)) is an orbit of (rαjB(α6) and Gα is a rank 3 group on the
set of totally singular lines through a, as desired.

PROPOSITION 3.5. Totally singular lines carry q + 1 points.

Proof. Let \R(ab)\ = s + 1. We will show that β = g by deter-
mining the rank 3 parameters of Ga on the set of totally singular
lines through a. Let k2 = \D(R(ab))\ and Z2 = |C(J8(αδ))|. Then by
Lemma 3.1

k2 = (λ + 2 ~ (s

and

J2 = (k + 1 - (λ + 2))/s = ^r~2/s .

So there is a natural number t such that si = q. We claim that
ί = 1.

Now Ga is a rank 3 group with k2 = tvr_z — 1 and l2 = tqr~\ We
claim that Ga is primitive. If Ga is imprimitive, then by Lemma
2.1 (iii) either &2 + 1 = tvr-z divides l2 = ίgr~8, a contradiction since
(#r_3, gr~s) = 1 or l2 + 1 divides k2, a contradiction since Λ2 < l2 + 1.
So Ga is primitive. By Lemma 2.1 (ii), (k2, l2) > 1. Let z — (fc2, l2).
We claim that 2; = q + t — 1.

Since (1 — q)vr^z + qr~3 = 1, it follows that (1 — #)&2 + l2 — q +
ί — 1 and that there is a natural number w such that zu — q 4- t — 1.
By Lemma 2.1 (i) μ2Z2 = fc2(fc2 — λ2 — 1). So there is a natural number
w such that wk2/z — μ2. Then wl2/z = ft2 — λ2 — 1 and

2 ^ λ2 + 2 = έvr_3 - tqr-3w/z .

Now (2, t) = 1 for if the prime p | (2, ί)> then p̂ ] fc2 = tvr_z — 1 and p \ t,
a contradiction. So vr_3 — qr~sw/z is a natural number. From the
substitution of z — (q + t — l)/w into ^ r_3 — qr~zw/z ^ 1, it follows that



A CHARACTERIZATION OF THE SYMPLECTIC GROUPS PSp(2m, q) 617

because t S Q — 1 as s > 1. Then 0 ^ (ww — 2)qr~* + 2 which forces
u = w = 1. So z = g + £ — 1, ft = &2/z and λ2 + 2 = tμ2.

Now IGβ | is even. For if | Ga\ is odd, then &2 = l2 and ίi;r_3 — 1 =
^r-3> which is impossible. By Lemma 2.1 (v)

D = (tμ2 - 2 - μ2f + 4(zft - μ2) = (ί - l)2ft2 + % - l)ft + 4

= ((ί - l)ft + b + 2)2

for some nonnegative integer δ. If b = 0, then £ = g and 8 = 1, a
contradiction. So 6 Ξ> 1 and

4(? - l)ft + 4 - 2(ί - 1)^(6 + 2) + (6 + 2)2

implies b = 2c for some natural number c. It follows that

((? - 1) - (ί - l)(c + 1))A - β(c + 2) .

Assume t > 1. Since (q — 1) - (t - l)(c + 1) > 0, it follows that
q ^ (ί - ΐ)c + t ^ c + 2 and ft ^ φ + 2) < g2. But

If r >̂ 7, then ft ;> (2v4 — l)/2g > g2, a contradiction.
If r = 5, then ft = ί — (ί — l)2/(g + £ — 1). Since £ > 1, there is

a natural number / such that (g + t — 1)/ = (ί — I) 2 . Since g = si,
it follows that stf = (ί — 1) (ί — 1 — / ) and that ί |(ί - 1 - / ) , a
contradiction.

If r = 6, then

ft = (ίv8 - l)/(ί + ί - 1) = (ί - I)g2/(g + £ - 1) + g + 1 .

Note t > 2 for ί = 2 implies g2/(g + 1) is a natural number. So ft ^
2g2/2g + g + 1 = 2g + 1. Since ft divides c(c + 2) and (c, c + 2) = 1
or 2, it follows that ft ^ 2(c + 2). But c + 2 ^ g and so ft ^ 2g, a
contradiction. Therefore ί = 1 and s = g for all r ;> 5.

LEMMA 3.6. 1/ 6 e Z>(α), then X = U {c1: c e jB(αδ)}

Proo/. We know |i2(α6)| = g + 1. Let R(ab) = K , ώ2, •• , dg+1}.
Let J2 = \J{di: 1 ^ i <̂  g + 1}. Express R as a pairwise disjoint
union of g + 1 subsets of X.

i2 = dt U U (di n Π C7(rfy) j .

We claim that

i—1

<^ n Π C(dy) = di n
5 = 1
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This is true for i = 2. Let i > 2. Then

di n C(dθ - (W n C(dj n n £(<*,)) u (dt n c w n ( y ^ L ) ) .

Suppose there is x e dt Π C(di) Π ( U ; ^ ̂ ) T h e n a e ^f Π rf/ Π
for i ^ i So dxe R(didj) g a;1, a contradiction. So

di1- n C(^) n u

and the claim holds for 2 <̂  i ^ g + 1. So

i? - di- u y (rf,1 n

and this union is pairwise disjoint. Now

|i2| = fc + 1 + g(fc + 1 - (λ + 2)) = vr - |X | .

Thus R — X and the proof of the lemma is complete.

PROPOSITION 3.7. X together with the totally singular lines of
X forms a nondegenerate Shult space of finite rank ^ 3 in which
lines carry q + 1 points.

Proof. It suffices to show that if x$R(ab) for beD(a), then x
is adjacent to either one point or all points of R(ab). By definition
two distinct points are adjacent if they determine a totally singular
line. By Lemma 3.6, there exists c 6 R(ab) such that xe cL. If x e dL

for d e R(ab) - {c}, then B(ab) = R(cd) C x1 and x e eL for all β e R{ab).
Thus X is a nondegenerate Shult space in which lines carry q + 1
points.

It remains to show that X has rank >̂ 3. For b e D(a), there is
ceaλ Π bι - R{ab) by Lemma 3.1 (iii). Define the "plane" R(abc) by

R(abc) = Πte 1 - α, 6, c e z1} .

We claim that R(abc) is a subspace of the Shult space X. If so,
then X has rank >̂ 3 since

α c Iϋ(α{>)

is a chain of subspaces of X. To prove that i2(α6c) is a subspace,
we need the following lemma.

LEMMA 3.8. w e R(abc) iff wι 2 a1 Π 6 ̂  Π c 1 .

Proof. Let weR(abc). If ^ e ^ Π ^ Π c - , then α, δ, cew/ and
w G u' since w e R(abc). So new1 and a1 Π δ 1 Π c 1 £ w1. Conversely,
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assume a1 Π b1 Γ) cL ζZ w1. Let a,b, ce z1. Then zeax Ob1 Π cL Q w1

and wez1. By definition of "plane,"w 6 R(abc) and the lemma is
proved.

By definition R(abc) is a subspace if any two points of R(abc)
are adjacent and if any line meeting R(abc) in more than one point
is contained in R(abc). Let d, e e R(abc). Since a, b, ceaL f)bλ C) c1,
it follows that R(abc) £ α 1 Π bL Π c1. By Lemma 3.8.

deR(ab) Q a1 f]bλ f] cL Q e1 .

So any two points of R(abc) are adjacent. Let the line i2(a?2/) meet
R(abc) in {̂ , v}. Then i2(cc2/) = Λ(uv) and x1 ft y1 = u1 f) v1 by Lemma
2.2. If zeR(xy), then

z1 2 α1 D 2/1 = u1 ί l r S ^ Π ί>! Π c1

since u, ve R{abc). By Lemma 3.8, zeR(abc). Thus R(xy) ξΞ? R(abc)
and R(abc) is a subspace of the Shult space X, as desired.

PROPOSITION 3.9. (i) q is a prime power and r is even.
(ii) Either X is isomorphic to the polar space S associated

with an alternating form f defined on a protective space P of dimen-
sion r — 1 over GF(q) or X is isomorphic to the polar space S
associated with a symmetric form f defined on a protective space
P of dimension r over GF(q) for q odd.

Proof. By Proposition 3.7 and Theorem 4 of Buekenhout and
Shult [1], X is a polar space of rank ^ 3 in which lines carry q +
1 ^ 3 points. Since \X\ = vr is finite, by Theorem 1 of Buekenhout
and Shult [1], X is isomorphic to the set of singular points of a
classical symplectic, unitary or orthogonal geometry. Because a line
of X carries q + 1 points and corresponds to a totally singular line
of a classical geometry, it follows that q is a prime power. Note
that \X\ — vr equals the number of singular points of a classical
geometry. It follows that either the geometry is symplectic or orthog-
onal and that r = 2m for some m ^ 3 since X has rank >̂ 3. Statement
(ii) now follows.

PROPOSITION 3.10. (i) G is isomorphic to a subgroup of PΓU(f),
the group of collineations of P which preserve the form /.

(ii) For xeX, φ(xL) = {w e P: f(w, w) = 0, f(w, φ(x)) = 0} where
φ:X—*S is a polar space isomorphism.

(iii) For x, y e X, φ(R(x, y)) is the set of singular points of the
protective line determined by φ{x) and φ{y).
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(iv) X is isomorphic to a symplectic geometry.

Proof, (i) The group G is a subgroup of the group of automor-
phisms of the polar space X, which we denote by Aut(X). If
φ:X—>S is a polar space isomorphism, then define a map

ψ: Aut (X) > Aut (S) by

ψ(s) = ψsφ~ι

for seAut(X). It follows that ψ is a group isomorphism. Now
PΓU(f) = Aut(S) by a natural map defined by

PΓU >&at(S)

u > the restriction oΐ u to S .

See Dieudonne [2] pp. 82-84. So ^(G) is a subgroup of PΓU(f).
(ii) This statement claims that φ(x U D{x)) is the hyperplane of

singular points of S which are perpendicular to φ(x). Denote this
hyperplane by φ(xY, where λ is the polarity determined by the
form /.

Since x1 = \J{R(xb): b e D(x)}, it follows that

φ(xL) = \J{φ{R(χb)): b e D(x)} Q <P(XY

because φ(B(xb)) is a totally singular line of P. So φ(xL) Q φ(x)L.
Conversely for zeφ(x)1

f there exists beX such that z = φ(b)
and φQ>Yφ{x). Suppose bgx1. Then beC(x), an orbit of Gx. For
c 6 C(x) there exists g e Gx such that g(b) = c. Then (̂gr) e Aut (S)
and π/τ(̂ r) preserves the polarity L. Since φ(b)λφ(x), it follows that
( f ^ X ^ ^ ) ) 1 ^ ^ ) ) ^ ^ ) ) and φ(c)Lφ(x). So cp(c)G^) 1 for all ceC(x).
Since ^(α1) £ Φ(%Y, it follows that «̂ (X) = S Q φix)1, a contradiction.
Thus be a?1, φ(b) — z^ φ(xλ) and ^(α?)1 £ ^(a;1).

(iii) Since -Z2(a?2/) = Π{^1# >̂ V^VL}y it follows from (ii) that

φ{R(xy)) = Γlί^1- ^^iS and ?>(a?), φ(τ/)e v 1}.

So φ(R(xy)) is the set of singular points of the protective line deter-
mined by φ{x) and φ{y).

(iv) Assume X is an orthogonal geometry. If yeC(x), then
φ(R(xy)) is a hyperbolic line in an orthogonal geometry and so carries
just 2 singular points. But \φ(R(xy))\ = \R(xy)\ > 2, by hypothesis
of the theorem. This contradiction shows that X must be a symplectic
geometry. So the proposition is established.

PROPOSITION 3.11. (i) The nontrivial elements of T(x) correspond
to elations of P.

(ii) ψ(G) contains PSp(2m, q) as a normal subgroup.
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Proof, (i) Because X is symplectic, all points of P are singular
and S = P. Because \R(ax)\ > 2 by Lemma 2.1 (iii), there exists a
nontrivial element t of T(x). Then t fixes x1 pointwise and t fixes
no point outside xL by Lemma 2.3 (ii). It easily follows from Pro-
position 3.10 (ii) that ψ(t) fixes the hyper plane φ(x)1 pointwise and
ψ(t) fixes no point outside this hyperplane. Thus ψ(t) is an elation
of P. Since | T(x) \ \ | (| R(xy) | - 1) for yeC(x), since hyperbolic lines
of S carry q + 1 points and since T(x) is transitive on R(xy) — {x},
it follows that | T(x) | = q.

(ii) ψ{G) contains q elations for each point v of P. Since these
elations generate PSp(2mf q), (ii) holds.
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